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Highlights 

 Experimental data on varied combinations of units and mortars are presented in detail 

 The varying Poisson’s ratio of mortar under compressive loading is investigated and 

modeled 

 Computationally inexpensive and accurate micro-mechanical models are developed for the 

numerical reproduction of the experiments 

 The influence of the material properties of mortar on the compressive behavior of masonry 

is highlighted 

 The wide changes in the apparent vs. prescribed elastic properties of the material 

components in the masonry composite are shown 
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Abstract 

The present paper deals with the behavior of several types of mortar in masonry under 

compression. The quantification of the response of mortar to triaxial confinement afforded by the 

masonry units in the composite subjected to compressive stresses is paramount in the determination of 

the peak stress of wallettes and pillars under compression. This behavior is greatly affected by the 
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behavior of the mortar micro-structure and is manifested by the constrained lateral expansion of the 

mortar in the joint. 

A series of experimental results is presented, carried out on different assemblages of masonry 

composites (couplets and wallettes) with different types of masonry units and mortar, ranging in type 

from pure lime to cement based mortars. These experiments are subsequently simulated numerically 

using micro-mechanical techniques accounting for the shifting behavior of the Poisson’s ratio of the 

mortar for varying levels of applied compression. Masonry is treated in a micro-mechanical framework 

as a composite material composed of two macroscopically distinct material phases: units and mortar. 

The experiments and their simulation provide insight into the complexities of masonry under 

compression that need to be accounted for in numerical analysis, including a discussion on the 

progression of damage in each material phase. The results and their analysis are further enriched 

through a comparative parametric study. A clear difference emerges between the assigned and the 

apparent Poisson’s ratio for the material components. 

1. Introduction 

1.1  State of the Art 

The majority of existing and historic masonry structures is composed by regularly or semi-

regularly arranged clay or stone units, bound through the use of mortar. The complexity of the 

structural behavior of masonry arises from the dimension ratios of the members, the brittle behavior of 

its constituent materials in tension and shear, and the geometrical complexity of the bond patterns. 

This complexity is further compounded by the mismatch of the elastic properties of the constituent 

materials, which leads to irregularities in the stress state at the meso-scale, particularly in the case of 

vertical, horizontal and diagonal compression. 
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Sophisticated numerical approaches are often required for the detailed analysis of masonry 

structures. Analysis methods for masonry in the macro-scale are able to capture the behavior of the 

material at the composite level [1], but are often reliant on the characterization of entire masonry 

samples [2], which present severe difficulties in their extraction and destructive testing. Micro-

modeling approaches, on the other hand, rely on the distinct modeling of the material phases of the 

composite in order to achieve result completeness and a direct simulation of the interaction of the units 

and the mortar [3,4]. This is of particular importance for the study of masonry in compression and the 

three-dimensional interaction effects involved in the phenomenon [5,6]. 

An attractive method for the study of masonry composites is the micro-mechanical approach based 

on analytical expressions [7–10]. This allows for a relatively simple, versatile and computationally 

inexpensive method, compared to nonlinear finite element analysis, for micro-modeling of masonry 

composites without loss of accuracy. 

The behavior of masonry in compression is greatly influenced by the mechanical characteristics of 

the mortar in the joints, which may exhibit different behavior in stand-alone samples and in the 

composite [11]. This is not limited to the uniaxial compressive or tensile strength of the material, but is 

a function, to a substantial degree, of its triaxial behavior as mobilized in the joint under confinement 

[12,13]. Due to their low Young’s modulus, lime mortars are under higher levels of confinement 

compared to mortars with cement content [14]. This effect is enhanced in a computational context by 

the assumed high Poisson’s ratio of these mortars, which results in greater calculated lateral expansion 

and subsequent restraint by the units. However, the Poisson’s ratio is not constant but develops from 

an initially low value, owed to the high porosity of the material, to a very high value near the uniaxial 

strength limit, and is further influenced by its triaxial stress state [15]. Masonry mortars with high 

porosity are characterized by low uniaxial compressive strength and low initial Poisson’s ratio. 
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Masonry composites composed of clay bricks and such mortars are characterized by a compressive 

strength several times the compressive strength of the mortar, which implies a significant amount of 

confinement in the joint which mobilizes the strength of the mortar under multiaxial confinement. A 

low Poisson’s ratio would preclude the amount of confinement necessary for this high strength to 

develop. Therefore, the study of the stress state in the joint under perpendicular compression is of 

significant importance. 

1.2  Objectives 

In this paper a series of experimental tests on the compression of masonry triplets and Flemish 

bond wallettes are numerically simulated. The simulation is carried out using micro-mechanical 

models for masonry: a model for the analysis of Flemish bond wallettes and a newly developed model 

for stack bond masonry prisms. Different types of unit and mortar are studied, corresponding to a wide 

variety of combinations found in existing and historic structures, as well as in masonry composites 

used for reconstruction interventions. 

Through the numerical simulations, it is sought to gain insight into the confinement effect afforded 

on the mortar joints by the units in masonry subjected to compression. This is achieved through the 

implementation of expressions for the development of the Poisson’s ratio of mortar under varying 

levels of vertical stress and the quantification of the confinement of the mortar joint according to 

material and geometric parameters. The quantification allows for the adoption of a knowledge-based 

approach towards the prediction of the compressive strength of masonry based on the study of its 

constituent materials. In particular, the suitability of an approach based on a constant Poisson’s ratio as 

an elastic parameter for the mortar is investigated and discussed. 

The micro-mechanical approach adopted in this paper allows for a simple but inclusive overview 

of the development of damage in individual components (material phases) of the masonry composite 
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for an increasing load up to peak stress and beyond. Drawing from a wide spectrum of experimental 

data, and through parametric analyses, the influence of material and geometric parameters are 

evaluated and valorized. 

2. Experimental Data 

2.1  Tests on Clay Units 

The units are hand-molded solid clay bricks measuring             . Cubic samples, 

produced by cutting with a diamond saw, with dimensions             were tested in uniaxial 

compression. Longitudinal deformation was measured using four perimetrically arranged linear 

variable differential transformers (LVDTs) attached to the load plates. Lateral expansion was 

measured using four horizontal LVDTs. Prismatic samples with dimensions              were 

tested in three-point bending. Two batches of the same type of units were tested, both of which, 

produced similar results. The average results of the two batches of the material characterization are 

presented in Table 1. Of note is the particularly high scatter for the Poisson’s ratio, while the 

compressive strength, Young’s modulus and flexural strength exhibited lower, but still substantial, 

scatter. 

Due to the lack of generally accepted values for masonry components, missing material properties 

are calculated based on expressions used in concrete. The tensile strength was derived from the 

flexural strength according to the equation [16]: 

     
        

          
 (1) . 

where   is the height of the specimen tested in three-point bending. The compressive fracture 

energy is calculated according to the equation [5]: 
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      (2) . 

where      . The tensile fracture energy in    ⁄  is calculated according to the equation 

[16]: 

  
  

    
    

    
 (3) . 

with the compressive strength    in     ⁄ . 

Table 1 Material properties of clay bricks (coefficient of variation in parentheses). 

Young’s modulus   [   
 ⁄ ] 2570 (0.297) 

Poisson’s ratio   [ ] 0.14 (0.500) 

Compressive strength  
 
 [   

 ⁄ ] 9.97 (0.225) 

Flexural strength  
 
 [   

 ⁄ ] 3.12 (0.151) 

Tensile strength  
 
 [   

 ⁄ ] 1.37 

Compressive fracture energy   
  [   ⁄ ] 9.97 

Tensile fracture energy   
  [   ⁄ ] 0.110 

2.2  Tests on Mortars 

Two batches of mortar were produced, tested and employed in the construction of the masonry 

samples. The mortars include a) a lime putty mortar (LP), b) a natural hydraulic lime mortar (HL), c) a 

hybrid lime-cement mortar (LC) and d) a cement mortar (CM). Batch A mortars were used for the 

construction of the masonry triplets, while batch B mortars were used in the Flemish bond wallettes 

and for the determination of the triaxial behavior characteristics of the mortar. The two mortar batches 

were produced at different time periods, with variations of the binder and aggregate content in order to 

maximize material variety. The compositions of the mortars are given in Table 2. Batch B LC mortars 

were made using a commercial premix (Unilit 35). The weight percentages of binder and aggregates 

are presented jointly in this case under the sand column.  
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Table 2 Overview of mortar compositions in weight percentage. 

  Binder Sand Water 

Batch A 

LP 14.1 65.9 20.0 

HL 11.2 71.2 17.6 

LC 5.8 L + 8.9 C 68.8 16.8 
CM 17.6 67.8 14.6 

Batch B 

LP 22.3 71.2 5.8 

HL - 87.5 (premix) 12.5 

LC 10.9 L + 6.3 C 73.0 9.8 
CM 18.2 70.0 11.8 

Compressive and three-point bending tests on the mortars were carried out according to the EN 

testing standard [17]. The results are summarized in Table 3 and Table 4 for the results at the age of 

testing of the masonry samples. The adjustment of the Young’s modulus and Poisson’s ratio of the 

batch B mortars was carried out in order for the model of the masonry to approach the experimentally 

derived stiffness of the wallettes in compression. The range indicated in the Poisson’s ratio of the 

mortar defines the initial and maximum values of the material parameter as implemented in the micro-

mechanical modeling of the mortar in compression. The difference between the value assigned as a 

material parameter, be it a constant value or determined through a constitutive relation with applied 

stress, and the apparent value, as determined through the deformation of the material, is discussed in 

section 6. 

Table 3 Material properties of batch A mortars (coefficient of variation in parentheses). 

   Lime putty mortar Hydraulic lime mortar Lime-cement mortar Cement mortar 

Young’s modulus   [   
 ⁄ ] 96 (0.375) 762 (0.434) 235 (0.434) 3325 (0.494) 

Poisson’s ratio   [ ] 0.05-0.25 0.05-0.25 0.05-0.25 0.05-0.25 

Compressive strength  
 
 [   

 ⁄ ] 0.79 (0.114) 4.47 (0.063) 1.68 (0.167) 19.47 (0.063) 

Flexural strength  
 
 [   

 ⁄ ] 0.52 (0.058) 1.34 (0.082) 0.79 (0.063) 3.67 (0.076) 

Tensile strength  
 
 [   

 ⁄ ] 0.23 0.59 0.35 2.57 

Compressive fracture energy   
  [   ⁄ ] 0.79 4.47 1.68 19.47 

Tensile fracture energy   
  [   ⁄ ] 0.070 0.096 0.080 0.125 
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Table 4 Material properties of batch B mortars (coefficient of variation in parentheses). 

   Lime putty mortar Hydraulic lime mortar Lime-cement mortar Cement mortar 

Young’s modulus   [   
 ⁄ ] 200 400 1000 10000 

Poisson’s ratio   [ ] 0.05-0.30 0.05-0.25 0.05-0.30 0.05-0.25 

Compressive strength  
 
 [   

 ⁄ ] 1.45 (0.062) 0.89 (0.124) 1.7 (0.035) 14.4 (0.085) 

Flexural strength  
 
 [   

 ⁄ ] 0.45 (0.089) - 0.79 (0.063) 5.81 (0.060) 

Tensile strength  
 
 [   

 ⁄ ] 0.20 0.12 0.35 2.57 

Compressive fracture energy   
  [   ⁄ ] 1.45 0.89 1.7 14.4 

Tensile fracture energy   
  [   ⁄ ] 0.078 0.071 0.080 0.118 

2.3  Tests on Masonry Samples 

The triplets consisted in simply stacked units with masonry bed joints. The dimensions of the 

samples were                (length × height × width). They were tested in an INSTRON 

1196 machine, with a capacity of       . The Flemish bond wallettes were three units in length and 

10 courses high. The samples measured                . They were tested in an INSTRON 

8800 machine with a capacity of        . All masonry samples were tested under displacement-

controlled loading. A constant strain rate was maintained, equal to           . A gypsum 

compensating layer was introduced between the load surface on the samples and the load plates. The 

in-plane deformation of the samples was measured using horizontally and vertically arranged LVDTs. 

The results of the masonry triplets and Flemish bond wallettes are presented in Table 5 and Table 6 

respectively indicating the obtained compressive strength and the macroscopic Young’s modulus. 

Generally, the Flemish bond wallettes exhibited a higher stiffness than the triplets, but also a lower 

compressive strength, as in the case of the LC mortar in particular. Differences in the compressive 

strength are expected between triplets and wallettes due to the differences in dimensions, which in turn 

can also affect mortar confinement, and the geometric bond of the units, which introduces a greater 

number of planes of weakness in the composite.  
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Table 5 Properties of masonry triplets (coefficient of variation in parentheses). 

   Lime putty mortar Hydraulic lime mortar Lime-cement mortar Cement mortar 

Young’s modulus   [   
 ⁄ ] 296 (0.152) 670 (0.343) 985 (0.207) 865 (0.138) 

Compressive strength  
 
 [   

 ⁄ ] 4.54 (0.207) 5.94 (0.136) 8.12 (0.105) 9.00 (0.020) 

Table 6 Properties of masonry Flemish bond wallettes (coefficient of variation in 

parentheses). 

   Lime putty mortar Hydraulic lime mortar Lime-cement mortar Cement mortar 

Young’s modulus   [   
 ⁄ ] 636 (0.149) 1374 (0.184) 2734 (0.149) 3729 (0.114) 

Compressive strength  
 
 [   

 ⁄ ] 4.19 (0.002) 5.93 (0.105) 4.70 (0.343) 8.36 (0.030) 

3. Micro-Mechanical Model 

3.1  Overview 

The method of cells constitutes a wide-spread approach in the field of the analysis of composite 

materials characterized by a repeating geometric pattern [18]. The composite is discretized into 

repeating unit cells, each geometrically representative of the entire composite. These cells are further 

discretized into sub-cells according to the geometrical arrangement of the two or more material phases 

comprising it. The sub-cells are finally assigned different material properties and their interaction is 

accounted for. 

In the present study, the interaction of the sub-cells, here called cuboids, is modeled using closed 

form expressions, derived from stress equilibrium and deformation conformity within the cell. The 

main advantage of using closed form expressions is the marked reduction in the computational cost. 

Additional rational assumptions are made concerning the distribution of stresses between the cuboids. 

An analytical model for the calculation of the stresses and strains in a layered masonry pillar, 

comprised of alternating layers of units and mortar, was proposed by Haller [7]. In this model the 

horizontal and transversal strains are equal in both layers, therefore the length and the width of the 

masonry unit are not parameters in the calculation, and there is no distinction between horizontal and 
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transversal stress and strain. In the present work a refinement of this model is proposed which 

introduces these geometrical parameters and results in different stresses and strains in the two 

directions orthogonal to the loading direction. 

The common assumptions for all models are summarized here. Each cuboid   is characterized by 

constant stress and strain in three orthogonal directions, arbitrarily denoted as  ,   and  . According to 

Hooke’s law, the normal and shear stresses and strains are related according to the following equation: 

             ⁄    (           )   ⁄  (4) . 

           (    )   ⁄  (5) . 

where   and   are the stresses and strains respectively,   is the Young’s modulus,   is the 

Poisson’s ratio. The deformation of the cuboid due to normal and shear strain is assumed equal to: 

                    
    

 
      

    
 

 (6) . 

where     ,      and      is the length of the cuboid in direction  ,   and   respectively. 

Normal and shear stress equilibriums at the faces of the cells with dimensions   ,    and    are as 

follows: 

∑             
 

           (7) . 

∑             
 

           (8) . 

∑             
 

           (9) . 
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where     and     are the externally applied normal and shear stresses on the cell and   indicates a 

cuboid at the edge of the cell. 

3.2  Unit cells: derivation and discretization 

For all calculations suffix   denotes the longitudinal,   the vertical and   the transversal direction 

with respect to the layout of the masonry. Normal stress and strain components are denoted with a 

double suffix of the same symbol, and two different symbols denote a shear component. The type of 

cuboid is itself designated in a suffix:   and   signify the units and mortar in the stack bond pillar 

model, while for the Flemish bond model,   and   signify stretcher and header units respectively, and 

 ,  ,   and   signify head, cross, bed and transversal, or collar, joints respectively. Additional number 

suffixes are used where several unit or mortar cuboids of the same type are found in the model. For the 

dimensions of the cuboids,   signifies the longitudinal direction,   the vertical and   the transversal 

dimension. The derivation of the unit cells from stack bond pillars and Flemish bond walls is shown in 

Figure 1. The discretization of the periodic unit cells, along with the nomenclature of the resulting 

cuboids and the assigned dimensions, is illustrated in Figure 2. 

 

Figure 1 Derivation of periodic unit cells: a) stack bond pillar and b) Flemish bond wall. 
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Figure 2 Discretization of periodic unit cells into cuboids: (a) stack bond pillar and (b) 

Flemish bond wall (external and middle leaf). 

3.3  Models for stack bond pillars and Flemish bond walls 

The stress and strain conformity equations and the calculation of the total strains in the Flemish 

bond cell, all related to linear elastic analysis, are presented in detail in [9] and are not repeated here 

for the sake of brevity. The implemented changes in nonlinear analysis as against [19] are detailed in 

the following section. 

In Haller’s original model for stack bond masonry prisms, strains lateral to the loading direction 

are considered equal in the two material phases. Further, the stresses and strains in the horizontal and 

transversal directions are equal, therefore no real distinction arises in these directions and the length 

and width of the unit are not considered in the calculations: the height of the unit and the mortar joint 

are the only geometrical parameters in the equations.  
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A modification of this model is proposed here. The modification in the stack bond prism model 

consists in differentiating between the two lateral directions and including the dimensions of the unit, 

while additionally producing a lower amount of confinement on the mortar joint. 

Due to horizontal and transversal stress equilibrium, the resulting conformity equations are: 

   (     )                  (10) . 

   (     )                  (11) . 

Vertical stress equilibrium, given that the vertical stress is equal in both components, reads: 

                (12) . 

Strain equality is enforced between the unit and the mortar joint in the longitudinal direction: 

            (13) . 

Finally. the ratio of longitudinal to transversal stress in the unit is assumed to be equal to the ratio 

of length over width of the unit in order to proportion the difference in confinement in the two 

directions according to the geometric layout: 

                (14) . 

According to the above approach, the ratio of horizontal or transversal stress in the mortar joint 

over the applied vertical stress is determined to be equal to: 

     
   

 
    (         )

    (       )      (       )
      (15) . 
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  (             )

    (       )      (       )
      (16) . 

For Haller’s model the      and      parameters are equal and calculated according to the equation 

   
             

         (       )      
 (17) . 

The Young’s modulus of the masonry composite   , assuming constant values for all elastic 

parameters, may also be derived from the above equations, and is equal to: 

   
    (     )(    (       )      (       ))

     (    ((     )      )  (  (        (     )  )        )  )  

  (      (  ((     )     )    )    (  
        (  

    
 ))) 

 
(18) . 

For Haller’s model the expression for the Young’s modulus of masonry is 

   
    (     )(           (    )      )

  
     (      )  

    (  (        )      )   

  
     (         )  

    (  
    (  

    
 ))

 

(19) . 

Disregarding the influence of the Poisson’s ratio of the components, thus treating the layered 

composite as a linear series of springs with no longitudinal and transversal interaction, the above 

equation becomes: 

     
    (     )

         
 (20) . 

Significant differences in the calculated Young’s modulus of masonry may arise from the inclusion 

of the Poisson’s ratio of the mortar in the calculation. Assuming a material combination of the above 
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described clay units and the lime putty mortar, the ratio of the Young’s modulus of the masonry 

composite according to the proposed (eq. 18) or Haller (eq. 19) model and the simple spring model 

(eq. 20) is shown in Figure 3. The Young’s modulus of the masonry composite increases significantly, 

particularly in the case of Haller’s model, for higher values of the Poisson’s ratio of the mortar, which 

may indeed be registered for high levels of applied stress. This effect, however, is in practice partially 

offset by the decrease in the tangent Young’s modulus of the mortar due to crushing under high 

applied loads. 

 

Figure 3 Comparison of Young’s modulus of masonry according to Haller’s model and the 

proposed model both denoted   , vs. the simple spring model      for variation of the Poisson’s 

ratio of mortar. 

3.4  Nonlinear analysis 

Nonlinear analysis of the periodic unit cell is performed by applying a normal strain in the cell, 

calculating the internal stresses in the cuboids and deriving an averaged stress at the faces of the cell. 

The constitutive modeling of the nonlinearity of the cuboids in compression and tension is achieved 
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through the adoption of integrity variables linking the effective stress, which is proportional to the 

strain, to the actual or “damaged” stress [19]. Integrity variables assume values between 1, indicating a 

completely undamaged material, to 0, indicating a completely damaged material. 

The integrity variable for each cuboid   in compression at analysis step   is equal to: 

  ( )  

{
 
 
 

 
 
 

      ( )      

 
  

      ( )

 

 
(   

 ( )      

       
  (

 ( )      

       
)

 

)         ( )    

 
  

      ( )
(  (

 ( )    
     

)

 

)       ( )    

       ( )

 (21) . 

where    is the compressive strength,   is the strain and        is the effective stress in 

the direction being evaluated. Compressive stresses and strains assume negative values. 

The strain      is the limit of proportionality in compression, equal to       
 

 

  

 
 

(22) . 

   is the peak strain 

    
 

 

  
 

 (23) . 

and    is the ultimate strain 

      
 

 

  
 

   
 (24) . 

where   
  is the compressive fracture energy and   is the characteristic length, equal to the 

dimension of the cuboid in the evaluated direction of loading. The above expressions describe a 

parabolic actual stress/strain curve in compression based on fracture energy according to Feenstra [20]. 
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The integrity variable in tension at analysis step   is equal to 

  ( )  

{
 
 

 
       ( )    

  
      ( )

   ( 
   

  
 ( ( )    ))       ( )

 (25) . 

where    is the tensile strength and    is the limit of proportionality in tension, equal to the peak 

strain 

   
  
 

 (26) . 

and   
  is the tensile fracture energy. Tensile stresses and strains assume positive values. The 

characteristic length   is again equal to the dimension of the cuboid in the evaluated direction. The 

above equations describe an exponential softening curve in tension based on fracture energy according 

to Feenstra [20]. 

Through the evaluation of the integrity variables in three directions it is possible to directly 

incorporate the effects of anisotropy in terms of material strength in the model, as might be 

encountered in the units. Similarly, elastic anisotropy can easily be taken into account in a simple 

modification of the Hooke’s law equations. This can be of use for the analysis of extruded and cut clay 

units, which can present orthotropic elastic behavior. This path has not been pursued in the present 

study, even though the analysis framework is fully functional in that regard. 

The integrity variables in tension and compression are evaluated in the three principal directions of 

the cuboid, assuming that the stress is positive or negative respectively. An isotropic damage approach 

is adopted, and no damage recovery is allowed for unloading. The actual stress for each cuboid   at 

step    is finally equal to 
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  ( )    ( )  ( )      ( ) (27) . 

The interaction of lateral stress in the compressive strength of the units is taken into account 

through a Mohr-Coulomb type curve in the compression-tension range. When tensile stress σl is 

applied laterally in the direction where the compressive integrity variable is evaluated, the compressive 

strength of the unit is scaled down to     , which is assumed equal to 

     (      ⁄ )   (28) . 

The strain values in the parabolic curve are scaled down proportionally. No increase in the 

compressive strength of the units is considered due to biaxial or triaxial compression. 

The increase in the compressive strength of the mortar due to biaxial or triaxial compression is 

taken into account through the Hsieh-Ting-Chen failure curve [21]. In terms of principal stresses   ,    

and    the criterion is expressed as 

   
  

  
   

√  
  
  

  
  
  

  
  
     (29) . 

where    and    are the first stress and second deviatoric stress invariants respectively, and    is the 

maximum principal stress. The numerical parameters  ,  ,   and   are calculated according to the 

results of uniaxial tension, uniaxial compression, biaxial compression and triaxial compression under 

equibiaxial stress. The confined compressive strength of the mortar is acquired by solving the equation 

for   , with    and    being the actual lateral stresses applied in the cuboid (     ). The pre-peak 

part of the parabolic compression curve is scaled proportionally to the ratio of the confined 

compressive strength over the uniaxial compressive strength. In the initial calculations the values 

proposed for concrete in [21] will be used for determining the failure curve. These values are 
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calculated by a tensile strength equal to 10% of the uniaxial compressive strength, a biaxial strength 

equal to 1.15 times the uniaxial compressive strength and a strength of 4.2 times the uniaxial strength 

under an equibiaxial confinement equal to 0.8 times the uniaxial strength. 

The fitting of the experimental data on the triaxial compression of the batch B LP, HL and LC 

mortars is shown in Figure 4. The triaxial tests were carried out for the determination of the 

compressive strength    under a varying level of biaxial compression of      . The fitting was 

performed only in the range where the confinement is limited to 50% of the apparent compressive 

strength:             . The fitting for the LP and HL mortars is satisfactory. The failure curve 

appears to underestimate the confinement effect for lateral pressure less than 2.5 N/mm
2
 in the LC 

case.
 
The resulting numerical parameters for the mortars, along with the standard values for concrete, 

are presented in Table 7. Due to lack of experimental data in the current case, the standard concrete 

values were used for the CM mortar. Nevertheless, the high compressive strength of the CM mortar 

renders its behavior under confinement secondary in importance. 
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Figure 4 Fitting of experimental data on triaxial compression of mortars to Hsieh-Ting-

Chen failure criterion. 

Table 7 Numerical parameters for the Hsieh-Ting-Chen failure criterion: standard values 

for concrete and determined values for mortar. 

Parameter Concrete LP HL LC 

A 2.0108 7.378 4.3371 8.0331 

B 0.9714 -1.6627 -0.1705 -1.9843 

C 9.1412 10.2147 9.6066 10.3458 
D 0.2312 0.4993 0.3473 0.5321 

The constitutive relation of stress and strain, both in tension and in compression, is illustrated in 

Figure 5. Additionally, in the same figure the effect of confinement on the stress-strain curve in the 

compression range is indicated. As is shown, an increase in the compressive strength of the mortar due 

to confinement can result in increased brittleness, in terms of absolute difference between the peak and 

ultimate strain, since the compressive fracture energy is not increased. This behavior is consistent with 

abrupt failure observed in masonry samples with overly confined mortar joints [14]. 
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Figure 5 (a) Compression and tension stress-strain curves for unconfined and confined 

mortar. (b) Failure curve for mortar under biaxial stress. 

3.5  The Poisson’s ratio of mortar 

The Poisson’s ratio of mortar is here not considered constant as is usually the case in numerical 

analysis. Cementitious materials exhibit an increase in the Poisson’s ratio for an increase in the applied 

compressive stress. This increase may in many cases be attributed to the porous structure of the mortar 

and its dilation due to crack formation [13]. The number of existing models for calculating the 

variation of the Poisson’s ratio in cements and mortars under increasing compressive stress is limited. 

This variation may, as a first step, be modeled through use of the Ottosen model for concrete [22]. 

According to this model, the Poisson’s ratio of mortar    is equal to: 

  ( )  

{
 
 

 
 

            

     (         )√  
    
    

        

         

 (30) . 
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where      and      are the initial and final Poisson’s ratios respectively,   is the ratio of absolute 

actual compressive stress over the compressive strength and    is the   ratio up to which the Poisson’s 

ratio remains constant. It is assumed that the Poisson’s ratio remains constant at its final value after 

attainment of the peak stress. The uniaxial compressive strength of the mortar is considered for the 

calculation of   regardless of an increase in the apparent compressive strength due to lateral 

confinement. The calculation of   and the Poisson’s ratio therefore does not take into account the 

increase of the compressive strength due to confinement. Lateral confining stresses would retard the 

formation of cracks in the mortar and, therefore, affect the resulting Poison’s ratio. Nevertheless, the 

adopted approach is a necessary simplification in light of the impracticality of carrying out 

experiments on mortar samples where the lateral pressure and the lateral displacement are 

simultaneously controlled while damage progress is monitored. This can be the object of future 

research using embedded sensors. 

A further model linking the applied stress on the mortar and its Poisson’s ratio has been proposed 

by Mohamad et al [15]. In this model the Poisson’s ratio of the mortar is calculated as follows: 

  ( )  {
     

          

     
       

 (31) . 

The differences resulting from the two approaches for the Poisson’s ratio are presented and 

discussed in the parametric investigation. The Ottosen and Mohamad models for the Poisson’s ratio 

are graphically illustrated in Figure 6. Additionally, the confinement on the lime putty mortar joint, as 

quantified using the   ,       and      parameters are also illustrated. The exponential increase of the 

ratio in the Mohamad model leads to an excessive amount of confinement. In a numerical framework, 

this can lead to instability. Furthermore, for a low initial value of the ratio, the Mohamad model can 

lead to a reversal in the confinement for low levels of stress: the unit is in triaxial compression and the 
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mortar is subjected to lateral tension. Therefore, the Ottosen model is applied here for the initial 

analyses. 

A more general case of the Ottosen model is here proposed, which accounts for the Poisson’s ratio 

for values of   higher than 1 but which does not result in an overestimation of the Poisson’s ratio and, 

therefore, of the confinement of the mortar, as might happen in the Mohamad model for high values of 

compressive stress, since the value for   ( ) tends towards a prescribed value. Furthermore, the first 

inflection point is not restricted to a value of   equal to 1. The additional parameters of the proposed 

model allow for the fitting of experimental data of greater complexity, through the use of an initial, an 

intermediate and a final value of the Poisson’s ratio. The model is expressed as: 

  ( )  

{
  
 

  
 

            

     (         )√  
    
     

         

     (         )
    

  (    )
      

 (32) . 

where    is the   ratio for which the curve inflects for a second time and   is a numerical constant 

controlling the shape of the final hyperbolic curve of the model. For         and           the 

model reverts to the Ottosen model. A comparison of the three models for the Poisson’s ratio is shown 

in Figure 6. 
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Figure 6 Ottosen, Mohamad and proposed models: (a) the Poisson’s ratio of mortar vs. 

applied stress level, (b) confinement of the mortar joint according to Haller (eq. 17) and (c) & (d) 

confinement of the mortar joint according to the proposed model in the longitudinal (eq. 15) and 

transversal (eq. 16) direction respectively. 

For the purpose of validating the proposed model, it is compared with the results of a series of 

three uniaxial compression tests on cylindrical LC mortar samples. The comparison of the model with 

the experiments is shown in Figure 7. The model is able to capture the behavior of the samples until 
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failure, employing both the exponential and the hyperbolic branches of the model. Despite the fact that 

the term “Poisson’s ratio” is defined in linear elasticity, the value calculated through the proposed 

constitutive relation is still referred to using the same term. This is done for the sake of brevity and for 

distinction between the Poisson’s ratio as a material parameter (be it constant, due to Ottosen, 

Mohamad or the present model) and the apparent Poisson’s ratio as calculated from the deformation of 

the material components. This issue is further explored in section 6. 

 

Figure 7 Proposed model for the Poisson’s ratio vs. normalized applied stress for hybrid 

mortar: three tests on the same batch. 

The proposed model is further compared to the experimental results from the tests on brick 

samples. This comparison is shown in Figure 8. While in the present paper the Poisson’s ratio of the 

units was taken as constant, it not being the focus of the research, these results are included in order to 

demonstrate the suitability of the proposed model for different cases. Despite the very different 

responses obtained for the two samples, the proposed model can approximate the development of the 

Poisson’s ratio to a satisfactory degree. The exponential increase of the Poisson’s ratio measured in the 
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experiments near the ultimate load should be interpreted as the result of the failure of the sample and 

not as a material parameter. Therefore, a hyperbolic curve was chosen for the final branch of the 

proposed model instead of an exponential expression. Further, by manipulation of the parameters of 

the model, a hyperbolic or exponential increase of the Poisson’s ratio may be taken into account. The 

flexibility of the proposed model consists in its capacity, through manipulation of the numerical 

parameters, to fully emulate the Ottosen model, in addition to being able to approximate the 

exponential increase described by the Mohamad model. In nonlinear numerical analysis this behavior 

of the material is taken into account through softening in compression. 

 

Figure 8 Proposed model for the Poisson’s ratio vs. normalized applied stress for brick 

units: two tests on the same batch. 

3.6  Solution of system of equations 

The system of equations resulting from the cuboid equations, the integrity variables and the 

Poisson’s ratio is solved iteratively for each load step using a multi-variate Newton-Raphson solution 

method. The cuboid stress and strain increments are calculated according to the cell total strain 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

28 

increment and the assumption of trial values for the integrity variables and the Poisson’s ratio. 

Iterations within the load step are performed until the assigned trial values converge with the actual 

values derived from the stress and strain increment. The iterations, the number of which is indicated 

with  , are carried out according to 

     (   )   (    (  )
  
 (  )) (33) . 

where   is the vector of variables,   is the vector of equations,   is its Jacobian matrix and   is the 

modified Richardson iteration factor. When     , the iterative method reverts to the standard 

Newton-Raphson method.  When values higher than 1 are assigned, the convergence rate can be 

increased. Conversely, values between 0 and 1 increase the number of iterations in the load step, but 

result in more stable convergence. In this study, a value of       was elected. This resulted in an 

only small increase of the iterations near the stress-peak and an avoidance of divergence problems.  

4. Simulation of masonry compression tests 

4.1  Triplets 

The comparison between the stress-strain curves obtained from the analyses and the experimental 

curves is shown in Figure 9. These analyses were carried out using the properties of the batch A 

mortars and the initial values for the material properties of the bricks without further modification. The 

obtained peak stress value and initial stiffness of the composite was generally calculated with good 

accuracy. The inflection of the stiffness during the experiments on the HL triplets was not obtained, 

however. The post peak behavior, as governed by the softening of the components in compression and 

tension was also fairly well captured, as in the case of the LP and the LC mortar particularly. The 

difference in the post-peak curve for the CM triplets indicates that the compressive fracture energy 
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initially assumed for the mortar is overestimated. However, it is not the main purpose of this paper to 

engage in parameter calibration for result fitting, especially in the case of the cement mortar. 

For the sake of comparison, the results of the same analyses using a constant value for the 

Poisson’s ratio are presented alongside the results using the proposed model. An intermediate value of 

0.15 was chosen for the Poisson’s ratio for all mortars. In the LP and LC cases the difference between 

the two approaches is significant. The constant Poisson’s ratio assumption cannot account for the 

confinement of the mortar, leading in turn to an underestimation of the compressive strength. The HL 

and CM mortar cases, on the other hand, did not present significant differences, their failure mode 

being dominated by unit cracking and crushing. More details on the initiation and development of 

damage are presented in Section 6 of this paper.  
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Figure 9 Comparison of experimental and numerical stress strain graphs for masonry 

triplets: (a) lime putty mortar, (b) natural hydraulic lime mortar, (c) lime-cement mortar and (d) 

cement mortar triplets. 

4.2  Flemish bond wallettes 

The analyses of the Flemish bond wallettes were carried out using the parameters for the units and 

the batch B mortars, for which the Young’s modulus was adjusted to match the stiffness of the 

composite in the experiment. The comparison of the numerical and the experimental results is shown 

in Figure 10. Overall, good agreement is found between the experimental and numerical results, 

especially in the case of the LP and CM wallettes, in terms of stiffness and peak stress. In the case of 
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the LC mortar wallettes the numerically obtained compressive strength is a very good approximation 

of the average value obtained experimentally. The compressive strength of the HL mortars, however, 

is underestimated. 

The constant Poisson’s ratio assumption again results in an underestimation of the compressive 

strength for the HL, LP and LC cases. The geometrical interlocking of the units in Flemish bond 

wallettes results in a more complex failure mode compared to the stack bond prism cases. Therefore, 

underestimating the confinement of the mortar results in a potentially lesser degree of underestimation 

of the compressive strength of masonry. Nevertheless, the differences between the proposed model and 

the constant Poisson’s ratio assumption are significant in the HL case.  
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Figure 10 Comparison of experimental and numerical stress strain graphs for masonry 

wallettes: (a) lime putty mortar, (b) natural hydraulic lime mortar, (c) lime-cement mortar and 

(d) cement mortar wallettes. 

5. Summary of Experimental and Numerical Results For Masonry 

The experimental and numerical results for the masonry samples in compression are visually 

summarized in Figure 11. A logarithmic fit has been presented for the trend of the compressive 

strength of masonry, illustrating a slight overestimation by the triplet strength for higher values of the 

compressive strength of the mortar. However, in the case of low strength mortar, where confinement 

and triaxial effects are decisive, the model performs well both for triplets and wallettes. Comparison of 

fitted curves, both experimental and numerical, indicate lower compressive strength for wallettes 
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compared to triplets. The existence of head and collar joints, combined with the staggered arrangement 

of the units in Flemish bond wallettes results in a decrease of the obtained compressive strength due to 

differences in dimension ratio, the existence of a larger number of unit mortar interfaces and a 

different triaxial stress state of the mortar in the bed joints. The difference in compressive strength 

between triplets and wallettes is more apparent for low strength mortars. The use of high strength 

cement mortar shifts the failure mode towards compressive yielding of the units, leading to a more 

uniform obtained strength between typologies, both in the experiments and the numerical analyses. 

 

Figure 11 Summary of experimental and numerical results with logarithmic fit (solid line for 

experiments, dashed lines for numerical results). Compressive strength of mortar vs. 

compressive strength of masonry for: a) triplets and b) wallettes. 

A comparison of the experimentally obtained compressive strength of masonry with closed-form 

expressions is presented in Table 8. Such expressions have been proposed by researchers [23–27] and 

others have been adopted for use in analysis and design standards for masonry structures [28]. These 

models have either an empirical or semi-empirical basis, or account for masonry failure modes in a 
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simplified way. While closed-form expressions are very easy to employ, they are often characterized 

by a lack of accuracy when calculations over a wide spectrum of cases is required or when all failure 

modes are not accounted for. 

The CEN model takes into account the compressive strength of both units and masonry. It 

underestimates the compressive strength of the composite. The Hilsdorf and Francis models give 

reasonable results for the triplets but overestimate the compressive strength of the wallettes. The Khoo 

& Hendry model greatly overestimates the compressive strength for the CM cases and, more 

importantly, does not follow the trend observed for the compressive strength of masonry vs. the 

compressive strength of mortar. The model by Drougkas et al gives results close to the numerically 

obtained values and a good estimation of the triplets’ strength. The wallette strength was not equally 

well estimated due to the model being applied without altering the numerical parameters for triaxial 

confinement. This further illustrates the necessity of experimental determination of the triaxial 

behavior of mortar prior to its modeling in masonry in compression. 

Table 8 Comparison of test results on masonry compressive strength in     ⁄  with 

closed form expressions. 

  
Experiment Numerical Hilsdorf Francis Khoo & Hendry Hendry 

Drougkas 

et al 
CEN 

    [27] [23] [26] [25] [19] [28] 

Triplets 

LP 4.54 4.90 6.81 7.28 5.03 7.60 4.63 2.56 

HL 5.94 7.81 7.71 7.67 7.25 8.01 7.78 4.31 

LC 8.12 6.14 7.03 7.36 5.81 7.68 7.40 3.21 

CM 9.00 9.92 11.40 9.63 21.63 9.57 9.70 6.70 

Wallettes 

LP 4.19 3.90 6.97 7.34 5.64 7.66 7.37 3.08 

HL 5.93 4.32 6.84 7.45 5.14 7.79 4.36 2.66 

LC 4.70 4.79 7.03 7.81 5.82 8.15 5.98 3.23 

CM 8.36 8.38 10.15 28.76 13.66 13.65 6.29 6.12 
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6. Parametric Study 

6.1  Proposed Model vs. Constant Poisson’s Ration 

The effect of different approaches for modeling the development of the Poisson’s ratio in masonry 

is investigated through a comparative study, carried out on the LP mortar triplets. Two approaches are 

here adopted: a constant value of the Poisson’s ratio of mortar and a value calculated using the 

proposed model. A value of 0.25 is assigned to the constant Poisson’s ratio, while for the proposed 

model the values          ,          ,          ,       ,        and       are chosen. 

The resulting stress-strain curves are shown in Figure 12. The peak-stress using the proposed 

model is roughly 13% lower and the peak strain is nearly 40% lower, although a stress plateau is 

formed, extending to roughly 85% of the peak strain obtained with the constant Poisson’s ratio. 

Another feature of the proposed model is the increase in the stiffness of the triplet by 6% at around 

30% of the peak load. This stress level coincides with the second inflection point of the proposed 

model. Overall the two curves are not markedly different in shape, with the exclusion of a small stress 

plateau obtained for the proposed model. The underlying causes of the response however are made 

apparent upon examination of the integrity variables. 
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Figure 12 Stress-strain curves for lime-putty mortar triplets using different models for 

Poisson’s ratio of mortar. 

The development of the integrity variables of the units and the mortar vs. the applied strain is 

shown in Figure 13. For the constant Poisson’s ratio (Figure 13a) the response is nearly fully 

determined by the failure of the mortar joint in compression. The compressive damage on the unit is 

minor and there is no damage registered in tension for either of the components. The obtained damage 

pattern is markedly different in the case of the proposed model (Figure 13b). The compressive damage 

in the mortar ceases to increase upon attainment of the peak stress, whereupon a rapid increase in the 

tensile damage of the unit is registered, coupled with damage in compression. The final softening 

branch of the response is associated with damage of the mortar joint in tension. Experimental evidence 

is more in agreement with the failure mode obtained by the adoption of the proposed model, where 

tensile damage of the unit plays a significant part in the softening behavior of the masonry. 
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Figure 13 Development of integrity variables for (a) a constant Poisson’s ratio and (b) 

adopting the proposed model. 

Figure 14 illustrates the development of the Poisson’s ratio    as an assigned material property 

(constant or from eq. 32) for the mortar as well as in terms of apparent deformation on the two 

components and in both lateral directions, vs the applied vertical strain. These apparent Poisson’s 

ratios       of any component   are calculated by the expression: 

       
     
     

 (34) . 

where   is the direction under consideration (horizontal   or transversal  ) and       is the vertical 

strain applied on the component in the load step. 

In the case of the constant model, the components maintain a constant apparent Poisson’s ratio, 

although different from the value assigned as a material property. The mortar in the longitudinal 

direction remains practically undeformed, whereas in the transversal direction its apparent Poisson’s 

ratio is lower than the assigned material value. This is to be expected given the confinement effect. 
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The unit exhibits an apparent Poisson’s ratio higher than the assigned material value, the difference 

being higher in the longitudinal direction. Adopting the proposed model, the response changes 

radically (see Figure 14b). The mortar again remains largely undeformed longitudinally until the peak 

stress, whereupon its apparent Poisson’s ratio increases rapidly. A similar response is registered in the 

transversal direction, with the increase in the apparent Poisson’s ratio being more marked, in fact 

increasing to values 60% higher than the maximum value assigned as a material property. Both 

apparent ratios settle at values near the assigned material value for the given level of stress. The shift 

in the apparent Poisson’s ratio of the unit is more modest, with the increase being higher in the 

longitudinal direction. 

 

Figure 14 Development of calculated (eq. 32) and apparent Poisson’s ratio of components vs. 

the applied vertical strain for (a) a constant Poisson’s ratio of mortar and (b) adopting the 

proposed model. 

Figure 15 illustrates the apparent secant Young’s modulus of the masonry composites and 

components vs the applied strain. For a constant Poisson’s ratio, the confinement appears to be initially 
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overestimated, as evidenced by the normalized apparent Young’s modulus of the mortar being higher 

than 1. Subsequently, the response of the masonry is shown to be entirely influenced by the crushing 

of the mortar joint in compression. For the proposed model of the Poisson’s ratio the confinement is 

initially low, leading to a reduction of the apparent Young’s modulus of the mortar early in the 

response. After an increase in the Poisson’s ratio for a higher applied load, the confinement of the joint 

is activated, leading to an increase of the stiffness. Following that, the secant Young’s modulus of all 

components steadily declines until the peak force is applied, after which the secant stiffness of both 

components tends towards zero. 

 

Figure 15 Development of apparent secant Young’s modulus for masonry composite and 

components, normalized over initial material values: (a) for constant value of Poisson’s ratio and 

(b) for adoption of proposed model. 

The results from the constant value of the Poisson’s ratio of mortar indicate that in order to obtain 

an accurate stress-strain curve it is necessary to assume a high value for this parameter. An even higher 

value is required for the activation of the failure mode in tension for the units, unless a particularly low 
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value for the tensile strength is assumed. Both of these measures, particularly the former, are not in 

agreement with experimentally observed behavior of masonry materials and have a strong influence on 

efforts focusing on the numerical simulation of masonry in compression. 

The major differences in assigned and apparent Poisson’s ratios for both masonry components here 

investigated shed light on differences observed between their behavior in standalone tests and as 

observed in masonry composites under mechanical loading, as for example by optical methods such as 

Digital Image Correlation [2]. These differences are noted even at the central area of the linear branch 

in the response of the masonry composite. While it appears that deformations parallel to the load may 

be accurately measured, the secant modulus being nearly constant for the components at that range, 

lateral deformations may fluctuate significantly as the Poisson’s ratio of the mortar shifts under 

increasing load. 

6.2  Proposed Model Parameters 

The sensitivity of the response to the parameters of the proposed Poisson’s ratio is illustrated in 

Figure 16. Reverting to a constant value approach, the compressive strength of the LP triplets increases 

for an increase of the Poisson’s ratio, up to the point when its confinement leads to high tensile stresses 

in the unit. The ductility can increase substantially when the compressive strength of masonry is lower 

(Figure 16a). The   parameter of the model, controlling the shape of the hyperbolic curve, can increase 

the excessive tensile stresses in the unit when low, or conversely decrease them when high (Figure 

16b). This is due to the lower rate of increase of the Poisson’s ratio in the constitutive relation in the 

latter case. When only the exponential or only the hyperbolic branch of the model are employed 

(Figure 16c) not only the strength, but also the stiffness of the composite is affected. A noticeable 

increase of the initial stiffness is registered when considering only the hyperbolic branch due to the 

higher slope of the constitutive curve for      . Finally, the response is also sensitive to the position 
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of the first inflection point of the curve as controlled by   . A higher value for    leads to a delayed 

reaching of the exponential branch of the constitutive model. This results in an initial decrease of the 

apparent stiffness of the masonry followed by a further increase. This is not unlike the change of 

stiffness noted for the HL triplets (Figure 9b). 

Overall, it becomes apparent that in a computational context the prediction of the compressive 

strength of masonry is very sensitive to the triaxial confinement afforded on the mortar joint, which is 

in turn very sensitive to the calculated and apparent Poisson’s ratio. It is therefore critical that both 

aspects of masonry mortars be experimentally investigated jointly. This is a necessary step before the 

adoption of theoretically robust, rather than semi-empirical, approaches to the development of the 

Poisson’s ratio under increasing stress, the inclusions of mortar damage in the models and the 

complete evaluation of the behavior of mortar in masonry under compression. 
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Figure 16 Sensitivity of the compressive behavior of masonry to Poisson’s ratio of mortar 

parameters: a) constant values of Poisson’s ratio, b) hyperbolic curve shape of proposed model, 

c) hyperbolic or exponential shape of model, and d) location of first inflection point. 

7. Conclusions 

A model for the micro-mechanical analysis of masonry structures subjected to mechanical loading 

has been improved and expanded to include shifting values for the Poisson’s ratio of mortar under 

increasing vertical load. The model is capable of depicting the compressive and tensile damage on 
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masonry components in members subjected to mechanical loading. The development of stress, 

deformation and material degradation is achieved with minimal computational cost and good accuracy. 

Further, a model for the increase of the Poisson’s ratio of mortar is proposed. Incorporated into the 

micro-mechanical model, it highlights the inadequacy of a constant Poisson’s ratio for mortar in a 

computational framework for the accurate micro-modeling of masonry. 

The model allows the detailed study of the behavior of mortar confined in masonry joints. The 

lateral expansion of the mortar in the joint emerges as the principal phenomenon determining the 

behavior of masonry in compression. This effect is quantified according to material and geometric 

parameters. Taking into account the variation of the Poisson’s ratio in the mortar for increasing vertical 

stress, the apparent Poisson’s ratio in all components changes radically during loading. 

In a computational context, the development of damage in the components of the masonry changes 

significantly when the variation of the Poisson’s ratio of the mortar is taken into account. The resulting 

failure mode is consistent with experimentally observed failure, where compressive and tensile 

damage extends to both mortar and units. Therefore, the Poisson’s ratio of mortar in masonry under 

compression emerges as a parameter that cannot be determined as an elasticity theory parameter in a 

straightforward manner. 

Suggestions for future work include a similar study for the behavior of solid clay bricks under 

increasing vertical loading, especially in regards to the development of their Poisson’s ratio. Evidence 

has been provided that the Poisson’s ratio of bricks is not constant, a fact which might prove critical in 

combination with cement mortars sufficiently stiff to provide confinement to the units when the 

composite is subjected to vertical compressive stress. Similarly, the study of the development of the 
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Poisson’s ratio in mortar under different levels of confinement arises as an important subject, for 

which special experimental setups need to be developed. 
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