1,046 research outputs found

    Entanglement and Frustration in Ordered Systems

    Get PDF
    This article reviews and extends recent results concerning entanglement and frustration in multipartite systems which have some symmetry with respect to the ordering of the particles. Starting point of the discussion are Bell inequalities: their relation to frustration in classical systems and their satisfaction for quantum states which have a symmetric extension. It is then discussed how more general global symmetries of multipartite systems constrain the entanglement between two neighboring particles. We prove that maximal entanglement (measured in terms of the entanglement of formation) is always attained for the ground state of a certain nearest neighbor interaction Hamiltonian having the considered symmetry with the achievable amount of entanglement being a function of the ground state energy. Systems of Gaussian states, i.e. quantum harmonic oscillators, are investigated in more detail and the results are compared to what is known about ordered qubit systems.Comment: 13 pages, for the Proceedings of QIT-EQIS'0

    Diverging Entanglement Length in Gapped Quantum Spin Systems

    Get PDF
    We prove the existence of gapped quantum Hamiltonians whose ground states exhibit an infinite entanglement length, as opposed to their finite correlation length. Using the concept of entanglement swapping, the localizable entanglement is calculated exactly for valence bond and finitely correlated states, and the existence of the so--called string-order parameter is discussed. We also report on evidence that the ground state of an antiferromagnetic chain can be used as a perfect quantum channel if local measurements on the individual spins can be implemented.Comment: 4 page

    General Monogamy Inequality for Bipartite Qubit Entanglement

    Get PDF
    We consider multipartite states of qubits and prove that their bipartite quantum entanglement, as quantified by the concurrence, satisfies a monogamy inequality conjectured by Coffman, Kundu, and Wootters. We relate this monogamy inequality to the concept of frustration of correlations in quantum spin systems.Comment: Fixed spelling mistake. Added references. Fixed error in transformation law. Shorter and more explicit proof of capacity formula. Reference added. Rewritten introduction and conclusion

    Multipartite entanglement in 2 x 2 x n quantum systems

    Get PDF
    We classify multipartite entangled states in the 2 x 2 x n (n >= 4) quantum system, for example the 4-qubit system distributed over 3 parties, under local filtering operations. We show that there exist nine essentially different classes of states, and they give rise to a five-graded partially ordered structure, including the celebrated Greenberger-Horne-Zeilinger (GHZ) and W classes of 3 qubits. In particular, all 2 x 2 x n-states can be deterministically prepared from one maximally entangled state, and some applications like entanglement swapping are discussed.Comment: 9 pages, 3 eps figure

    Cumulant expansion for phonon contributions to the electron spectral function

    Full text link
    We describe an approach for calculations of phonon contributions to the electron spectral function, including both quasiparticle properties and satellites. The method is based on a cumulant expansion for the retarded one-electron Green's function and a many-pole model for the electron self-energy. The electron-phonon couplings are calculated from the Eliashberg functions, and the phonon density of states is obtained from a Lanczos representation of the phonon Green's function. Our calculations incorporate ab initio dynamical matrices and electron-phonon couplings from the density functional theory code ABINIT. Illustrative results are presented for several elemental metals and for Einstein and Debye models with a range of coupling constants. These are compared with experiment and other theoretical models. Estimates of corrections to Migdal's theorem are obtained by comparing with leading order contributions to the self-energy, and are found to be significant only for large electron-phonon couplings at low temperatures

    Matrix Product State Representations

    Get PDF
    This work gives a detailed investigation of matrix product state (MPS) representations for pure multipartite quantum states. We determine the freedom in representations with and without translation symmetry, derive respective canonical forms and provide efficient methods for obtaining them. Results on frustration free Hamiltonians and the generation of MPS are extended, and the use of the MPS-representation for classical simulations of quantum systems is discussed.Comment: Minor changes. To appear in QI

    Faster Methods for Contracting Infinite 2D Tensor Networks

    Get PDF
    We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power method used in CTMRG. We also generalize the variational uniform matrix product state (VUMPS) ansatz for diagonalizing 1D quantum Hamiltonians to the case of 2D transfer matrices and discuss similarities with the corner methods. These two new algorithms will be crucial to improving the performance of variational infinite projected entangled pair state (PEPS) methods.Comment: 20 pages, 5 figures, V. Zauner-Stauber previously also published under the name V. Zaune

    Nonlocal resources in the presence of Superselection Rules

    Get PDF
    Superselection rules severely alter the possible operations that can be implemented on a distributed quantum system. Whereas the restriction to local operations imposed by a bipartite setting gives rise to the notion of entanglement as a nonlocal resource, the superselection rule associated with particle number conservation leads to a new resource, the \emph{superselection induced variance} of local particle number. We show that, in the case of pure quantum states, one can quantify the nonlocal properties by only two additive measures, and that all states with the same measures can be asymptotically interconverted into each other by local operations and classical communication. Furthermore we discuss how superselection rules affect the concepts of majorization, teleportation and mixed state entanglement.Comment: 4 page

    Valence Bond Solids for Quantum Computation

    Get PDF
    Cluster states are entangled multipartite states which enable to do universal quantum computation with local measurements only. We show that these states have a very simple interpretation in terms of valence bond solids, which allows to understand their entanglement properties in a transparent way. This allows to bridge the gap between the differences of the measurement-based proposals for quantum computing, and we will discuss several features and possible extensions

    Minimally Entangled Typical Thermal State Algorithms

    Full text link
    We discuss a method based on sampling minimally entangled typical thermal states (METTS) that can simulate finite temperature quantum systems with a computational cost comparable to ground state DMRG. Detailed implementations of each step of the method are presented, along with efficient algorithms for working with matrix product states and matrix product operators. We furthermore explore how properties of METTS can reveal characteristic order and excitations of systems and discuss why METTS form an efficient basis for sampling. Finally, we explore the extent to which the average entanglement of a METTS ensemble is minimal.Comment: 18 pages, 14 figure
    • …
    corecore