research

Cumulant expansion for phonon contributions to the electron spectral function

Abstract

We describe an approach for calculations of phonon contributions to the electron spectral function, including both quasiparticle properties and satellites. The method is based on a cumulant expansion for the retarded one-electron Green's function and a many-pole model for the electron self-energy. The electron-phonon couplings are calculated from the Eliashberg functions, and the phonon density of states is obtained from a Lanczos representation of the phonon Green's function. Our calculations incorporate ab initio dynamical matrices and electron-phonon couplings from the density functional theory code ABINIT. Illustrative results are presented for several elemental metals and for Einstein and Debye models with a range of coupling constants. These are compared with experiment and other theoretical models. Estimates of corrections to Migdal's theorem are obtained by comparing with leading order contributions to the self-energy, and are found to be significant only for large electron-phonon couplings at low temperatures

    Similar works