83 research outputs found

    Bubble size prediction in co-flowing streams

    Get PDF
    In this paper, the size of bubbles formed through the breakup of a gaseous jet in a co-axial microfluidic device is derived. The gaseous jet surrounded by a co-flowing liquid stream breaks up into monodisperse microbubbles and the size of the bubbles is determined by the radius of the inner gas jet and the bubble formation frequency. We obtain the radius of the gas jet by solving the Navier-Stokes equations for low Reynolds number flows and by minimization of the dissipation energy. The prediction of the bubble size is based on the system's control parameters only, i.e. the inner gas flow rate QiQ_i, the outer liquid flow rate QoQ_o, and the tube radius RR. For a very low gas-to-liquid flow rate ratio (Qi/Qo0Q_i / Q_o \rightarrow 0) the bubble radius scales as rb/RQi/Qor_b / R \propto \sqrt{Q_i / Q_o}, independently of the inner to outer viscosity ratio ηi/ηo\eta_i/\eta_o and of the type of the velocity profile in the gas, which can be either flat or parabolic, depending on whether high-molecular-weight surfactants cover the gas-liquid interface or not. However, in the case in which the gas velocity profiles are parabolic and the viscosity ratio is sufficiently low, i.e. ηi/ηo1\eta_i/\eta_o \ll 1, the bubble diameter scales as rb(Qi/Qo)βr_b \propto (Q_i/Q_o)^\beta, with β\beta smaller than 1/2

    Harmonic chirp imaging method for ultrasound contrast agent

    Get PDF
    Coded excitation is currently used in medical ultrasound to increase signal-to-noise ratio (SNR) and penetration depth. We propose a chirp excitation method\ud for contrast agents using the second harmonic component of the response. This method is based on a compression filter that selectively compresses and extracts the second harmonic component from the received echo signal. Simulations have shown a clear increase in response for chirp excitation\ud over pulse excitation with the same peak amplitude. This was confirmed by two-dimensional (2-D) optical observations of bubble response with a fast framing camera. To evaluate the harmonic compression method, we applied it to\ud simulated bubble echoes, to measured propagation harmonics, and to B-mode scans of a flow phantom and compared it to regular pulse excitation imaging. An increase of approximately 10 dB in SNR was found for chirp excitation. The\ud compression method was found to perform well in terms of resolution. Axial resolution was in all cases within 10% of the axial resolution from pulse excitation. Range side-lobe levels were 30 dB below the main lobe for the simulated bubble echoes and measured propagation harmonics. However,\ud side-lobes were visible in the B-mode contrast images

    Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking

    Get PDF
    The Greek aperitif Ouzo is not only famous for its specific anise-flavored taste, but also for its ability to turn from a transparent miscible liquid to a milky-white colored emulsion when water is added. Recently, it has been shown that this so-called Ouzo effect, i.e. the spontaneous emulsification of oil microdroplets, can also be triggered by the preferential evaporation of ethanol in an evaporating sessile Ouzo drop, leading to an amazingly rich drying process with multiple phase transitions [H. Tan et al., Proc. Natl. Acad. Sci. USA 113(31) (2016) 8642]. Due to the enhanced evaporation near the contact line, the nucleation of oil droplets starts at the rim which results in an oil ring encircling the drop. Furthermore, the oil droplets are advected through the Ouzo drop by a fast solutal Marangoni flow. In this article, we investigate the evaporation of mixture droplets in more detail, by successively increasing the mixture complexity from pure water over a binary water-ethanol mixture to the ternary Ouzo mixture (water, ethanol and anise oil). In particular, axisymmetric and full three-dimensional finite element method simulations have been performed on these droplets to discuss thermal effects and the complicated flow in the droplet driven by an interplay of preferential evaporation, evaporative cooling and solutal and thermal Marangoni flow. By using image analysis techniques and micro-PIV measurements, we are able to compare the numerically predicted volume evolutions and velocity fields with experimental data. The Ouzo droplet is furthermore investigated by confocal microscopy. It is shown that the oil ring predominantly emerges due to coalescence

    Irrigant flow in the root canal during ultrasonic activation:A numerical fluid-structure interaction model and its validation

    Get PDF
    Aim: The aim of the study was (a) to develop a three-dimensional numerical model combining the oscillation of a tapered ultrasonic file and the induced irrigant flow along with their two-way interaction in the confinement of a root canal. (b) To validate this model through comparison with experiments and theoretical (analytical) solutions of the flow. Methodology: Two partial numerical models, one for the oscillation of the ultrasonic file and another one for the irrigant flow inside the root canal around the file, were created and coupled in order to take into account the two-way coupled fluid–structure interaction. Simulations were carried out for ultrasonic K-files and for smooth wires driven at four different amplitudes in air or inside an irrigant-filled straight root canal. The oscillation pattern of the K-files was determined experimentally by Scanning Laser Vibrometry, and the flow pattern inside an artificial root canal was analysed using high-speed imaging together with Particle Image Velocimetry. Analytical solutions were obtained from an earlier study. Numerical, experimental and analytical results were compared to assess the validity of the model. Results: The comparison of the oscillation amplitude and node location of the ultrasonic files and of the irrigant flow field showed a close agreement between the simulations, experiments and theoretical solutions. Conclusions: The model is able to predict reliably the file oscillation and irrigant flow inside root canals during ultrasonic activation under similar conditions

    Microbubble shape oscillations excited through ultrasonic parametric driving\ud

    Get PDF
    An air bubble driven by ultrasound can become shape-unstable through a parametric instability. We report time-resolved optical observations of shape oscillations (mode n=2 to 6) of micron-sized single air bubbles. The observed mode number n was found to be linearly related to the ambient radius of the bubble. Above the critical driving pressure threshold for shape oscillations, which is minimal at the resonance of the volumetric radial mode, the observed mode number n is independent of the forcing pressure amplitude. The microbubble shape oscillations were also analyzed numerically by introducing a small nonspherical linear perturbation to a Rayleigh-Plesset-type equation, capturing the experimental observations in detail.\ud \u

    Haemodynamics in Different Flow Lumen Configurations of Customised Aortic Repair for Infrarenal Aortic Aneurysms

    Get PDF
    Objective: Customised aortic repair (CAR) is a new and minimally invasive technique for the endovascular treatment of abdominal aortic aneurysms (AAAs). The aneurysm is completely sealed with a non-contained, non-cross linked polymer, while a new flow lumen is created with balloons. For CAR, the haemodynamically most favourable balloon and flow lumen configuration has not been established before; therefore, four flow parameters were assessed in an in vitro model. Methods: Three in vitro balloon configurations were implanted in an in vitro AAA model; a configuration with crossing balloons (CC) and two parallel configurations (PC1 and PC2). These three models were consecutively placed in a flow system that mimics physiological flow conditions. Laser particle imaging velocimetry (PIV) was used to resolve spatial and temporal flow patterns during the cardiac cycle. In house built algorithms were used to analyse the PIV data for the computing of (i) flow velocity; (ii) vorticity; (iii) wall shear stress (WSS); and (iv) time averaged wall shear stress (TAWSS). Results: Suprarenal flow patterns were similar in all models. The CC showed a higher infrarenal velocity than PC1 and PC2 (38 cm/s vs. 23 cm/s vs. 23 cm/s), and a higher vorticity at the crossing of the lumens (CC: 337/s; PC1 127/s; PC2: 112/s). The lowest vorticity was observed in PC2, especially in the infrarenal neck (CC: 200/s; PC1 164/s; PC2: 98/s). Although WSS and TAWSS varied between configurations, values were the within non-pathological range. Conclusion: The flow lumens created by three balloon configurations used in an in vitro model of CAR have been studied, and resulted in different haemodynamics. The differences in velocity and lower vorticity, especially at the crossing section of the two balloons, showed that PC2 has favourable haemodynamics compared with the CC and PC1. Future research will be focused on the clinical applicability of CAR based on the PC2 design

    Ultrasound-triggered local release of lipophilic drugs from a novel polymeric ultrasound contrast agent

    Get PDF
    The advantage of ultrasound contrast agents (UCAs) as drug delivery systems is the ability to non-invasively control the local and triggered release of a drug or gene. In this study we designed and characterized a novel UCA-based drug delivery system, based on polymer-shelled microcapsules filled with a mixture of gas and oil, for the local delivery of lipophilic drugs

    Laser-driven resonance of dye-doped oil-coated microbubbles: A theoretical and numerical study

    Get PDF
    Microbubbles are used to enhance the contrast in ultrasound imaging. When coated with an optically absorbing material, these bubbles can also provide contrast in photoacoustic imaging. This multimodal aspect is of pronounced interest to the field of medical imaging. The aim of this paper is to provide a theoretical framework to describe the physical phenomena underlying the photoacoustic response. This article presents a model for a spherical gas microbubble suspended in an aqueous environment and coated with an oil layer containing an optically absorbing dye. The model includes heat transfer between the gas core and the surrounding liquids. This framework is suitable for the investigation of both continuous wave and pulsed laser excitation. This work utilizes a combination of finite difference simulations and numerical integration to determine the dependancy on the physical properties, including composition and thickness of the oil layer on the microbubble response. A normalization scheme for a linearized version of the model was derived to facilitate comparison with experimental measurements. The results show that viscosity and thickness of the oil layer determine whether or not microbubble resonance can be excited. This work also examines the use of non-sinusoidal excitation to promote harmonic imaging techniques to further improve the imaging sensitivity

    Acoustic sizing of an ultrasound contrast agent

    Get PDF
    Because the properties of ultrasound contrast agent populations after administration to patients are largely unknown, methods able to study them noninvasively are required. In this study, we acoustically performed a size distribution measurement of the ultrasound contrast agent Definity®. Single lipid-shelled microbubbles were insonified at 25 MHz, which is considerably higher than their resonance frequency, so that their acoustic responses depended on their geometrical cross sections only. We calculated the size of each microbubble from their measured backscattered pressures. The acoustic size measurements were compared with optical reference size measurements to test their accuracy. Our acoustic sizing method was applied to 88 individual Definity® bubbles to derive a size distribution of this agent. The size distribution obtained acoustically showed a mean diameter (2.5 μm) and a standard deviation (0.9 μm) in agreement within 8% with the optical reference measurement. At 25 MHz, this method can be applied to bubble sizes larger than 1.2 μm in diameter. It was observed that similar sized bubbles can give different responses (up to a factor 1.5), probably because of shell differences. These limitations should be taken into account when implementing the method in vivo. This acoustic sizing method has potential for estimating the size distribution of an ultrasound contrast agent noninvasivel
    corecore