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PACS 47.55.db — Drop and bubble formation
PACS 47.61.Jd — Multiphase flows
PACS 47.15.Rq — Laminar flows in cavities, channels, ducts, and conduits

Abstract — In this paper, the size of bubbles formed through the breakup of a gaseous jet in a co-
axial microfluidic device is derived. The gaseous jet surrounded by a co-flowing liquid stream breaks
up into monodisperse microbubbles and the size of the bubbles is determined by the radius of the
inner gas jet and the bubble formation frequency. We obtain the radius of the gas jet by solving
the Navier-Stokes equations for low-Reynolds-number flows and by conservation of momentum.
The prediction of the bubble size is based on the system’s control parameters only, i.e. the inner
gas flow rate Q;, the outer liquid flow rate Q,, and the tube radius R. For a very low gas-to-liquid
flow rate ratio (Qi/Qo — 0) the bubble radius scales as r,/R x 1/Qi/Qo, independently of the
inner-to-outer viscosity ratio 7 /1, and of the type of the velocity profile in the gas, which can be
either flat or parabolic, depending on whether high-molecular-weight surfactants cover the gas-
liquid interface or not. However, in the case in which the gas velocity profiles are parabolic and
the viscosity ratio is sufficiently low, i.e. 1i/1, < 1, the bubble diameter scales as 1, o (Qi/Qo)?,

with 8 smaller than 1/2.

Copyright © EPLA, 2011

Introduction. — The controlled formation of monodis-
perse microbubbles and microdroplets at high production
rates is important in many industrial and medical applica-
tions. For example, the food industry seeks new methods
to generate en masse monodisperse droplets and bubbles
to accurately control the density and structure of a wide
variety of materials [1,2]. In medical ultrasound imaging,
microbubbles can be used as ultrasound contrast agents
(UCA), where the resonance size of the bubble determines
its acoustic response [3,4]. Commercially available UCA
are produced using ultrasound-induced bubble formation
methods, which results in a wide size distribution, i.e.
UCA have a mean of 2pum bubbles, but bubbles with
a size between 1pm and 20 ym exist in the population.
Consequently, resonance occurs only for a small selection
of bubbles. Improving the sensitivity in diagnostic imaging
can thus be achieved by narrowing the size distribution so
that more bubbles are at resonance size.

The use of microfluidic technology for the generation
of these accurately produced droplets and bubbles

has received considerable attention recently [5-8].
Various microfluidic geometries are used, for example,
T-shaped devices [9,10], co-flow, and flow-focusing
geometries [11-13], as is shown schematically in fig. 1. In
the latter, the dispersed phase is focused by the outer
continuous phase to enter a narrow channel (see fig. 1(c)).
Droplets (or bubbles) are formed in the “dripping” mode
or “jetting” mode depending on the system’s parameters.
These include the inner and outer volumetric flow rates,
Q@; and @,, the channel dimensions, and the fluid para-
meters (viscosity and surface tension). When the outer
continuous flow rate @, is low, the droplets are generated
in the dripping regime. In this regime, the dispersed
phase enters the narrow channel and almost completely
blocks the continuous phase. This leads to the formation
of a neck, connecting the droplet to the inner feeding
channel, that is gradually squeezed by the outer fluid
until it breaks and a droplet is released [14]. In Raven
et al. [15] this mode of operation was used to generate a
wide variety of foams. For increasing gas fraction (Qi/Q.)

64001-p1



W. van Hoeve et al.

(a)

continuous
phase

dispersed phase

Mo Po

2R

!

— 2rp
e, 6
— N

0, I

Fig. 1: (Colour on-line) Schematic representation of the three
main microfluidic geometries used for the formation of droplet
and bubbles. The dispersed phase is injected (a) in a cross-
flowing stream through a T-shaped junction, (b) in a focused
stream imposed by the continuous phase, and (¢) in a
co-flowing stream.

foams are produced that consist of separated bubbles, to
bubbly flow, to dry bamboo foam. Droplet formation in
the dripping regime is characterized by droplets with a
size comparable to the size of the channel and its droplet
production rate is typically low.

When the outer liquid velocity is sufficiently high,
such that the capillary number of the outer fluid Ca, =
Not/y = 1, with outer liquid viscosity 7,, velocity at the
interface u, and surface tension -y, viscosity overcomes sur-
face tension forces and an elongated jet is formed [16-19].
This regime is referred to as the jetting regime. The
cylindrical jet breaks up in equally sized fragments driven
by the classical mechanism of droplet formation through
a Rayleigh-Plateau instability driven by surface tension
forces [20]. High-throughput monodisperse droplet forma-
tion in the jetting mode is of great value for industrial
applications where a high production rate is essential.

Utada et al. [16,21] presented a simple description of
the droplet size in a liquid-liquid co-flowing microfluidic
system with a geometry similar to that considered here.
In their work, the inner liquid viscosity 7; is lower than
the outer liquid viscosity 7, (1i/1,~=0.1) and both the
inner and outer flows are pressure driven; consequently,
they exhibit Poiseuille-like velocity profiles (see fig. 2(a)).

In this work we study microbubble formation through
the breakup of a cylindrical jet in an axisymmetric gas-
liquid co-flowing device formed by two coaxial tubes of
circular section. Differently to the cases considered by
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Fig. 2: (Colour on-line) Velocity profiles for the inner and outer
flow in a co-flowing stream. (a) Poiseuille velocity profile for
both the inner and outer flow for two co-flowing liquids, with
7 <7o. (b) The inner gas flow shows a flat velocity profile,
whereas the outer flow shows a Poiseuille profile. The rigid
interface allows for a discontinuity of shear stress at the gas-
liquid surface. The red core represents the inner phase.

Utada et al. [16,21], we assume here an inner gas flow
with negligible viscosity (1; < 1,). Two different situations
are considered depending upon whether the gas-liquid
interface is free or rigidified by high-molecular-weight
surfactants such as phospholipids, amphiphilic polymers,
etc. These complex molecules are highly relevant in UCA
microbubble formation [2] to avoid gas dissolution into the
carrier liquid. Notice that the main difference between the
two situations studied here is that high-molecular-weight
surfactants naturally populate the gas-liquid interface and
form a rigid interface that greatly affects the inner flow
boundary conditions (see fig. 2(b)).

In this paper we obtain a complete description of
the radius of the inner gaseous jet and bubble size
solely based on: the gas and liquid flow rates, the size
of the channel, and the liquid properties. Typical flow
Reynolds numbers we have in mind are ~ 100, corre-
sponding to laminar flow as, e.g., in refs. [22] and [21].
Then the entrance length to obtain developed laminar
flow is typically of the order 0.12RRe, with R the radius
of the tube [23]. We first describe droplet and bubble
formation in the absence of high-molecular-weight surfac-
tants, following the calculation already presented in Utada
et al. [21]. We do so in preparation for the key new finding
of this paper in which bubble formation with high-
molecular-weight surfactants at the interface is described.
We use conservation of momentum to close the system of
equations describing these specific conditions.

Droplet and bubble formation from a liquid
or gas jet. — In order to be able to highlight the
analogies and differences between gas-liquid and liquid-
liquid systems, we first repeat and elucidate the essence
of the droplet size calculation of Utada et al. [21] and
then we extend this result to the case of bubbles. Let
us consider the flow of two immiscible fluids without
surfactants in an axisymmetric co-flow device, as depicted
in fig. 1(b). These types of devices are typically fabricated
by careful alignment of two coaxial capillaries: a tapered
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Fig. 3: (Colour on-line) Coordinate system for an axisymmetric
unperturbed inner jet with radius 7 surrounded by a co-flowing
liquid in a tube of radius R. Subscripts i and o refer to the inner
and outer phase, respectively.

inner capillary for the supply of the dispersed phase and an
outer capillary with radius R that delivers the continuous
phase. When the outer liquid velocity is sufficiently high,
such that viscous forces overcome surface tension forces
(Cao > 1), an elongated liquid jet is formed. In the case in
which the dispersed phase is a liquid, the cylindrical jet
ultimately develops undulations driven by surface tension
that lead to the jet disruption into droplets with sizes
comparable to the jet diameter. This breakup mechanism
is known as Rayleigh breakup [24]. The size of the droplets
is V= A*172, where A\* is the wavelength of the fastest
growing disturbance and 7 the unperturbed jet radius.

In this section we give an expression for the radius of
the jet 7 as a function of the inner and outer flow rates, Q;
and @,, respectively, the properties of the two fluids, and
the outer capillary tube radius R. The coordinate system
that represents the initial state of the jet is shown in fig. 3.

The Reynolds number, as a measure of the relative
importance of inertial forces to viscous forces, is typically
low in microfluidics, hence the fluid flow can be described
using the steady-state Stokes equations for low-Reynolds-

number flows,
0=—Vp+nViuy, (1)

with pressure gradient Vp, viscosity 7, and the velocity
u. Note also that, with the independence of the value
of the Reynolds number, eq. (1) is still valid to describe
strictly parallel streams, which is the case under consid-
eration here. The velocity fields are obtained under the
assumption of a no-slip boundary condition at the outer
tube wall,

UO(R) =0, (2)

continuity of velocity at the liquid-liquid interface,

3)

Uo (7) = ui(7),
and continuity of shear stress,

_ o du
~_771 dr

r=r

du,
Yy o . 4
o 4 (4)

rT=r

The unperturbed flow of the inner jet resembles a perfect
cylinder with constant radius = 7. The capillary pressure,
i.e. the pressure difference across the interface, is given by
the Young-Laplace equation

, (5)

Pi —Po =

<2

with « the interfacial tension. Note that, since the radius
of the cylinder is constant, the pressure gradient in both
the inner and outer fluid is the same, and equal to Vp.

Inserting the boundary conditions of eq. (2), (3), and
(4) into eq. (1) and integrating gives an expression for the
inner and outer liquid velocity profiles:

(o Ldpf o m mo 1\ 7 g
ul(r)4nidz{r o {1—1—(77i 1 7 R}, (6)
1 dp
u0(7=):—4”7 a(RZ—’IJ). (7)

The velocity profiles for the inner dispersed phase and
the outer continuous phase as a function of the radial
coordinate are schematically shown in fig. 2(a).

The volumetric flow rate is found from the integration
of the flux over the cross-sectional area of the jet as
Q =2m [ru(r)dr and, consequently, the flow rate ratio
becomes [21]

Qi Mo xt n 222
Qo M (1—22)? 1—2a%

(8)

with 2 =7/R the dimensionless jet radius. This equation
can of course be inverted, leading to

X i o i
r=\ %1 WhereX—ZO<1+ 1+’7Q>.(9)

Ui Qo

The dimensionless jet radius x as a function of the
flow rate ratio (Qi/Q,) for wvarious inner-to-outer
viscosity ratios is depicted in fig. 4. It is shown
here that, for Q;/Q,— 0, the size of the jet verifies
F/R=2"1/2 (Qi/Qo)1/2, independently of the viscosity
ratio. The size of the jet is thus proportional to the
square root of the flow rate ratio, a fact that was reported
previously by various groups [16—19]. Note, however, that
for the relevant case of bubble formation, i.e. 7; < 1, the
jet dimensionless radius is given by 7/R x (Q;i/Qo)® with
Qi/Qo <1 and 1/4<a<1/2 for a large range of values
of the flow rate ratio. Indeed, in fig. 4(b) the crossover of
the local slope oo = d log(7/R)/dlog(Qi/Q,) from the 1/2-
scaling to the 1/4-scaling is shown for various viscosity
ratios. Only for the limiting case of an inviscid gas, say
m/Mo < 0.001, does the 1/4 scaling become pronounced.
Note that a 1/4 scaling exponent is also observed in the
co-flow device by Castro-Herndndez et al. [22], but under
the different conditions of a strong pressure gradient in
the entrance region of the outer capillary.

For the case of drop formation, the cylindrical liquid
jet is unstable against surface perturbations with a wave-
length that exceeds the circumference of the jet (A>
277) [25]. The fastest growing disturbance A* that leads
to droplet pinch-off determines the droplet’s volume V =
72 \*, with A* ~11.27 (for n =1,) [26], hence the size
of the droplets rq ~2.037 ~ 1.44R (Qi/QO)l/Q. However,
for the case of gas jets (n;/n, < 1), since the frequency
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Fig. 4: (Colour on-line) (a) Normalized radius of the inner jet as
a function of the inner and outer volumetric flow rates for vari-
ous viscosity ratios. The jet’s radius decreases, while the maxi-
mum inner velocity increases, for decreasing inner-to-outer
viscosity ratio. The radius of the jet scales as 7 o (Qi/Qo)”.
(b) Local slope a=dlog(7/R)/dlog(Qi/Qo). In the limit of
Qi/Qo — 0 the size of the jet scales as 7/R =22 (Q:/Q.)"/?
independent of the viscosity ratio. For decreasing viscosity ratio
(ni/m0) a scaling v =1/4 becomes pronounced.

of bubble formation under constant flow rate condi-
tions is proportional to Q,/m R%*7 [27,28], the bubble
volume is calculated through the mass balance (4/3)mr o
7 R?7 (Qi/Q,) [22,27,28]. This gives 7, o< (Q;/Q,)?, with
the exponent § varying from the two limiting values g =
1/2 for Qi/Qo —0 (e =1/2) and S =5/12 for n;/n, — 0
(a=1/4). This latter exponent has recently experimen-
tally been observed by Castro-Herndndez et al. [22]).

Rigid gas-liquid interface. — We now come to the
specific case of UCA microbubble formation through the
breakup of a gaseous jet. The co-flowing outer liquid
contains high-molecular-weight molecules like surfactants,
proteins, and amphiphilic polymers that self-organize at
the gas-liquid interface to form a coating around the
bubble. This coating, or shell, ensures a much longer

bubble lifetime in contrast to uncoated bubbles, therefore
improving their stability, an essential condition for medical
imaging.

In this section we give an expression for the size of the
jet based on the inner gas and the outer liquid flow rates
and under the assumption that the interface is rigidified
by the surfactant solution [29]. This assumption is justified
in the appendix.

We solve the velocity fields in the Stokes equations (1)
for an outer liquid flow rate with no-slip condition at
the outer tube wall. We assume that the viscous stress
imposed by the liquid is entirely balanced by the interface,
and hence that no stress is transmitted to the gas. This
implies a homogeneous pressure distribution inside the jet,
and hence a flat velocity profile (see fig. 2(b)).

The inner and outer velocity fields are respectively
u;(r) =4 = const, (10)

with @ the velocity at the interface, and

2 _ .2 d 1 2 =2 d
wolr) = L= dp  Jogr/R [n B o dpy gy
4dn, dz log7/R 4dn, dz
Thus, the corresponding volumetric flow rates are
given by
Qi =4 (12)
and
Qo _ R* (1—2?) dp x2_1+m2—1—2m210gx
2 16n, dz log =
Q; 2 —1-22%logzx (13)
T2 4logx ’

with z=7/R. In this expression the pressure gradient
(dp/dz) and the radius of the jet (x =7/R) are unknown.
Experimentally, both are selected by the system once the
gas and liquid flow rates are imposed. For the theoretical
derivation we need a second equation to close the prob-
lem. We obtain it from momentum conservation in the
z-direction which in general is

d R d
— 27 / poulrdr + p;Qiu; p +TR? b
dz ; dz

dug

= 27TR770 di
r

: (14)
r=R

with p; and p, the volumetric density of the inner and
outer fluid, respectively. When the system is out of
equilibrium the pressure gradient not only must overcome
the shear stress at the outer wall but also serves to
accelerate the flow; cf. the first term on the left-hand
side. Note that the stress exerted by the outer flow on
the inner flow at » =7 does not occur in the momentum
equation (14). Equilibrium is reached when the first term
on the left-hand side of eq. (14) is zero, hence the missing
relation is

duo
dr

T

_ Rdp

o == 1
U T 2de (15)
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Fig. 5: (Colour on-line) Radius 7 of the inner gas jet as a
function of the gas-to-liquid flow rate ratio Qi/Q.. The solid
line represents the radius that is found from conservation of
momentum and under the assumption of a flat velocity profile.
Alternatively, the system is described by two pressure-driven
co-flowing fluids (7, 70), with parabolic velocity profiles for
both the inner and outer phases for an air-water system (1, =
1073 Pas, i = 1.8 x 107° Pas) (dashed line). For Qi/Qo — 0,
the slope is 1/2, indicating that the radius scales with the
square root of the flow rate ratio (7 o< R (Qs/Qo)*?).

Inserting eq. (11) into eq. (15) and simplifying gives a
second relation between dp/dz and z

@__R‘* (1—x2)m2d£

L (16)

T 4N,

Together with eq. (13) we arrive at the simple relation

x:i: Qi/Qo
R 2+Qi/Qo.

This radius is plotted as a function of the flow rates in
fig. 5 (solid line).

The gaseous jet is inherently unstable [30] and will break
up into bubbles either by means of a capillary instability
or as a consequence of a pressure drop in the gas [22].
In the case that bubbles are formed as a consequence of
a capillary instability, the breakup of the gas jet is driven
by the fastest growing disturbance. A linear stability
analysis predicts that the optimum wavelength for the
breakup of a gaseous jet surrounded by a liquid is
slightly larger when compared to its inverted system
—a liquid jet in air. The stability of an unconfined
gaseous jet in ambient liquid was accomplished by
Chandrasekhar [25], who obtained that the size of the
bubbles 7, &~ 2.157 o (Q;/Qo)*/?. In confined geome-
tries as the ones considered here, the prefactor of this
relation will be somewhat different [20,26,30]. In this
case the jet breaks as a consequence of a pressure
drop in the gas stream and the bubble formation
frequency is proportional to Q, /7 R%7 [27,28]. The bubble
size can then be calculated from the mass balance

(17)

rgo<RzFQi/QOocR?’(Qi/Qo)3/2 and, thus, in this case,
rn/Rox (Qi/ Qo)l/ 2, Therefore, independent of the source
of the instability, the bubble size is proportional to the
square root of the flow rate ratio.

Discussion and conclusion. — In conclusion, we have
expressed the radius of gas jets formed in axisymmetric
co-flowing streams as a function of the control parameters,
i.e. the flow rates of both the continuous and the dispersed
flows and the outer tube radius. The study has been
divided into two parts, depending upon whether the gas-
liquid interface contains high-molecular-weight surfactants
to avoid the rapid dissolution of the gas into the carrier
liquid. In the case where these complex molecules are not
present it is found that, if the flow rate ratio is Q;/Qo, — 0,
the diameter of the bubbles is proportional to the square
root of the flow rate ratio, independent of the viscosity
ratio. However, for finite values of the flow rate ratio
Qi/Qo <1 and very low values of the viscosity ratio, i.e.
i /Mo < 1, the bubble radius scales as 7}, o< (Q;/Q,)?, with
0 varying from the two limiting values (see fig. 4) §=0.5
for Qi/Qo—0 and S=5/12 for n/n, — 0. This latter
exponent was reported by Castro-Hernandez et al. [22].

In the case that high-molecular-weight surfactants are
added, we have found that the bubble radius is propor-
tional to the square root of the flow rate ratio. Moreover,
in fig. 5 a comparison is made between the gas jet radius
predicted based on an inner parabolic velocity profile
(dashed line) and a flat velocity profile (solid line) for an
air-water system (with viscosity of air 7; = 1.8 x 107° Pas
and water 7, =1073Pas). It is demonstrated that for
small gas fractions @Q; < @, the influence of the inner flow
conditions on the jet radius is marginal.
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Appendix: justification of the rigid-interface
assumption. — In principle, the shear exerted by the
outer fluid on the interface covered by surfactants creates
a longitudinal gradient of surface velocity. The interfacial
stress equals [31] (ks + ps)d?us/d2?, with ks and pg the
surface dilatational and shear viscosities, and ug = uo|r—7
the interfacial velocity. The bulk viscous tangential
stress exerted by the outer fluid at the interface equals
NoOUq /Or|—=7. Therefore, the characteristic scale ¢ of
the gradient of surface velocity obeys the approximate
relation (ks + ps)us /0% ~nous /R, hence 6 ~ Ry/Bq with
Bq= (ks + ps)/noR the Boussinesq number, comparing
surface and bulk viscous effects. Hence if Bq>1, § > R
and the surface velocity gradient is negligible at the
scale relevant for bubble formation, which justifies the
assumption of rigid interface. Note that for 1, ~ 1073 Pas
and R~ 100 pm, the condition Bq:>>1 is easily fulfilled
with most surfactants [29,32,33], especially proteins and
phospholipids.
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