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Microbubbles are used to enhance the contrast in ultrasound imaging. When coated with an

optically absorbing material, these bubbles can also provide contrast in photoacoustic imaging.

This multimodal aspect is of pronounced interest to the field of medical imaging. The aim of

this paper is to provide a theoretical framework to describe the physical phenomena underlying

the photoacoustic response. This article presents a model for a spherical gas microbubble sus-

pended in an aqueous environment and coated with an oil layer containing an optically absorb-

ing dye. The model includes heat transfer between the gas core and the surrounding liquids.

This framework is suitable for the investigation of both continuous wave and pulsed laser

excitation. This work utilizes a combination of finite difference simulations and numerical inte-

gration to determine the dependancy on the physical properties, including composition and

thickness of the oil layer on the microbubble response. A normalization scheme for a linear-

ized version of the model was derived to facilitate comparison with experimental measure-

ments. The results show that viscosity and thickness of the oil layer determine whether or not

microbubble resonance can be excited. This work also examines the use of non-sinusoidal

excitation to promote harmonic imaging techniques to further improve the imaging sensitivity.
VC 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1121/1.4979257]
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I. INTRODUCTION

Ultrasound imaging is a safe, fast, and relatively cheap

imaging modality that offers high resolution images deep

inside the human body. However, ultrasound imaging lacks

the specificity of other techniques such as photoacoustic

imaging. Contrast in photoacoustic (PA) imaging results

from variations in the absorption of pulsed or modulated

light and the subsequent propagation of sound in tissue.1 The

amplitude of the emitted acoustic signal is unique for every

tissue type which makes PA imaging a very attractive clini-

cal imaging modality. A major limitation of PA imaging,

however, is its limited penetration depth that restricts the

technology to superficial or catheter-based tissue imaging.

Diffusive scattering and absorption of both the incident light

and subsequent acoustic emissions prevent adequate signal-

intensities from being obtained beyond a depth of a few

mm.1 A possible solution to this problem is to use contrast

agents, in the form of dyes or nanoparticle suspensions,

to increase optical absorption at the site of interest and

thereby increase the amplitude of the acoustic emissions

from that region.2,3 Metallic nanoparticles in particular have

been shown to offer considerable improvement in photo-

acoustic contrast.4 By exploiting the plasmon resonance phe-

nomena, their optical absorption at a given wavelength can

be much greater than that available from, e.g., hemoglobin.5

Nanoparticle agents have been designed with multiple

shapes and sizes to tune the absorption wavelength and to

add specific functionalities.5–7
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The biological safety of nanoparticle agents, however,

remains uncertain, motivating the scientific community to

look for alternatives. It has recently been proposed that even

greater contrast enhancement in photoacoustic imaging

could be achieved through the use of volatile droplets whose

vaporization is triggered by light.2,8,9 However, the neces-

sary phase change consumes energy under the form of latent

heat, that cannot then participate in the acoustic generation,

which makes the use of the available energy inherently

suboptimal. Stable microbubbles modified with the addition

of an optically absorbing coating have been proposed as a

potential solution to this problem.10,11 This is an attractive

approach since gas bubbles are well established as contrast

agents for ultrasound imaging.12–15 In this case, the micro-

bubble oscillations are stimulated by the heating and cooling

of the coating and subsequently of the gas core upon optical

irradiation.

Previous work has examined the case of a microbub-

ble exposed to a laser pulse.16 The purpose of that study,

was to compare the relative efficiency of different types

of PA contrast agents according to their geometrical

arrangement of the various components. The effects of

heat transfer between the microbubble coating, gas core

and surrounding liquid were neglected, for simplicity. In

this paper, we show that these effects are in fact impor-

tant for PA generation by light absorbing microbubbles.

We propose a revised theoretical description of a spheri-

cal bubble consisting of a gas core surrounded by an

optically absorbing layer suspended in an aqueous envi-

ronment. The absorbing layer considered here consists of

an oil in which a dye of specific optical properties can be

dissolved.17 We show that through an appropriate selection

of materials, a strong microbubble resonance can be

excited. We also study the influence of the different micro-

bubble and laser light exposure parameters upon the ampli-

tude and frequency spectrum of the acoustic emissions and

demonstrate the potential for utilizing a harmonic imaging

technique to achieve further improvement in imaging

sensitivity.

II. THEORY

A. Physical problem and analytical derivation

In this paragraph, we give a summary of the theoretical

derivation containing the main steps of the reasoning and of

the derivation. All details can be found in Appendix A. The

microbubble system (Fig. 1) consists of three domains: a gas

core, an oil layer and the surrounding liquid and is assumed

to remain spherically symmetric. In each domain, three inter-

related physical processes are to be evaluated. First, the ther-

mal diffusion-convection problem will define the heat

transfer and the instantaneous temperature in each domain.

In spherical coordinates, it obeys the relation,

Dj
@2

@r2
~T þ rBj

qjcpj

¼ @
~T

@t
; (1)

where T denotes the temperature field, r the radial coordinate

and ~T ¼ rT. The density of the fluid is qj, cpj is the specific

heat capacity, Dj is the heat diffusivity ½Dj ¼ kj=ðqjcpjÞ�, Bj

is the thermal power deposition density (W/m3) and t is the time

variable. The subscript letter j refers to one of the three domains.

Second, the gas equation of state determines the relation

between the temperature and the pressure in the gas core.

Considering low Mach numbers (Ma< 0.01) the pressure

can be considered homogeneous in the gas core. Here we

chose the ideal gas law as the state function for the gas core

in the considered temperature range (between 20 �C and

100 �C) and pressures (around ambient pressure 105 Pa) thus,

4p
3

PgRi
3 ¼ nKTg; (2)

where Pg is the gas pressure, Ri is the bubble radius and in our

case also the inner oil radius, K is the universal gas constant, Tg

is the gas temperature and n is the number of moles of the gas

that is assumed constant. We neglect vaporization and molecu-

lar diffusion phenomena in this derivation. Finally, writing the

momentum equation in both the oil and the water phase will

determine the dynamic behavior of the system by relating the

motion of the fluids to the inner gas pressure. Because of the

low Mach number in the water and the oil (Ma< 5� 10�3),

the radial momentum equation can be derived by integration of

the Navier-Stokes equation in potential flow in each domain.

The boundary conditions at the interfaces are obtained by bal-

ancing the normal stress tensors on each side of the interface.

For the gas/oil interface that provides

Pg � P Rþi
� �

¼ 4lo

_Ri

Ri
þ 2ro

Ri
: (3)

For the oil/water interface, we obtain

P Rþe
� �

� P R�eð Þ ¼
4 _RiR

2
i

R3
e

lo � lwð Þ �
2rwo

Re
: (4)

Here i refers to the gas/oil interface and e refers to the

oil/water interface. R is the radius of the interface (gas/oil

interface and oil/water) and the superscripts þ and � refer to
FIG. 1. (Color online) Schematic of the microbubble system with the three

domains and the corresponding physical parameters.
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the outer and inner side of the interface, respectively. lw is

the dynamic viscosity of water and its temperature depen-

dence can be written as18

lw ¼ 2:414� 10�5 � 10247:8=ðT�140Þ

for the water with T the temperature of the water at the

water-oil interface. rwo is the oil/water interfacial tension

and ro is the gas/oil interfacial tension. The subscripts o, w,

and g refer to the oil, the water and the gas, respectively.

The boundary conditions are inserted into the integrated

momentum equation, leading to

Pg�P1 ¼ €Ri
R2

i

Re
qw�qoð ÞþqoRi

� �
þ _R

2

i Ri

� qo

3

2Ri
� 2

Re
þ 1

2

R3
i

R4
e

 !
þqw

Re
2� 1

2

R3
i

R3
e

 !" #

þ4lo

_Ri

Ri
�

_RiR
2
i

R3
e

" #
þ 4

_RiR
2
i

R3
e

lwþ
2row

Re
þ 2ro

Ri
;

(5)

where P1 is the pressure far away from the bubble. In prin-

ciple, this derivation is identical to that of the Rayleigh-

Plesset equation,19 but now including multiple domains. The

above equations can be discretized and used in a finite differ-

ence model (FDM).

B. Governing differential equation

A number of simplifications can be made to the descrip-

tion of the physical system presented above to derive an ana-

lytical solution. First, the microbubble resonance frequency

is assumed to lie in the same range as its acoustical

resonance frequency [fr(MHz) R0(lm)� 3.3 (Ref. 20) veri-

fied a posteriori]. During fast thermal processes (in the tran-

sient regime), the thermal boundary layer in the gas will

obey d ¼
ffiffiffiffiffiffiffiffiffiffi
pDgt

p
where Dg is the thermal diffusivity of the gas

and t is the time. The temperature in the gas can then be

considered constant when the establishment of the thermal

boundary layer is faster than the variations in deposited heat by

the modulated laser beam. This holds for bubbles smaller than

R ¼
ffiffiffiffiffiffiffiffiffi
pDg

6:6

r
� 11 lm: (6)

This limit comprises the range of bubble sizes relevant for

medical use. Thus, we consider both the pressure and tem-

perature to be homogeneous in the gas core. Therefore the

bubble is considered to oscillate around its equilibrium state

given by the solution of the static heat diffusion equation.

One then easily obtains

DTg;eq ¼
Ba;avRi;eq

2

3ko

�3

2
þ Ri;eq

Re;eq
1� ko

kw

� � 

þRe;eq
2

Ri;eq
2

1

2
þ ko

kw

� ��
; (7)

Ri;eq ¼ Ri;0
Tg;eqP0

T0 P1 þ
2rgo

Ri;eq
þ 2row

Re;eq

� �2
64

3
75

1=3

: (8)

Here k is the thermal conductivity, the subscript eq refers to

the equilibrium state and Ba,av (in W/m3) is the average ther-

mal power deposited by the laser. Over the course of each

oscillation, the temperature has to change not only in the

oil layer but also in a layer of water corresponding to the

thermal diffusion radius over half of the excitation period:

Rd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDw=2flas

p
with flas the laser driving frequency. Here,

we are primarily interested in frequencies in the MHz range,

corresponding to commonly used ultrasound imaging fre-

quencies. Higher frequencies offer higher resolution whereas

lower frequencies offer deeper penetration. To a first approx-

imation, the thermal diffusion radius is then equal to rd

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDw=2flas

p
� 0:1 lm with a corresponding volume

Vw0.1. The heat capacity of the gas, i.e., the thermal energy

that can be stored in the gas is negligible as compared to the

specific heat of the oil and the water and can therefore be omit-

ted. The heat diffusion in the gas is rapid when the condition

given by Eq. (6) is satisfied. Thus, the temperature variation in

the gas can be estimated by considering the change in enthalpy

of the system following a change in the temperature,

dTg

dt
¼ Ba tð ÞVoil

qoVoilcpo þ qwVw0:1cpw
; (9)

with Voil the volume of the oil layer. This temperature varia-

tion can then be inserted into the equation of state of the gas

together with the equation for the equilibrium radius [Eq.

(8)] to obtain the gas pressure as a function of the system

parameters and as a function of the initial and equilibrium

bubble radii. In turn, the gas pressure can be replaced in the

modified Rayleigh-Plesset equation [Eq. (5)] to give

P0R3
i;0

T0R3
i

ðt

0

Ba tð ÞdtVoil

qoVoilcpo þ qwVw0:1cpw

2
64
þBa;av

3ko
�1:5R2

i;eq þ
R3

i;eq

Re;eq
1� ko

kw

� � 

þR2
e;eq 0:5þ ko

kw

� ��
þ Troom

3
75� P1

¼ €Ri
R2

i

Re
qw � qoð Þ þ qoRi

� �
þ _R

2

i Ri

� qo

3

2Ri
� 2

Re
þ 1

2

R3
i

R4
e

 !
þ qw

Re
2� 1

2

R3
i

R3
e

 !" #

þ 4lo

_Ri

Ri
�

_RiR
2
i

R3
e

" #
þ 4

_RiR
2
i

R3
e

lw þ
2row

Re
þ 2ro

Ri
:

(10)

C. Linearization and resonance behavior

We can now differentiate Eq. (10) to suppress the integral

and approximate Ri to Ri,eq in the non-linear products giving
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aBa � f _Ri ¼ Ri

:::
bþ 2c €Ri

_Ri þ d €Ri þ 2� _Ri; (11)

where

a ¼
P0R3

i;0

T0R3
i;eq qocpo þ qw

Vw0:1

Voil
cpw

� � ;

f ¼ 3
P0Tg2

T0

R3
i;0

R4
i;eq

¼ 3
Pg;eq

Ri;eq
;

b ¼
R2

i;eq

Re;eq
qw � qoð Þ þ qoRi;eq;

c ¼ Ri;eq qo

3

2Ri;eq
� 2

Re;eq
þ 1

2

R3
i;eq

R4
e;eq

 !"

þ qw

Re;eq
2� 1

2

R3
i;eq

R3
e;eq

 !#
;

d ¼ 4
lo

Ri;eq
þ

R2
i;eq

R3
e;eq

lw � loð Þ

 !
;

� ¼ �row

R2
e

þ�ro

R2
i

:

If the purely non-linear term 2c €Ri
_Ri is neglected, Eq. (11)

then becomes

ri ¼
a= 2�þ fð Þ

jx 1þ jw
d

2�þ f
� x2 b

2�þ f

� �Ba : (12)

Here x is the angular frequency and the underline refers

to the complex notation. A consequence of the term 1/jx
(that has a �p/2 phase) in Eq. (12) is a �p phase at res-

onance instead of �p/2 for an acoustically driven bubble.

This is a consequence of the necessary integration of the

heat deposition as the energy is the quantity driving the

system. One notices that the direct influence of the laser

intensity appears only in the gain of this transfer function.

Equation (12) leads to the undamped natural frequency of

the system,

f0 ¼
1

2pRi;eq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Ri;eq
2roþ row 3x� x2ð Þ
� �

þ 3Patm

x qw � qoð Þ þ qo

vuuut
; (13)

where x ¼ Ri;eq=Re;eq is a non-dimensional variable

describing the influence of the oil layer thickness. x also

includes a secondary influence of the laser induced heat-

ing via the dilatation of the bubble denoted by the sub-

script eq:

Ri;eq > Ri;0 implies
Ri;eq

Re;eq
<

Ri;0

Re;0
:

The undamped natural frequency of the laser-driven micro-

bubble [Eq. (13)] has a form similar to that of an acoustically

driven bubble and is (mostly) inversely proportional to

the equilibrium bubble radius. This corresponds to the

similar nature of the volumetric oscillations in both cases.

For comparison, if the bubble is acoustically driven,

Ri,eq¼Ri,0, Re,eq¼Re,0, Pg,eq¼Pg,0 and the term f becomes

f ¼ 3jðPg;0=Ri;0Þ where j is the polytropic exponent of the

gas. j is then also the corrective factor of the description of

the thermal behavior of the gas between the acoustically and

thermally driven bubbles. Neglecting the surface tension

terms for the larger bubbles, the resonance frequency for

both driving modes will differ by the quantity
ffiffiffi
j
p

. For

the smaller bubbles where the surface tension dominates,

both expressions become identical. As a remark, both reso-

nance frequencies for an acoustically driven and a thermally

driven bubble become identical when j¼ 1, i.e., in the iso-

thermal case.

This equilibrium radius term Ri,eq can in fact be general-

ized to be the average bubble radius at any time following

the reasoning presented above. The expression is therefore

also applicable to the transient thermal state.

The calculated resonance frequency given in Eq. (13)

also has a strong dependency on the density of the oil and

interfacial tensions as one would expect from the mechanical

nature of the system as was also shown by Church.21 From

the same equation one can obtain the theoretical damping

coefficient of the microbubble, that is,

z ¼ 1

2

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2�þ fð Þ

p �
lo þ x3 lw � loð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pg;eq qo þ x qw � qoð Þð Þ
p 2ffiffiffi

3
p

Ri

:

(14)

Thus, the damping coefficient depends on the oil and water

viscosities, oil and water densities, as well as the bubble size.

D. Pulsed laser excitation

The previous sections describe the case of a modulated

continuous wave laser exposure. In practice, pulsed lasers

are the preferred excitation tools in photoacoustics. It is

therefore worth investigating the case of pulsed light excita-

tion. The derivation of the differential equation for the

motion of the microbubble in this case also follows from Eq.

(5). However, the different timescales are now well sepa-

rated. First, the heating of the oil can be treated as instanta-

neous as the duration of the pulse is typically a few

nanoseconds. Then, the gas heats up by diffusion over a

timescale given by sg ¼ R0
2=Dg where R0 is the bubble

radius and Dg the gas thermal diffusivity. sg is typically a

few hundreds of nanoseconds, which, following the argu-

ment of Eq. (6) is much faster than the bubble motion time-

scale. Finally, the heat diffuses away from the bubble over a

timescale sw ¼ R0
2=Dw where Dw is the thermal diffusivity

of the water. R0 is also the terminal thickness of the thermal

boundary layer in the static case. sw here typically reaches

tens of microseconds. An estimate of the impact of heat dif-

fusion on a short timescale can be obtained from energy con-

servation, such that

qocpoVoil

d Tg � T0ð Þ
dt

¼ �kw4pR2
i0

Tg � T0ffiffiffiffiffiffiffiffiffiffi
pDwt
p ; (15)
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where the small amplitude approximation allows the bubble

surface area to be taken as the resting surface area

S ¼ 4pR2
i0, where the approximate expression for the devel-

opment of the thermal boundary layer for short times,ffiffiffiffiffiffiffiffiffiffi
pDwt
p

, is used and where the influence of the thickness of

the oil layer on the global heat diffusion is neglected. The

temperature in the gas then becomes

Tg ¼ T0þ Thot� T0ð ÞH tð Þexp
�kw8pR2

i0

ffiffi
t
p

qocpoVoil

ffiffiffiffiffiffiffiffiffi
pDw

p
 !

; (16)

where H represents the Heaviside step function and Thot the

temperature of the oil (and gas by extension) just after the

laser pulse. Thot can further be approximated to Thot � Fa/

qocpoþ T0 where Fa is the thermal energy deposited by the

laser per unit volume. Subsequently, the first term of Eq.

(10) simply becomes

Pg ¼
P0R3

i;0

T0R3
i

Tg ¼
P0R3

i;0

T0R3
i

T0 þ
Fa

qocpo
H tð Þ

�

� exp
�kw8pR2

i0

ffiffi
t
p

qocpoVoil

ffiffiffiffiffiffiffiffiffi
pDw

p
 !!

: (17)

Although simpler, this term is actually similar to that

found for the continuous wave (CW) laser and the result-

ing equation shows the same characteristics in terms of

resonance frequency and damping, without the need for

the additional differentiation performed prior to obtaining

Eq. (11).

E. Amplitude response and parameter space

The parameter space of the problem has four dimen-

sions: the thermal power deposition density, which is propor-

tional to the laser intensity and the oil absorption coefficient,

the oil layer thickness, the laser modulation frequency and

the initial bubble radius. The amplitude of the microbubble

response at resonance can be derived from Eq. (12) for

x ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2
p

� x0,

ri ¼
�Baab

2�þ fð Þd ; (18)

ri a
Ri;0

F xð Þ y� 1

y2

� �
qo þ x qw � qoð Þð Þ

qocpo þ g xð Þqwcpw

� 1

lo þ x3 lw � loð Þ
� � ; (19)

with

F xð Þ ¼ �3

2
þ x 1� ko

kw

� �
þ 1

x2
;

1

2
þ ko

kw

� �� �
;

g xð Þ ¼
1þ ew

Re;eq

� �3

� 1

1� x3
:

Similar to x, the variable y ¼ Ri;eq=Ri;0 is a measure of the

thermal dilatation of the microbubble. ew¼ 0.1 lm is the

thickness of the water layer subject to thermal diffusion dur-

ing the irradiation cycle. Basically, Eq. (19) is a normaliza-

tion function that must be calculated from experimentally

measured quantities. The presence of the variables x and y
prohibits a simple scaling as far as the laser intensity and oil

layer thickness are concerned. On the other hand, varying

the frequency alone and using Eq. (13) enables us to reduce

the resonant oscillation amplitude description in Eq. (18) to

a x�5=2 scaling law for a thin oil layer and a x�3 scaling law

for a thick oil layer.

Thus, a thermally driven microbubble experiences a

decrease in the maximum response according to a �5/2

power law with increasing excitation frequency for a thin

oil layer. As a consequence the parameter space can be

divided in two subspaces. The first is the modulation

frequency and the second captures the influence of the

oil layer thickness and the laser intensity described using

Eq. (19).

III. FINITE DIFFERENCE MODEL (FDM)

In Sec. II, we derived a simple analytical expression

that describes, after a number of approximations, the ther-

mal and mechanical behavior of the microbubble. The

validity of these approximations, using the same initial

set of equations, can be verified by means of a more

refined simulation. We therefore design a finite difference

simulation in which the three physical equation describing

the problem, i.e., the heat diffusion equation, the momen-

tum conservation in the water, and the thermodynamic

behavior of the gas core. In short, each equation is simu-

lated as such and communicate with the others at each

time step. The mass of each grid volume is defined to be

constant and the grid is recalculated every time step to

hold on to this definition. Initially, before the laser is

turned on and before the bubble starts to oscillate, the

grid is defined with a regular size interval of 31.25 nm up

to a radius twice the typical bubble size. Beyond this

radius the grid gets 15% bigger for each step outward.

Without an excessive amount of grid points, the outer

point, kept at room temperature, is at a distance well

over 3000 times the typical bubble radius making the

thermal drift due to a finite simulation volume negligible.

The gas is considered to obey the ideal gas law. The

pressure is thus defined by

P ¼ P0

T0

4

3
pR3

0

1X
Vk=Tk

;

where
P

kVk=Tk can be written as

XVk

Tk
¼
X 4

3
p

rk�1 þ pkð Þ3 � r3
k�1

Tk
;

where P is the pressure, V is the volume. The subscript 0

stands for the initial value before the laser is turned on and k
is the index on the grid spacing vector p and the radius vec-

tor r. The speed of the bubble wall _R is assumed to be much

smaller than the speed of sound in air or water so that the
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pressure in the bubble is considered homogeneous. Together

with mass conservation, this leads to a condition on the

radius of the grid points in the bubble,

rk�1 ¼ � Rg

~lP
q0Tk kp0ð Þ3 � k � 1ð Þp0

� �3
h i

þ r3
k

� �1=3

;

where rk is the radius in meters. To speed up the calculation,

a Taylor expansion is carried out to the order 3. The oil and

the water are assumed to be incompressible, and therefore,

the volume in each grid volume in the oil and water domains

remains constant,

rkþ1 ¼ ð½ððk þ 1Þp0Þ3 � ðkp0Þ3� þ r3
k Þ

1=3:

The heat convection diffusion equation writes

Dr2T þ I

qcp
¼ DT

Dt
;

where I is in units of W/m3. The heat equation can be

approximated with a central difference scheme in space and

a forward finite difference scheme in time, which gives a

condition on the temporal evolution of the temperature

(Fig. 2). The momentum equation defined in Eq. (5) was

also discretized in time using finite differences. Both the

velocity and the acceleration are calculated at each time

step. More details of the derivation, including the discreti-

zation steps, are given in Appendix B.

IV. METHODS

A. ODE integration method

The ordinary differential equation (ODE) integration for

both the non-linear and linear bubble dynamics equations

were performed in MATLAB (version R2012a, The

Mathworks, Natick, MA). For the non-linear simulations, the

integration was performed using the ODE 113 solver as the

problem is non-stiff for the considered range of parameters.

Simulations were performed to cover the full three-

dimensional parameter space using both a sine and a square

wave modulation for the laser.

B. Finite difference model

The scheme as describe in Sec. III was coded as such

and used to simulate the responses of the microbubbles upon

laser irradiation using Fortran and is hereafter referred to as

finite difference model/simulations (FDM).

C. Parameter estimate

The four key parameters relevant for biomedical imag-

ing applications are the thermal power deposited by the

laser, the oil layer thickness, the microbubble initial radius,

and the laser modulation frequency. The microbubble size

ranges from 1 to 10 lm, corresponding to both the medi-

cally relevant bubble size range and to the upper limit of

validity of the proposed theory, as demonstrated below. In

the present study, the oil layer thickness was varied from

0.1 lm to 3 lm. The power deposition is, to a first approxi-

mation, equal to I�abs with �abs the absorption coefficient of

the oil. A value of 2500 m�1 was chosen for the absorption

that can be reached by dissolution of a dye such as oil red

in an organic oil. The laser intensity was varied from

0.25� 1010 W/m2, which is necessary for obtaining a sig-

nificant bubble response, to 2.5� 1010 W/m2 that can still

be easily reached in practice.

V. RESULTS

A. Undamped natural frequency

The undamped natural frequency, Eq. (13), was calcu-

lated for triacetin oil that has been used in previous

studies17 to coat microbubbles; and heptane oil that is a

commonly used linear chain organic oil. The results are dis-

played in Fig. 3. As expected the natural frequencies for the

range of bubble sizes considered lie within the MHz range

corresponding to that used in standard ultrasound and

photoacoustic imaging systems. There is a noticeable dif-

ference in natural frequency between the heptane-coated

and triacetin-coated microbubbles owing to the different

densities of the two oils. In the same figure, we also plot

the resonance frequency of a free gas bubble driven by

ultrasound. The undamped natural frequency of a laser-

driven oil-coated microbubble differs from that of the

acoustically driven bubble due to both the different proper-

ties of the microbubbles (oil density, interfacial tensions,

FIG. 2. (Color online) Different laser excitation schemes used to predict the bubble response and predicted bubble response near resonance: (a) continuous

wave laser modulated in intensity by a square wave, (b) continuous wave laser modulated in intensity by a sine wave and (c) response to a pulsed laser excita-

tion. The heat deposited by the laser is displayed in red.
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etc.) and the different nature of the excitation as discussed

in the theory section.

B. Damping coefficient and choice of the oil

In order to fully characterize a dynamic system it is

essential to determine the damping coefficient. In the present

case the damping coefficient is given by Eq. (14) and

depends primarily on the oil and water viscosities, as well as

the thickness of the oil layer. Common oils have a specific

density of approximately 0.7, but the viscosity can vary

over two orders of magnitude, from as low as 386 lPa s

for heptane to as high as 17 mPa s for triacetin for

example.

Figure 4 shows the variation in the damping coefficient

with radius for microbubbles coated with heptane and tria-

cetin. The difference in viscosity between these two oils

leads to a difference in damping of more than an order of

magnitude. A damping coefficient as high as 0.5 for a 3 lm

triacetin-coated microbubble drastically limits the benefit of

the mechanical resonance of these microbubble as compared

to the heptane-coated bubbles. In practice, there will be

additional dissipation due to the necessary use of stabilizing

agents thereby decreasing even further the oscillation

amplitude. Thus, using a low viscosity oil is a necessary

condition. Since the damping coefficient is also a function

of the oil layer thickness, there is a further difference

between high viscosity oils (>1 mPa s) and low viscosity

oils (<1 mPa s): for heptane, the damping decreases when

increasing the oil thickness whereas for triacetin, the damp-

ing increases with increasing oil thickness. This is captured

by Eq. (14) and shown in Fig. 4.

C. Low viscosity oil in the parameter space

We have shown that using a low viscosity oil is crucial

for obtaining a strong bubble response. For the remainder of

the study, we will therefore consider heptane-coated bubbles

only. The shape of the excitation waveform when using

ultrasound is limited to quasi-sine waves due to the limita-

tions of the relatively narrowband transducer technology.

The laser intensity on the other hand can be modulated using

any arbitrary waveform with frequency components up to

hundreds of MHz, which is the maximum frequency of the

currently available acousto-optic modulators. In contrast to

ultrasound, light penetration in not further limited by the

modulation frequency. Preliminary simulations were there-

fore performed using sine and square wave modulated wave-

forms. The latter showed a slightly higher efficiency as the

oscillation amplitude is slightly larger for the same energy

deposition.

The simulated response of heptane-coated microbubbles

to a square wave modulated laser as a function of the initial

bubble radius for different laser intensities, oil layer thick-

ness, and modulation frequency is shown in Fig. 5. Figures

5(a)–5(c) show the simulation results of the finite difference

model. Figures 5(d) and 5(e) show the response simulated

using the non-linear theory of Eq. (10) and Fig. 5(f)–5(h)

show the corresponding phase difference between the laser

excitation and the microbubble response. The response simu-

lated with both models is very similar both in amplitude and

in quality factor, showing that the proposed theory is repre-

sentative of the physical problem simulated in the FDM. The

only significant difference between the finite difference and

the non-linear model is the resonant radius of the initial bub-

ble. This discrepancy originates from the fact that an equilib-

rium assumption is made in the non-linear theory whereas

the FDM is applied over a period of 100 ls. The fully

FIG. 3. (Color online) Undamped natural frequencies of laser driven micro-

bubbles coated with oil layer of 1 lm. The undamped natural frequencies of

heptane coated (short dash red) and triacetin coated (long dash green) micro-

bubbles are lower than that of an acoustically driven free gas bubble (solid

black curve).

FIG. 4. (Color online) (a) Damping

coefficient for heptane (continuous

line) and triacetin (dashed line) coated

microbubbles with different oil layer

thicknesses as a function of the micro-

bubble size. (b) Corresponding damp-

ing coefficients as a function of the oil

layer thickness for a 3 lm oil-coated

bubble.
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developed thermal regime in the FDM is however only

reached after several milliseconds of exposure due to the rel-

atively slow thermal processes. A laser exposure duration of

100 ls places the system in a regime where the thermal pro-

cesses (with the exception of the high-frequency modulation)

evolve on a much shorter timescale as compared to the bub-

ble oscillations. In this quasi-stable regime, the gas core tem-

perature can lag by 20% to 30% from the equilibrium

temperature as demonstrated in Appendix C. Figures 5(a)

and 5(d) depict the variation of the microbubble response

when increasing the oil layer thickness. The oscillation

amplitude decreases for a thicker oil layer despite the

decreasing damping coefficient. It can also be seen from

Figs. 5(a) and 5(d) that the response amplitude passes

through a maximum for a heptane oil layer thickness of

1.1 lm. Physically, for a thin oil layer, the energy deposited

in the oil is quickly transferred to the gas and the surround-

ing water and thus the temperature in the system changes

quickly enough to follow the excitation. In this regime, the

microbubble response is limited by the energy deposited by

the laser that is to first order proportional to the volume of

absorbing oil. Above a critical oil layer thickness, the time

required to change the temperature in the oil is no longer

negligible compared to the laser modulation period. Thus,

the temperature in the oil fails to follow the variation in the

heat deposited by the laser. This phenomenon of thermal

inertia decreases the amplitude of the temperature variation

in the gas, and therefore decreases the response amplitude.

This effect can be seen mathematically in the term a and its

dependency on the oil volume and transiently heated water

volume. Asymptotically, the maximum of the resonance

curve can be written as

ri

Ba
¼ e

x�7=2

T012pcpwlw

ffiffiffiffiffiffi
Dw

p P0

qw

� �3=2

(20)

in the case of a thin oil layer and

ri

Ba
¼ x�3

12pcpolo T0 þ
Bae2

3ko

1

2
þ ko

kw

� � ! P0

qo

� �3=2

(21)

FIG. 5. (Color online) Simulated resonance curves and corresponding phase differences for a bubble irradiated by a square wave modulated laser. (a)–(c) The

finite difference simulations of the system for (a) variable oil thickness, a heat deposition rate of 27 TW/m3 and a frequency of 1 MHz; (b) variable heat depo-

sition rate, a modulation frequency of 1 MHz and an oil layer thickness of 1 lm and (c) variable frequency, a heat deposition rate of 27 TW/m3 and an oil

thickness of 1 lm. (d)–(f) The results from simulations using the non-linear theory for the same parameters and (g)–(i) are the corresponding phase plots the

bubble oscillations.
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for a thick oil layer. Figures 5(b) and 5(e) show the varia-

tions in the microbubble response as a function of the heat

deposited by the laser. As expected, the microbubble oscilla-

tions become stronger with increasing laser intensity.

Interestingly, and unlike the temperature variation, the

response does not increase linearly with the intensity. The

laser intensity in Eq. (19) is represented by the variable y
that is a measure of the thermal dilatation of the microbub-

ble. Nevertheless, in Eq. (19), the laser intensity is presented

as a proportional term that describes the influence of the

density of heat deposition and an inverse term that corre-

sponds to the change in bubble size with increasing tempera-

ture. Figures 5(c) and 5(f) present the simulation results for

different modulation frequencies. The response of the laser-

driven microbubbles at resonance increases strongly when

decreasing the laser modulation frequency. Physically, the

temperature variations in the gas core and therefore the

driving pressure will vary with the energy deposited during

half the period of the laser excitation and will therefore be

larger when the modulation frequency becomes lower.

Finally, Fig. 5(g)–5(i) show the variation of the phase differ-

ence between the microbubble oscillations and the laser

excitation. As expected from the linearized equations, the

phase varies from �p/2 to �3p/2 and crosses �p at the

natural frequency. Thus, the bubble oscillates in anti phase

with the laser excitation.

D. Scaled resonance curves

In order to apply these theoretical findings to an experi-

mental case, one must consider the practical difficulties

involved in producing stable microbubbles with the same oil

thickness and to expose them to the same laser intensity. It is

therefore desirable to normalize the microbubble resonance

curves using parameters that are experimentally accessible.

This can be achieved using the normalization functions

given in Sec. II E and Eq. (19), derived from the linearized

equation Eq. (12). We also know from Eq. (13) that the reso-

nant bubble size can be described as a function of the “hot”

bubble radius. This hot bubble radius can thus be used

instead of the initial bubble radius and then be normalized to

the resonant radius using Eq. (13).

The resonance curves simulated from the non-linear the-

ory for varying intensity and oil thickness and normalized

using Eq. (19) are plotted in Fig. 6(a) and those for a varying

laser modulation frequency normalized using the power laws

derived in Sec. II E are plotted in Fig. 6(b). The normaliza-

tion function from Eq. (19) is effective for scaling the

FIG. 6. (Color online) Scaled reso-

nance curves for the analytical model.

(a) Scaled resonance curves at 1 MHz

for an oil layer thickness varying from

0.6 lm to 3 lm and a heat deposition

ranging from 6.7 TW/m3 to 40.5 TW/

m3. (b) Resonance curves for an oil

thickness of 1 lm and a heat deposition

of 27 TW/m3 at different frequencies

scaled by x�5/2.

FIG. 7. (Color online) Scaled resonance curves for the finite difference model. (a) Scaled resonance curves at 1 MHz for a heat deposition of 27 TW/m3 with

an oil layer thickness varying from 0.6 lm to 3 lm. (b) Scaled resonance curves at 1 MHz for an oil layer thickness of 1 lm and for a heat deposition ranging

from 6.7 TW/m3 to 40.5 TW/m3. (b) Scaled resonance curves for a heat deposition of 27 TW/m3 and an oil layer thickness of 1 lm, and for a frequency rang-

ing from 0.5 to 1.5 MHz.
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microbubble responses simulated using the non-linear the-

ory. A scaling according to a �5/2 power law gives a similar

result for varying modulation frequencies but with a larger

deviation for the lowest frequency (500 kHz). The resonance

curves simulated by the FDM and scaled with the same

equations are plotted in Fig. 7. For the FDM, the amplitude

of the scaled curves for the oil layer thickness and laser

intensity [Fig. 7(a) and 7(b)] present a larger amplitude and

deviation, which is mostly due to the differences between

the thermal equilibrium radius used in the theory and the

quasi equilibrium average radius simulated by the FDM. The

proposed normalization applied to the results of the FDM

reduces a sevenfold variation in the response amplitude to a

small error margin.

Figure 7(c) shows the FDM simulation for different

excitation frequencies normalized by the expected �5/2

power law.

E. Harmonics and subharmonics

Beyond the strength of the fundamental resonance, one

feature of microbubble oscillations has become increasingly

important and been widely investigated for ultrasound

imaging: the harmonic and subharmonic pressure wave

generation.

Figures 8(a) and 8(b) show the harmonic and subhar-

monic microbubble oscillations, respectively, relative to

the fundamental response on a dB scale for square wave

excitation and for different heat deposition densities.

Figures 8(c) and 8(d) depict the same quantities for a sine

wave laser modulation. Both the square and sine wave

laser modulation generate harmonics from bubbles around

the resonant size but the square wave also generates signif-

icant harmonics from much smaller bubbles. We attribute

this to the harmonic composition of the square wave itself

that includes a higher frequency component at three times

the fundamental frequency. The generation of harmonics

thus depends strongly upon the choice of the laser modula-

tion waveform.

VI. DISCUSSION

As discussed above, the FDM simulations were run

over a period of 100 ls, allowing for the model to reach a

quasi steady-state that is nonetheless significantly different

from the perfect equilibrium state used as a reference in the

theory. Simulations were also run over a longer timescale

with non-modulated laser driving and converged toward the

expected thermal equilibrium. A duration of 100 ls or less

is, however, more relevant for practical application of these

bubbles, as enough time should be allowed for imaging and

signal integration/accumulation whilst avoiding excessive

heat deposition in the tissue. The theoretical model could be

modified to match this quasi steady state but the timescale

to choose would then depend on the experiment or

application.

The observed increase in signal amplitude could

potentially increase the tissue depth from which photoa-

coustic images can be obtained in two ways. First, the

use of a sensitive contrast agent would increase the signal

to noise ratio. Second, the use of a CW laser offers tem-

poral integration possibility, together with an optimal use

of the bubble resonance effect. This last approach is very

novel and now needs to be translated into (pre)clinical

practice.

The normalization function in Eq. (19) derived from the

linear theory fails to satisfactorily scale the thinner oil layers

(�100 nm) and these are therefore not presented in Fig. 6(a)

and Fig. 7(a). We justify this omission by the much lower pre-

dicted response for such thin oil layers [Fig. 5(a) and 5(c)]

that therefore present a more limited interest in terms of

normalization.

Both the proposed theory and the FDM were considered

in the context of incompressible potential flow. In fact, an

oscillating bubble emits an acoustic wave, therefore

FIG. 8. (Color online) Harmonic

behavior of laser driven microbubbles.

(a) harmonic and (b) subharmonic con-

tent of the oscillations of the micro-

bubbles when irradiated by a 1 MHz

square wave modulated laser beam or

(c) and (d) a 1 MHz sine wave modu-

lated beam. The energy deposited per

cycle is identical in both cases.
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producing a weakly compressible flow carrying energy away

from the microbubble. This effect has been addressed in ear-

lier studies, such as those by Keller et al.22 and Prosperetti

et al.23 From these models, an approximate form of the

losses by radiation can be included as a supplementary pres-

sure term in Eq. (10) for low Mach numbers,

Prad ¼
R

cw

@Pg

@t
; (22)

where Pg is the gas pressure. Using the state function of the

gas and Eq. (9), Eq. (22) becomes

Pac; rad ¼
P0R3

i0

cwT0

1

R2 qocpo þ
V01

Voil
qwcpw

� �

� B tð Þ � 3 _R

R

ðt

0

B tð Þdt

 !
� P0R3

i0
_R

cwR3
: (23)

Here the dominant damping term is on the right side. The

addition of this term in the theory and corresponding simula-

tions produced only a negligible effect on the total damping.

Reradiation is therefore negligible compared to viscous dis-

sipation, even in the low viscosity case of heptane oil-coated

bubbles.

VII. CONCLUSIONS

On the basis of theoretical considerations, we have

demonstrated the possibility of using the mechanical reso-

nance of microbubbles in the MHz frequency range, typi-

cally used in ultrasound imaging, to increase the signal

amplitude in photoacoustic imaging. We have developed

a theory supported by finite difference model simulations

that clarifies the underlying phenomena and predicts the

natural frequencies and resonance characteristics of laser

driven microbubbles. The resonance frequency of the

laser-driven microbubbles is different from the acousti-

cally driven bubble by a factor
ffiffiffi
j
p

, j being the poly-

tropic exponent of the gas. The natural frequencies of

these microbubbles depend on the density of the oil coat-

ing, as was already shown for acoustically driven bubbles.

The proposed theory also indicates the crucial importance

of choosing an oil with a low viscosity, i.e., similar to

that of water in order to obtain a sufficiently high quality

factor for the resonance. It appears that a suitable selec-

tion of the oil properties can improve the overall quality

of the system, even above that of acoustically driven bub-

bles. We have also extracted from the linearized theory

normalization functions within the investigated parameter

space that will allow for the scaling of datasets using

experimentally accessible parameters to reduce signifi-

cantly the error due to variations in oil thickness and

laser intensity. The proposed theoretical considerations are

valid for continuous wave exposure and can also be

applied to the more typical case of pulsed excitation pho-

toacoustics. Similarly, the response of optically absorbing

microbubbles that do not contain an oil layer can be

extrapolated from the proposed work by appropriate

selection of the equivalent parameter set (density, thick-

ness and viscosity) for the absorbing layer. Finally, we

have shown that laser-driven microbubbles are expected

to exhibit similar behavior to that of acoustically driven

microbubbles in terms of harmonic and subharmonic gen-

eration, thereby opening new possibilities for harmonic

photoacoustic imaging that could potentially enable a

much improved contrast to tissue ratio.
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APPENDIX A: MATHEMATICAL DERIVATION OF THE
THEORETICAL MODEL

The Navier-Stokes equation for an incompressible,

Newtonian fluid is as follows

q
Dv

Dt
¼ �rPþ qgþ lr2v:

Body forces will be negligible and a spherical symmetry

case is investigated leading to

q
@v

@t
þ v

@v

@r

� �
¼ � @P

@r
þ lr2v:

In the simulation, the bubbles will have an oscillation ampli-

tude of the order of lm and the frequency will be in the order

of MHz. Speeds will therefore be approximately 1 m/s and

thus much lower than the speed of sound. For this reason,

incompressibility of the liquid is assumed leading to

v ¼
_RR2

r2
~er ;

where _R is dR=dt. With this we find

q
1

r2

@

@t
_RR2ð Þ � 2

_RR2ð Þ2

r5

 !
¼ � @P

@r
þ lr2v;

� 1

q rð Þ
@P

@r
þ lr2v

� �
¼ 1

r2

d

dt
_RR2ð Þ � 2 _RR2ð Þ2

r5
:

This equation can be written for both the oil layer and the

water. When integrating from r¼A to r¼B the term lr2v
drops out and this gives

P Bð Þ � P Að Þ
q

¼ 1

r

d

dt
_RR2ð Þ � 1

2

_RR2ð Þ2

r4

" #B

A

;
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P Bð Þ � P Að Þ
q

¼
€RR2

r
þ 2 _R

2
R

r
� 1

2

_R
2
R4

r4

" #B

A

:

Taking the inner bubble radius Ri for R and integrating over

the water domain,

P Rþe
� �

� P1 ¼ qw

€RiR
2
i þ 2 _R

2

i Ri

Re
� 1

2

_R
2

i R4
i

R4
e

 !
: (A1)

Integrating over the oil domain,

P R�eð Þ � P Rþi
� �

¼ qo

€RiR
2
i þ 2 _R

2

i Ri

Re
� 1

2

_R
2

i R4
i

R4
e

 

�
€RiR

2
i þ 2 _R

2

i Ri

Ri
� 1

2

_R
2

i R4
i

R4
i

 !!
; (A2)

rewritten as

P Rþi
� �

� P R�eð Þ ¼ qo
€RiR

2
i þ 2 _R

2

i Ri

	 

1

Ri
� 1

Re

� ��

� 1

2
_R

2

i R4
i

1

R4
i

� 1

R4
e

� ��
: (A3)

1. Normal component stress tensor

a. Over the oil gas interface

ro � ~er � rg � ~er ¼ dP1;

where ro is the strain tensor and ~er denotes that it is in the r
direction. dP1 is the difference in pressure over the oil-gas

interface.

2l0u0 Rið Þ � P Rþi
� �

þ Pg ¼
2ro

Ri
;

where u0 is the velocity derivative to the radius. r is the

surface tension. Knowing v ¼ _RiR
2
i =r2 we also know

v0ðRiÞ ¼ �2 _RiR
2
i =R3

i ,

�4lo

_RiR
2
i

R3
i

� P Rþi
� �

þ Pg ¼
2ro

Ri
;

Pg � P Rþi
� �

¼ 4lo

_Ri

Ri
þ 2ro

Ri
: (A4)

b. Over the oil water interface

rw � ~er � ro � ~er ¼ dP2;

2lwv0 Reð Þ � P Rþe
� �� �

� 2lov
0 Reð Þ � P R�eð Þ

� �
¼ 2rwo

Re
;

knowing v ¼ _RiR
2
i =r2 we also know v0ðReÞ ¼ �2 _RiR

2
i =R3

e .

Rewriting the equation above then gives

�4 _RiR
2
i

R3
e

lw � P Rþe
� �" #

� �4 _RiR
2
i

R3
e

lo � P R�eð Þ

" #

¼ 2rwo

Re

�4 _RiR
2
i

R3
e

lw � loð Þ �
2rwo

Re
¼ P Rþe

� �
� P R�eð Þ:

Resulting in

P Rþe
� �

� P R�eð Þ ¼
4 _RiR

2
i

R3
e

lo � lwð Þ �
2rwo

Re
: (A5)

2. Combining

We know that Pg � P1 ¼ PðR�i Þ � P1 because the

pressure at the inside of the inner radius of the bubble

is by definition in the gas and therefore Pg ¼ PðR�i Þ.
We can rewrite by adding and subtracting similar

terms,

Pg � P1 ¼ PgðR�i Þ � PðRþi Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}þPðRþi Þ � PðR�e Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
þ PðR�e Þ � PðRþe Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}þPðRþe Þ � P0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} : (A6)

Part 1 of (A6) is defined in (A4), part 2 is defined in

(A3), part 3 is defined in (A5) and part 4 is defined in (A1).

Thus, the complete equation is

Pg � P1 ¼ 4lo

_Ri

Ri
þ 2ro

Ri
þ qo

€RiR
2
i þ 2 _R

2

i Ri

	 
 

� 1

Ri
� 1

Re

� �
� 1

2
_R

2

i R4
i

1

R4
i

� 1

R4
e

� �!

� 4 _RiR
2
i

R3
e

lo � lwð Þ þ
2rwo

Re
þ qw

�
€RiR

2
i þ 2 _R

2

i Ri

Re
� 1

2

_R
2

i R4
i

R4
e

 !
: (A7)

Rewriting gives

Pg � P1 ¼ €Ri qoR2
i

1

Ri
� 1

Re

� �
þ qw

R2
i

Re

" #

þqo 2R2
i Ri

1

Ri
� 1

Re

� �
� 1

2
_R

2

i R4
i

1

R4
i

� 1

R4
e

� �" #

þqw 2
_R

2

i Ri

Re
� 1

2

_R
2

i R4
i

R4
e

" #
þ 4lo

_Ri

Ri
�

_RiR
2
i

R3
e

" #

þ 4
_RiR

2
i

R3
e

lw þ
2row

Re
þ 2ro

Ri
; (A8)

and rewriting further
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Pg � P1 ¼ €Ri
R2

i

Re
qw � qoð Þ þ qoRi

� �

þqo
_R

2

i Ri
2

Ri
� 2

Re
� 1

2

1

Ri
þ 1

2

R3
i

R4
e

 !" #

þ qw

_R
2

i Ri

Re
2� 1

2

R3
i

R3
e

 !2
4

3
5þ 4lo

_Ri

Ri
�

_RiR
2
i

R3
e

" #

þ 4
_RiR

2
i

R3
e

lw þ
2row

Re
þ 2ro

Ri
: (A9)

To reach the modified Rayleigh-Plesset equation,

Pg�P1 ¼ €Ri
R2

i

Re
qw�qoð ÞþqoRi

� �
þ _R

2

i Ri

� qo

3

2Ri
� 2

Re
þ 1

2

R3
i

R4
e

 !
þqw

Re
2� 1

2

R3
i

R3
e

 !" #

þ4lo

_Ri

Ri
�

_RiR
2
i

R3
e

" #
þ 4

_RiR
2
i

R3
e

lwþ
2row

Re
þ 2ro

Ri
;

(A10)

where the viscosity of water lw is temperature dependent

following the following relation:18

lw ¼ 2:414� 10�5 � 10247:8=ðT�140Þ;

where T is the temperature of the water at the water-oil inter-

face. This new RP equation reduces to the classic RP equa-

tion for a bubble with only one liquid around it when the

properties of water and oil are chosen to be identical.

3. Small variations around equilibrium

In this part small variations are added to the static solu-

tion in order to obtain a simple model describing the simula-

tion result. The static solution assumes the temperature in

the gas to be homogeneous. For this to be true for a modu-

lated laser signal, the diffusion time of the heat in the gas

should be smaller than the half period of the laser modula-

tion. This can be contained in the following equations:

t ¼ R2
i

pDg
¼ Period laser

2
¼ 1

2f
;

we make the assumption a priori (verified a posteriori) that

the microbubble resonance frequency is in the same range as

its acoustic resonance frequency and using a Minnaert

approximation, the temperature in the gas can be considered

constant for bubbles smaller than

R ¼ pDg

6:6
� 11lm:

A diffusion distance estimation can be made for the

water to find app. 0.1 lm for 1 MHz frequency.

The change in temperature over time can be described

as follows:

ðqoVoilcpo þ qwVw0:1cpwÞdT ¼ BaðtÞVoildt;

with qo the density of the oil, Vw0.1 the volume of the first

0.1 lm of water, cpo the heat capacity at constant pressure of

the oil and Ba(t) the absorbed laser power (W/m3):

dT

dt
¼ Ba tð ÞVoil

qoVoilcpo þ qwVw0:1cpw

; (A11)

! Tg ¼

ðt

0

Ba tð ÞdtVoil

qoVoilcpo þ qwVw0:1cpwð Þ
þ constant: (A12)

Using the initial equilibrium solution,

Tg ¼

ðt

0

Ba tð ÞdtVoil

qoVoilcpo þ qwVw0:1cpwð Þ
þ
�Ba;avR

2
i;eq

6ko
� C1o

Ri;eq

þ C2o þ Troom;

Ba,av is the average laser power deposited (W/m3). Filling in

C1o and C2o and rewriting gives

Tg ¼

ðt

0

Ba tð ÞdtVoil

qoVoilcpo þ qwVw0:1cpwð Þ
þ
�Ba;avR

2
i;eq

6ko

�
Ba;avR

2
i;eq

3ko
þ

Ba;avR
3
i;eq

3koRe;eq
1� ko

kw

� �

þ
Ba;avR

2
e;eq

3ko
0:5þ ko

kw

� �
þ Troom; (A13)

! Tg ¼

ðt

0

Ba tð ÞdtVoil

qoVoilcpo þ qwVw0:1cpwð Þ

þBa;av

3ko
�1:5R2

i;eq þ
R3

i;eq

Re;eq
1� ko

kw

� � 

þR2
e;eq 0:5þ ko

kw

� ��
þ Troom: (A14)

We know that

P ¼ P0V0Tg

T0
4
3
pR3

i

; (A15)

where Tg can be substituted and P is the total pressure as

used in the modified Rayleigh-Plesset equation [Eq. (A10)]:

Pg � P1 ¼ €Ri
R2

i

Re
qw � qoð Þ þ qoRi

� �
þ _R

2

i Ri

� qo

3

2Ri
� 2

Re
þ 1

2

R3
i

R4
e

 !
þqw

Re

"

� 2� 1

2

R3
i

R3
e

 !#
þ 4lo

_Ri

Ri
�

_RiR
2
i

R3
e

" #

þ 4
_RiR

2
i

R3
e

lw þ
2row

Re
þ 2ro

Ri
; (A16)
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where Pg is the found P and P1 is the pressure at infinity. Expressing this in the new variables P0 as the pressure at the begin-

ning of the static solution and Pg as the total pressure in the gas, and filling in Tg and the found pressure, this gives

P0R3
i;0

T0R3
i

ðt

0

Ba tð ÞdtVoil

qoVoilcpo þ qwVw0:1cpw
þBa;av

3ko
�1:5R2

i;eq þ
R3

i;eq

Re;eq
1� ko

kw

� �
þ R2

e;eq 0:5þ ko

kw

� � !
þ Troom

2
64

3
75� P1

¼ €Ri
R2

i

Re
qw � qoð Þ þ qoRi

� �
þ _R

2

i Ri qo

3

2Ri
� 2

Re
þ 1

2

R3
i

R4
e

 !
þ qw

Re
2� 1

2

R3
i

R3
e

 !" #

þ 4lo

_Ri

Ri
�

_RiR
2
i

R3
e

" #
þ 4

_RiR
2
i

R3
e

lw þ
2row

Re
þ 2ro

Ri
: (A17)

Organizing for _R; _R
2
, and €R and, as an approximation, taking all Ri and Re to be Ri,eq and Re,eq in case they are multi-

plied by _R; €R
2
, or €R,

ð
Badt

P0V0

T0

4

3
pR3

i;eq qocpo þ qw

Vw0:1

Voil

cpw

� �2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a

þ P0V0

T0

4

3
pR3

i

Tgas;eq þ Troom½ � � P1

¼ €Ri

R2
i;eq

Re;eq
qw � qoð Þ þ qoRi;eq

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

b

þ _R
2

i Ri;eq qo

3

2Ri;eq
� 2

Re;eq
þ 1

2

R3
i;eq

R4
e;eq

 !
þ qw

Re;eq
2� 1

2

R3
i;eq

R3
e;eq

 !" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

c

� _Ri 4
lo

Ri;eq
þ

R2
i;eq

R3
e;eq

lw � loð Þ

 !" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

d

þ 2
row

Re
þ ro

Ri
: (A18)

In order to find an equation that does not contain an inte-

gral, everything is derived to time:

aBa � 3
P0Tg2

T0

Ri;0

R4
i;eq|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

f

_Ri ¼ Ri

:::
bþ 2c €Ri

_Ri þ d €Ri

þ 2 _Ri
�row

R2
e

þ�ro

R2
i

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

�

; (A19)

aB� f _Ri ¼ Ri

:::
bþ 2c €Ri

_Ri þ d €Ri þ 2 _Ri�: (A20)

In which case _Re is assumed to be approximately _Ri and

Tgas,eqþ Troom is now called Tg2. The term 2c €Ri
_Ri is of higher

order and is therefore neglected. Ri is expected to act as an

harmonic oscillator and will therefore have the shape of

Ri ¼ Ri;eq þ rie
jxt þ u ¼ Ri;eq þ ri; (A21)

_Ri ¼ jxrie
jxt þ u ¼ ðjxÞri; (A22)

€Ri ¼ �x2rie
jxt þ u ¼ ðjxÞ2ri; (A23)

Ri

:::
¼ �jx3rie

jxt þ u ¼ ðjxÞ3ri; (A24)

aB ¼ jxri 2�þ fþ jwd� x2b
� �

; (A25)

ri

B
¼ a= 2�þ fð Þ

jx 1þ jw
d

2�þ f
� x2 b

2�þ f

� � ; (A26)

which has the shape of a transfer function

O

I
¼ G

1þ jx
2z

x0

� x2

x2
o

� 1

jx
; (A27)

with G being the gain, O the output, I the input, z the

damping and x0 the angular eigen frequency. One thing

that can be noted here is that this transfer function is of

third order where a standard RP equation would be of sec-

ond order. The expected phase difference in our case is

therefore p at resonance instead of p/2 such as in the nor-

mal RP equation:

! x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ f

b

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

row

R2
e

þ ro

R2
i

� �
þ 3

P0Tg2

T0

Ri;0

R4
i;eq

R2
i;eq

Re;eq
qw � qoð Þ þ qoRi;eq

vuuuuuut :

(A28)

From Eq. (A15), we can find
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Tg2R3
i;0

R4
i;eq

¼ T0Pg;eq

P0Ri;eq
: (A29)

Therefore, f can be simplified

f ¼ 3
P0

T0

Tg2Ri;0

R4
i;eq

¼ 3
Pg;eq

Ri;eq
; (A30)

where the equilibrium pressure Pg,eq is the atmospheric pres-

sure plus the Laplace pressure jump over both interfaces,

f ¼ 3
Patm

Ri;eq
þ 2ro

R2
i;eq

þ 2row

Ri;eqRe;eq

 !
; (A31)

!x0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

row

R2
e;eq

þ ro

R2
i;eq

� �
þ3

Patm

Ri;eq
þ 2ro

R2
i;eq

þ 2row

Ri;eqRe;eq

 !
R2

i;eq

Re;eq
qw�qoð ÞþqoRi;eq

vuuuuuuut ;

(A32)

x0 is not a function of time so all Ri and Re are now Ri,eq

and Re,eq:

! x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ro

R2
i;eq

þ 2row
�1

R2
e;eq

þ 3

Ri;eqRe;eq

 !
þ 3Patm

Ri;eq

R2
i;eq

Re;eq
qw � qoð Þ þ qoRi;eq

vuuuuuuut ;

(A33)

!x0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ri;eq

4ro

Ri;eq
þ2row

�Ri;eq

R2
e;eq

þ 3

Re;eq

 !
þ3Patm

 !

Ri;eq
Ri;eq

Re;eq
qw�qoð Þþqo

� �
vuuuuuut ;

(A34)

! x0 ¼
1

Ri;eq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ro

Ri;eq
þ 2row

�Ri;eq

R2
e;eq

þ 3

Re;eq

 !
þ 3Patm

Ri;eq

Re;eq
qw � qoð Þ þ qo

vuuuuuut ;

(A35)

which altogether is an expression for the angular eigenfre-

quency as a function of Ri,eq and Re,eq. This shows the eigen-

frequency is inversely related to the bubble size but also

shows that the oil layer thickness plays a role. The denomi-

nator under the square root shows an inertial shift of the res-

onance curve: because oil and water have different densities,

the thickness of the oil layer influences the mass to be dis-

placed and therefore the resonance frequency.

Now to find an expression for the damping. According

to Eq. (A27),

2z

x0

¼ d
2�þ f

; (A36)

x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ f

b

s
; (A37)

! z ¼ x0

2

d
2�þ f

¼ 1

2

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2�þ fð Þ

p ; (A38)

z ¼ 1

2

4
lo

Ri;eq
þ

R2
i;eq

R3
e;eq

lw � loð Þ

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2�þ fð Þ

p : (A39)

APPENDIX B: DETAILS OF THE DERIVATION FOR THE
FINITE DIFFERENCE MODEL

1. The mesh

The simulation is based on a time dependent mesh. The

mass of each grid volume is defined to be constant and the

grid is recalculated every time step to hold on to this defini-

tion. Initially, before the laser is turned on and before the

bubble starts to oscillate, the grid is defined with a regular

size interval of 31.25 nm up to a radius of 6 lm which is

twice the typical bubble radius. Beyond this radius the grid

gets 15% bigger each step outward. This way, without hav-

ing an excessive amount of grid points, the most outer grid

point, kept at room temperature is more than 3000 times the

typical bubble radius making negligible the thermal drift due

to a finite simulation volume.

2. The ideal gas law

In order to find an expression for the pressure, we look

at the ideal gas law,

PV ¼ m

~l
RgT;

where P is pressure, V is volume, m is mass, ~l is the molar

mass in kilograms per mole, Rg is the ideal gas constant. The

simulation is defined such that the mass in each grid-volume

remains constant in time:

PV

T
¼ constant tð Þ: (B1)

The speed of the bubble wall _R is much smaller than the

speed of sound in air or water. Therefore the pressure in the

bubble is considered homogeneous. With this information it

can be shown that the pressure is defined by

PVk

Tk
¼ constant tð Þ ! P

XRi

0

Vk

Tk
¼ constant tð Þ

! P
XVk

Tk
¼ P0

V0

T0

¼ P0

T0

4

3
pR3

0;

P ¼ P0

T0

4

3
pR3

0

1X
Vk=Tk

;

where
P

Vk=Tk can be written as
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XVk

Tk
¼
X 4

3
p

rk�1 þ pkð Þ3 � r3
k�1

Tk
;

where subscript 0 stands for the initial value before the laser

is turned on.

The constant pressure condition within the bubble

writes

Vk

mkTk
¼ constant rð Þ:

Further rewriting and using that mk is constant in time, gives

Vk

Tk

1

q0V0k
¼ 1

q0Tk

Vk

V0k
¼ 1

q0Tk

r3
k � r3

k�1

kp0ð Þ3� k� 1ð Þp0

� �3
¼ Rg

~lP
;

r3
k � r3

k�1 ¼
Rg

~lP
q0Tk kp0ð Þ3� k� 1ð Þp0

� �3
h i

;

rk�1 ¼ � Rg

~lP
q0Tk kp0ð Þ3� k� 1ð Þp0

� �3
h i

þ r3
k

� �1=3

;

where rk is the radius in meters that belongs to grid point k.

To speed up the calculation in MATLAB or Fortran, an

approximation based on a Taylor expansion is made,

rk�1¼ �Rg

~lP
q0Tk

rk
3

rk
3

kp0ð Þ3� k�1ð Þp0

� �3
h i

þr3
k

 !1=3

;

rk�1¼ rk �
Rg

~lP
q0Tk

1

rk
3

kp0ð Þ3� k�1ð Þp0

� �3
h i

þ1

� �1=3

:

We now assume 1 to be the dominant term, which is true for

small spatial steps,

rk�1 ¼ rk 1þ 1

3
H � 1

9
H2 þ 10

162
H3

� �

with

H ¼ � Rg

~lP
q0Tk

1

rk
3

kp0ð Þ3 � k � 1ð Þp0

� �3
h i

: (B2)

3. Water and oil grids

The mass in each grid volume is defined to be constant

over time, the oil and the water are assumed incompressible

and therefore the volume in each grid volume in the oil and

water domains is constant in time,

rkþ1 ¼ ð½ððk þ 1Þp0Þ3 � ðkp0Þ3� þ r3
k Þ

1=3;

which can be Taylor expanded to give

rkþ1 ¼ rk 1þ 1

3
H � 1

9
H2 þ 10

162
H3

� �
;

with

H ¼ k þ 1ð Þp0ð Þ3 � kp0ð Þ3
h i

1

rk

3

: (B3)

4. The heat equation

The heat convection diffusion equation writes

Dr2T þ I

qcp
¼ DT

Dt
;

where I is in units of W/m3. Since the simulation calculates

the temperature for each grid point, and the grid points fol-

low the movement of the fluid particles, the simulation is

performed in the lagrangian referential which allows for

treating the total derivative as a local one. The heat equation

can be approximated with a central difference scheme in

space and a forward finite difference scheme in time,

1

r2

@

@r
r2 @T

@r

� �
¼ 1

r2

@

@r
r2 Tkþ1 � Tk

pkþ1

� �

¼ 1

r2
k

@

@r
rk þ

1

2
pkþ1

� �2
Tkþ1 � Tk

pkþ1

 !
:

Approximating even further gives a second order central dif-

ference scheme:

@2T

@r2
¼ 1

r2
k

rk þ
1

2
pkþ1

� �2
Tkþ1 � Tk

pkþ1

 !
� rk�1 þ

1

2
pk

� �2
Tk � Tk�1

pk

 !
1

2
pk þ

1

2
pkþ1

2
6664

3
7775:

The derivative of the temperature with respect to time can be given by

@T

@t
¼ Tnþ1

k � Tn
k

dt
:

The full heat equation now becomes
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D

r2
k

rk þ
1

2
pkþ1

� �2
Tkþ1 � Tk

pkþ1

 !
� rk�1 þ

1

2
pk

� �2
Tk � Tk�1

pk

 !
1

2
pk þ

1

2
pkþ1

2
6664

3
7775þ I

qcp
¼ Tnþ1

k � Tn
k

dt
: (B4)

This can be rearranged

Tnþ1
k ¼ dtD

r2
k

rk þ
1

2
pkþ1

� �2
Tkþ1 � Tk

pkþ1

 !
� rk�1 þ

1

2
pk

� �2
Tk � Tk�1

pk

 !
1

2
pk þ

1

2
pkþ1

2
6664

3
7775þ dtI

qcp
þ Tn

k : (B5)

In the simulation it can now be used that the new temperature at grid point k in terms of the temperature at t � dt in the

grid points k � 1, k, kþ 1 is as follows:

Tnþ1
k ¼ Tn

k�1

dtD

r2
k

rk�1 þ
1

2
pk

� �2

pk
1

2
pk þ

1

2
pkþ1

� �
2
6664

3
7775þ Tn

k 1� dtD

r2
k

1

2
pk þ

1

2
pkþ1

� � rk þ
1

2
pkþ1

� �2

pkþ1

þ
rk�1 þ

1

2
pk

� �2

pk

0
B@

1
CA

2
66664

3
77775

þTn
kþ1

dtD

r2
k

1

2
pk þ

1

2
pkþ1

� � rk þ
1

2
pkþ1

� �2

pkþ1

2
6664

3
7775þ dtI

qcp
: (B6)

5. Second order precision over the gas-oil interface
and the oil-water interface

The heat equation that was defined above can be used as

long as the temperature is known at grid points kþ 1, k and

k� 1. When crossing the interface between gas and oil, or

between oil and water the heat equation must be defined

separately. These equations will be based on a second order

Taylor expansion and are therefore more precise than the

heat equation for the bulk. This is required for a satisfactory

stability of the simulation.

a. Outer side of an interface

Just like in the heat equation for the bulk, we express

the new temperature Tnþ1
k (just beyond the interface) in

terms of the temperature at t� dt on three grid points

Tn
k ; Tn

k 1, and Tn
kþ2:

Tk ¼ Tk:

Using a Taylor expansion up to second order to get enough

precision

Tkþ1 ¼ Tk þ pkþ1T0k þ
p2

kþ1

2
T00k ;

Tkþ2 ¼ Tk þ pkþ1 þ pkþ2ð ÞT0k þ
pkþ1 þ pkþ2ð Þ2

2
T00k :

The heat flux across the oil water interface must be con-

served leading to the following condition:

ko
@To

@r

����
Re

¼ kw
@Tw

@r

����
Re

:

We therefore need to know the derivative of the temperature

with respect to the radius. To find this we look for

T0k ¼ ATk þ BTkþ1 þ CTkþ2. A, B, and C should therefore be

such that the coefficient of Tk is zero, that of T0k is one and

that of T00k is zero. This results in

Aþ Bþ C ¼ 0;

pkþ1Bþ pkþ1 þ pkþ2ð ÞC ¼ 1;

p2
kþ1

2
Bþ pkþ1 þ pkþ2ð Þ2

2
C ¼ 0;

solving this

p2
kþ1

2
B ¼ � pkþ1 þ pkþ2ð Þ2

2
C;

B ¼ � pkþ1 þ pkþ2ð Þ2

p2
kþ1

C

and

pkþ1Bþ pkþ1 þ pkþ2ð ÞC ¼ 1;

�pkþ1

pkþ1 þ pkþ2ð Þ2

p2
kþ1

Cþ pkþ1 þ pkþ2ð ÞC ¼ 1;
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C pkþ1 þ pkþ2ð Þ �
pkþ1 þ pkþ2ð Þ2

pkþ1

 !
¼ 1

! C ¼ 1

pkþ1 þ pkþ2ð Þ �
pkþ1 þ pkþ2ð Þ2

pkþ1

and thus,

B ¼ � pkþ1 þ pkþ2ð Þ2

p2
kþ1

1

pkþ1 þ pkþ2ð Þ �
pkþ1 þ pkþ2ð Þ2

pkþ1

;

B ¼ � pkþ1 þ pkþ2ð Þ
p2

kþ1

1

1� pkþ1 þ pkþ2ð Þ
pkþ1

;

B ¼ � pkþ1 þ pkþ2ð Þ
p2

kþ1 � pkþ1 pkþ1 þ pkþ2ð Þ
;

B ¼ � pkþ1 þ pkþ2ð Þ
p2

kþ1 � p2
kþ1 � pkþ1pkþ2

;

B ¼ pkþ1 þ pkþ2ð Þ
pkþ1pkþ2

:

Now filling in B and C to find A,

A ¼ �B� C;

A ¼ � pkþ1 þ pkþ2ð Þ
pkþ1pkþ2

� 1

pkþ1 þ pkþ2ð Þ �
pkþ1 þ pkþ2ð Þ2

pkþ1

;

A ¼ � pkþ1 þ pkþ2ð Þ
pkþ1pkþ2

� 1
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pkþ1 þ pkþ2ð Þ2

pkþ1

;

B ¼ pkþ1 þ pkþ2ð Þ
pkþ1pkþ2

;

C ¼ 1

pkþ1 þ pkþ2ð Þ �
pkþ1 þ pkþ2ð Þ2

pkþ1

:

b. Inner side of an interface

Until now we considered the temperature to be known

for grid points k or higher. This is the case when looking at

the outer side of a boundary. For looking at the inner side of

a boundary grid points bigger than k are not known and the

same analysis can be done for this side. The results are an

expression like T0k ¼ ATk þ BTk�1 þ CTk�2 Where D, E, and

F are

Tk ¼ Tk;

Tk�1 ¼ Tk � pkT0k þ
p2

k

2
T00k ;

Tk�2 ¼ Tk � pk þ pk�1ð ÞT0k þ
pk þ pk�1ð Þ2

2
T00k ;

Dþ Eþ F ¼ 0;

�pkE� pk þ pk�1ð ÞF ¼ 1;

p2
k

2
Eþ pk þ pk�1ð Þ2

2
F ¼ 0;

solving this

p2
k

2
E ¼ � pk þ pk�1ð Þ2

2
F;

E ¼ � pk þ pk�1ð Þ2

p2
k

F

and

�pkE� pk þ pk�1ð ÞF ¼ 1;

�pk �
pk þ pk�1ð Þ2

p2
k

F� pk þ pk�1ð ÞF ¼ 1;

F
pk þ pk�1ð Þ2

pk
� pk þ pk�1ð Þ

 !
¼ 1;

! F ¼ 1

pk þ pk�1ð Þ2

pk
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;

and thus,
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p2
k

1

pk þ pk�1ð Þ2

pk
� pk þ pk�1ð Þ

;

E ¼ � pk þ pk�1ð Þ
p2

k

1
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� 1
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E ¼ � pk þ pk�1ð Þ
pk pk þ pk�1ð Þ � p2

k

;

E ¼ � pk þ pk�1ð Þ
pkpk�1

:

Using D¼�E � F and filling in E and F,

D ¼ pk þ pk�1ð Þ
pkpk�1

� 1

pk þ pk�1ð Þ2

pk
� pk þ pk�1ð Þ

:

Finally,

D ¼ pk þ pk�1ð Þ
pkpk�1

� 1

pk þ pk�1ð Þ2

pk
� pk þ pk�1ð Þ

;

E ¼ � pk þ pk�1ð Þ
pkpk�1

;

F ¼ 1

pk þ pk�1ð Þ2

pk
� pk þ pk�1ð Þ

:

c. Resulting interface conditions in the simulation

The boundary condition between the oil and the water is

the following:
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ko
@To

@r

����
Re

¼ kw
@Tw

@r

����
Re

;

with Re being the radius of the bubble at the oil water inter-

face. Filling in for what was found in Appendix B 5,

koðDTkþETk�1þFTk�2Þ ¼ kwðATkþBTkþ1þCTkþ2Þ:

Rearranging gives

Tk ¼
�ko ETk�1 þ FTk�2ð Þ þ kw BTkþ1 þ CTkþ2ð Þ

koD� kwA
;

with k being the gridpoint on the boundary between water

and oil. Similarly, the boundary condition between the oil

and the gas is

kg
@Tg

@r

����
Ri

¼ ko
@To

@r

����
Ri

;

with Ri being the radius of the bubble at the gas–oil inter-

face. Rearranging this gives

Tk ¼
�kg ETk�1 þ FTk�2ð Þ þ ko BTkþ1 þ CTkþ2ð Þ

kgD� koA
:

APPENDIX C: FDM MODEL CONVERGENCE TOWARD
THE STATIC SOLUTION

Please see Fig. 9.
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FIG. 9. (Color online) (a) Convergence

of the FDM simulation result towards

the static solution. This simulation is

performed for a 3 lm radius bubble

with a 1 lm thick triacetin oil layer and

a continuous laser exposure and (b)

simulation result of the same bubble

irradiated with a laser intensity modu-

lated at 1 MHz, showing the quasi con-

vergence of the gas temperature after

100 ls.
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