27 research outputs found
Melt‐Blown and Electrospun Drug‐Loaded Polymer Fiber Mats for Dissolution Enhancement: A Comparative Study
Melt blowing (MB) was investigated to prepare a fast dissolving fibrous drug-loaded solid dispersion and compared with solvent-based electrospinning (SES) and melt electrospinning (MES). As a conventional solvent-free technique coupled with melt extrusion and using a high-speed gas stream, MB can provide high-quality micro- and nanofibers at industrial throughput levels. Carvedilol, a weak-base model drug with poor water solubility, was processed using a common composition optimized for the fiber spinning and blowing methods based on a hydrophilic vinylpyrrolidone-vinyl acetate copolymer (PVPVA64) and PEG 3000 plasticizer. Scanning electron microscopy combined with fiber diameter analysis showed diameter distributions characteristic to each prepared fibrous fabrics (the mean value increased toward SES<MB<MES). Differential scanning calorimetry and X-ray diffraction studies revealed that the incorporated drug was in amorphous form regardless the preparation method. The HPLC studies demonstrated that all of the materials produced by the different techniques passed the regulatory purity requirements. The fibers exhibited ultrafast drug release tested under neutral pH conditions; the melt-blown sample dissolved within 2 min owing to its large specific surface area. The presented results confirm the applicability of MB as a novel formulation technique for polymer-based drug delivery systems
Evaluation of Three Amorphous Drug Delivery Technologies to Improve the Oral Absorption of Flubendazole
AbstractThis study investigates 3 amorphous technologies to improve the dissolution rate and oral bioavailability of flubendazole (FLU). The selected approaches are (1) a standard spray-dried dispersion with hydroxypropylmethylcellulose (HPMC) E5 or polyvinylpyrrolidone-vinyl acetate 64, both with Vitamin E d-α-tocopheryl polyethylene glycol succinate; (2) a modified process spray-dried dispersion (MPSDD) with either HPMC E3 or hydroxypropylmethylcellulose acetate succinate (HPMCAS-M); and (3) confining FLU in ordered mesoporous silica (OMS). The physicochemical stability and in vitro release of optimized formulations were evaluated following 2 weeks of open conditions at 25°C/60% relative humidity (RH) and 40°C/75% RH. All formulations remained amorphous at 25°C/60% RH. Only the MPSDD formulation containing HPMCAS-M and 3/7 (wt./wt.) FLU/OMS did not crystallize following 40°C/75% RH exposure. The OMS and MPSDD formulations contained the lowest and highest amount of hydrolyzed degradant, respectively. All formulations were dosed to rats at 20 mg/kg in suspension. One FLU/OMS formulation was also dosed as a capsule blend. Plasma concentration profiles were determined following a single dose. In vivo findings show that the OMS capsule and suspension resulted in the overall highest area under the curve and Cmax values, respectively. These results cross-evaluate various amorphous formulations and provide a link to enhanced biopharmaceutical performance
Complement Component C1q as Serum Biomarker to Detect Active Tuberculosis.
Background: Tuberculosis (TB) remains a major threat to global health. Currently, diagnosis of active TB is hampered by the lack of specific biomarkers that discriminate active TB disease from other (lung) diseases or latent TB infection (LTBI). Integrated human gene expression results have shown that genes encoding complement components, in particular different C1q chains, were expressed at higher levels in active TB compared to LTBI. Methods: C1q protein levels were determined using ELISA in sera from patients, from geographically distinct populations, with active TB, LTBI as well as disease controls. Results: Serum levels of C1q were increased in active TB compared to LTBI in four independent cohorts with an AUC of 0.77 [0.70; 0.83]. After 6 months of TB treatment, levels of C1q were similar to those of endemic controls, indicating an association with disease rather than individual genetic predisposition. Importantly, C1q levels in sera of TB patients were significantly higher as compared to patients with sarcoidosis or pneumonia, clinically important differential diagnoses. Moreover, exposure to other mycobacteria, such as Mycobacterium leprae (leprosy patients) or BCG (vaccinees) did not result in elevated levels of serum C1q. In agreement with the human data, in non-human primates challenged with Mycobacterium tuberculosis, increased serum C1q levels were detected in animals that developed progressive disease, not in those that controlled the infection. Conclusions: In summary, C1q levels are elevated in patients with active TB compared to LTBI in four independent cohorts. Furthermore, C1q levels from patients with TB were also elevated compared to patients with sarcoidosis, leprosy and pneumonia. Additionally, also in NHP we observed increased C1q levels in animals with active progressive TB, both in serum and in broncho-alveolar lavage. Therefore, we propose that the addition of C1q to current biomarker panels may provide added value in the diagnosis of active TB
Increased physical stability and improved dissolution properties of itraconazole, a class II drug, by solid dispersions that combine fast- and slow-dissolving polymers
Solid dispersions were prepared of itraconazole-Eudragit E100, itraconazole-PVPVA64, and itraconazole-Eudragit E100/PVPVA64 using a corotating twin-screw hot-stage extruder. Modulated temperature differential scanning calorimetry (MTDSC) was used to evaluate the miscibility of the extrudates, and dissolution experiments were performed in simulated gastric fluid without pepsin (SGF(sp)). Itraconazole and Eudragit E100 are miscible up to 13% w/w drug loading. From that concentration on, phase separation is observed. Pharmaceutical performance of this dispersion was satisfactory because 80% of the drug dissolved after 30 min. Extrudates of itraconazole and PVPVA64 were completely miscible but the pharmaceutical performance was low, with 45% of drug dissolved after 3 h. Combination of both polymers in different ratios, with a fixed drug loading of 40% w/w, was evaluated. MTDSC results clearly indicated a two-phase system consisting of itraconazole-Eudragit E100 and itraconazole-PVPVA64 phases. In these extrudates, no free crystalline or glassy clusters of itraconazole were observed; all itraconazole was mixed with one of both polymers. The pharmaceutical performance was tested in SGF(sp) for different polymer ratios, and Eudragit E100/PVPVA64 ratios of 50/50 and 60/40 showed significant increases in dissolution rate and level. Polymer ratios of 70/30 and 80/20, on the other hand, had a release of 85% after 30 min. Precipitation of the drug was never observed. The combination of the two polymers provides a solid dispersion with good dissolution properties and improved physical stability compared with the binary solid dispersions of itraconazole.status: publishe
Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability
The Parallel Artificial Membrane Permeability Assay (PAMPA) has been successfully introduced into the pharmaceutical industry to allow useful predictions of passive oral absorption. Over the last 5 years, researchers have modified the PAMPA such that it can also evaluate passive blood-brain barrier (BBB) permeability. This paper compares the permeability of 19 structurally diverse, commercially available drugs assessed in four different PAMPA models: (1) a PAMPA-BLM (black lipid membrane) model, (2) a PAMPA-DS (Double Sink) model, (3) a PAMPA-BBB model and (4) a PAMPA-BBB-UWL (unstirred water layer) model in order to find the most discriminating method for the prediction of BBB permeability. Both the PAMPA-BBB model and the PAMPA-BLM model accurately identified compounds which pass the BBB (BBB+) and those which poorly penetrate the BBB (BBB-). For these models, BBB+ and BBB- classification ranges, in terms of permeability values, could be defined, offering the opportunity to validate the paradigm with in vivo data. The PAMPA models were subsequently applied to a set of 14 structurally diverse internal J&J candidates with known log (brain/blood concentration) (LogBB) values. Based on these LogBB values, BBB classifications were established (BBB+: LogBB0 >or=; BBB-: LogBB<0). PAMPA-BLM resulted in three false positive identifications, while PAMPA-BBB misclassified only one compound. Additionally, a Caco-2 assay was performed to determine the efflux ratio of all compounds in the test set. The false positive that occurred in both models was shown to be related to an increased efflux ratio. Both the PAMPA-BLM and the PAMPA-BBB models can be used to predict BBB permeability of compounds in combination with an assay that provides p-gp efflux data, such as the Caco-2 assay.status: publishe
Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion - part I
Solid dispersions containing different ratios of itraconazole and hydroxypropylmethylcellulose (HPMC) were prepared by solvent casting. Based on dose, differential scanning calorimetry and dissolution results, a drug/polymer ratio of 40/60 w/w was selected in order to prepare dispersions by melt extrusion. The melt extrusion process was characterized using a design of experiments (DOE) approach. All parameter settings resulted in the formation of an amorphous solid dispersion whereby HPMC 2910 5 mPa s prevents re-crystallization of the drug during cooling. Dissolution measurements demonstrated that a significantly increased dissolution rate was obtained with the amorphous solid dispersion compared to the physical mixture. The outcome of DOE further indicated that melt extrusion is very robust with regard to the itraconazole/HPMC melt extrudate characteristics. Stability studies demonstrated that the itraconazole/HPMC 40/60 w/w milled melt extrudate formulation is chemically and physically stable for periods in excess of 6 months as indicated by the absence of degradation products or re-crystallization of the drug. (C) 2002 Elsevier Science B.V. All rights reserved.status: publishe
Phase behaviour analysis of solid dispersions of loperamide and two structurally related compounds with the polymers PVP-K30 and PVP-VA64
The purpose of the present study was to investigate the influence of the structure of a poorly water soluble model drug (loperamide) on the phase behaviour in solid dispersions with PVP-K30. Dispersions with PVP-VA64, a less hydrophilic polymer, were investigated as well in order to study the influence of differences in polymer structure and water content of the samples. The solid dispersions of PVP-K30 or PVP-VA64 with loperamide as well as with two fragments of this molecule were prepared by spray drying. The amount of residual solvents and water was determined with GC and thermogravimetric analysis (TGA). The drug loading of the dispersions was determined using high performance liquid chromatography (HPLC). The solid state properties were evaluated using powder-XRD, IR-spectroscopy and MT-DSC. All mixtures containing loperamide proved to be completely amorphous, whereas the dispersions containing the fragments are only amorphous in case the polymer content is high. The phase diagrams that were constructed clearly show that loperamide exhibits a different behaviour in the solid dispersions than its two building blocks. They also point to the presence of specific intermolecular compound--polymer interactions in the dispersions of one of the fragments with the two polymers. This was confirmed by the IR-results. Despite structural similarities, interactions in dispersions containing loperamide are far less important. In dispersions containing high concentrations of the other fragment, the DSC curves give indications for polymorphism whereas IR and XRD-spectra point towards inclusion of solvent in these samples.status: publishe
Physical stability of the amorphous state of loperamide and two fragment molecules in solid dispersions with the polymers PVP-K30 and PVP-VA64
The purpose of the present study was to investigate the impact of intermolecular forces on the stability of the amorphous state of loperamide and two of its fragment molecules (4-dimethylamino-N,N-dimethyl-2,2-diphenyl-butyramide (F1) and 4-(4-chlorophenyl)-4-piperidinol (F2)) in solid dispersions with PVP-K30 and PVP-VA64. The stability of originally homogeneous and amorphous dispersions was investigated under different storage conditions. The chemical stability of the compounds was evaluated with HPLC. TGA-analysis was used in order to assess the amount of water in the samples, whereas MT-DSC-measurements were performed to investigate changes in the physical state of the compounds caused by the storage procedure. TGA-analysis reveals a higher uptake of water in humid conditions of the dispersions with PVP-K30 in comparison to those with PVP-VA64, hereby reflecting the more hydrophilic nature of the former polymer. This water acts as a plasticizing agent resulting in an increased mobility and decreased glass transition temperature. Since the degree of supersaturation and the molecular mobility have an influence on the stability of the amourphous state, both parameters were assessed. With respect to the degree of supersaturation of the compounds in the dispersions, the materials seem to be very much alike. Therefore it was postulated that the induction of crystallization in the F1/polymer dispersions stored at high RH (52%) is due to higher molecular mobility of this compound in the dispersions in comparison to F2. The hydrogen bonds that are being formed between F2 and the polymers reduce its mobility and secure this compound from crystallization upon storage, thus indicating the importance of specific interactions with respect to stability issues of solid dispersions. No hydrogen bonds are formed between F1 and the polymers. As a result, the stability of the amorphous state of the compound is being compromised and crystallization takes place. Loperamide, that also does not form hydrogen bonds with the polymers, is less susceptible to crystallization due to its intrinsic good glass forming properties.status: publishe