9 research outputs found

    ETS-related gene (ERG) undermines genome stability in mouse prostate progenitors via Gsk3β dependent Nkx3.1 degradation.

    Get PDF
    21q22.2-3 deletion is the most common copy number alteration in prostate cancer (PCa). The genomic rearrangement results in the androgen-dependent de novo expression of ETS-related gene (ERG) in prostate cancer cells, a condition promoting tumor progression to advanced stages of the disease. Interestingly, ERG expression characterizes 5-30% of tumor precursor lesions - High Grade Prostatic Intraepithelial Neoplasia (HGPIN) - where its role remains unclear. Here, by combining organoids technology with Click-chemistry coupled Mass Spectrometry, we demonstrate a prominent role of ERG in remodeling the protein secretome of prostate progenitors. Functionally, by lowering autocrine Wnt-4 signaling, ERG represses canonical Wnt pathway in prostate progenitors, and, in turn, promotes the accumulation of DNA double strand breaks via Gsk3β-dependent degradation of the tumor suppressor Nkx3.1. On the other hand, by shaping extracellular paracrine signals, ERG strengthens the pro-oxidative transcriptional signature of inflammatory macrophages, which we demonstrate to infiltrate pre-malignant ERG positive prostate lesions. These findings highlight previously unrecognized functions of ERG in undermining adult prostate progenitor niche through cell autonomous and non-autonomous mechanisms. Overall, by supporting the survival and proliferation of prostate progenitors in the absence of growth stimuli and promoting the accumulation of DNA damage through destabilization of Nkx3.1, ERG could orchestrate the prelude to neoplastic transformation

    Screen-based identification and validation of four new ion channels as regulators of renal ciliogenesis

    Get PDF
    ©2015. To investigate the contribution of ion channels to ciliogenesis, we carried out a small interfering RNA (siRNA)-based reverse genetics screen of all ion channels in the mouse genome in murine inner medullary collecting duct kidney cells. This screen revealed four candidate ion channel genes: Kcnq1, Kcnj10, Kcnf1 and Clcn4. We show that these four ion channels localize to renal tubules, specifically to the base of primary cilia. We report that human KCNQ1 Long QT syndrome disease alleles regulate renal ciliogenesis; KCNQ1-p. R518X, -p.A178T and -p.K362R could not rescue ciliogenesis after Kcnq1-siRNA-mediated depletion in contrast to wild-type KCNQ1 and benign KCNQ1-p.R518Q, suggesting that the ion channel function of KCNQ1 regulates ciliogenesis. In contrast, we demonstrate that the ion channel function ofKCNJ10 is independent of its effect on ciliogenesis. Our data suggest that these four ion channels regulate renal ciliogenesis through the periciliary diffusion barrier or the ciliary pocket, with potential implication as genetic contributors to ciliopathy pathophysiology. The new functional roles of a subset of ion channels provide new insights into the disease pathogenesis of channelopathies, which might suggest future therapeutic approaches

    The organoid era permits the development of new applications to study glioblastoma

    No full text
    Glioblastoma (GB) is the most frequent and aggressive type of glioma. The lack of reliable GB models, together with its considerable clinical heterogeneity, has impaired a comprehensive investigation of the mechanisms that lead to tumorigenesis, cancer progression, and response to treatments. Recently, 3D cultures have opened the possibility to overcome these challenges and cerebral organoids are emerging as a leading-edge tool in GB research. The opportunity to easily engineer brain organoids via gene editing and to perform co-cultures with patient-derived tumor spheroids has enabled the analysis of cancer development in a context that better mimics brain tissue architecture. Moreover, the establishment of biobanks from GB patient-derived organoids represents a crucial starting point to improve precision medicine therapies. This review exemplifies relevant aspects of 3D models of glioblastoma, with a specific focus on organoids and their involvement in basic and translational research

    Weight loss reduces anti-ADAMTS13 autoantibodies and improves inflammatory and coagulative parameters in obese patients

    No full text
    Obese patients have been described at increased risk of thrombotic thrombocytopenic purpura, a disease caused by anti-ADAMTS13 autoantibodies. ADAMTS13 has a structure homology with the adipokine thrombospondin-1. We previously demonstrated an increased presence of anti-ADAMTS13 antibodies in obese patients. We aimed to study the changes induced by weight loss after bariatric surgery on some inflammatory and coagulative parameters and their link with anti-ADAMTS13 autoantibodies. We studied 100 obese patients before and after weight loss induced by bariatric surgery and 79 lean volunteers as controls. We measured anthropometric, metabolic and inflammatory parameters, thrombospondin-1, ADAMTS13 activity, anti-ADAMTS13 autoantibodies, Von Willebrand factor. At baseline, 13\u2009% of patients was positive for anti-ADAMTS13 autoantibodies, while all controls were negative. Thrombospondin-1 levels were higher in obese subjects with than without antibodies, with a positive correlation between the two parameters. In multiple logistic regression analysis only thrombospondin-1 levels predicted positivity for anti-ADAMTS13 antibodies. After weight loss both anti-ADAMTS13 antibodies and thrombospondin-1 reduced significantly. Weight loss in obesity improves the inflammatory and coagulative profile, and in particular anti-ADAMTS13 autoantibodies, ADAMTS13 activity and thrombospondin-1

    Screen-based identification and validation of four novel ion channels as regulators of renal ciliogenesis

    No full text
    To investigate the contribution of ion channels to ciliogenesis we carried out an siRNA-based reverse genetics screen of all ion channels in the mouse genome in murine inner medullary collecting duct kidney cells. This screen revealed four candidate ion channel genes: Kcnq1, Kcnj10, Kcnf1 and Clcn4. We show that these four ion channels localize to renal tubules, specifically to the base of primary cilia. We report that human KCNQ1 Long QT syndrome disease alleles, regulate renal ciliogenesis; KCNQ1-p.R518X, -p.A178T and -p.K362R could not rescue ciliogenesis after Kcnq1 siRNA-mediated depletion in contrast to wild-type KCNQ1 and benign KCNQ1-p.R518Q, suggesting that the ion channel function of KCNQ1 regulates ciliogenesis. In contrast, we demonstrate that the ion channel function of KCNJ10 is independent of its effect on ciliogenesis. Our data suggest that these four ion channels possibly regulate renal ciliogenesis through the periciliary diffusion barrier or the ciliary pocket, with potential implication as genetic contributors to ciliopathy pathophysiology. The new functional roles of a subset of ion channels provide new insights into the disease pathogenesis of channelopathies and may suggest future therapeutic approaches

    Calcium cytotoxicity sensitizes prostate cancer cells to standard-of-care treatments for locally advanced tumors

    Get PDF
    Therapy resistance is a major roadblock in oncology. Exacerbation of molecular dysfunctions typical of cancer cells have proven effective in twisting oncogenic mechanisms to lethal conditions, thus offering new therapeutic avenues for cancer treatment. Here, we demonstrate that selective agonists of Transient Receptor Potential cation channel subfamily M member 8 (TRPM8), a cation channel characteristic of the prostate epithelium frequently overexpressed in advanced stage III/IV prostate cancers (PCa), sensitize therapy refractory models of PCa to radio, chemo or hormonal treatment. Overall, our study demonstrates that pharmacological-induced Ca2+ cytotoxicity is an actionable strategy to sensitize cancer cells to standard therapies
    corecore