44 research outputs found

    Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes

    Get PDF
    Heme (iron-protoporphyrin IX) is an essential co-factor involved in multiple biological processes: oxygen transport and storage, electron transfer, drug and steroid metabolism, signal transduction, and micro RNA processing. However, excess free-heme is highly toxic due to its ability to promote oxidative stress and lipid peroxidation, thus leading to membrane injury and, ultimately, apoptosis. Thus, heme metabolism needs to be finely regulated. Intracellular heme amount is controlled at multiple levels: synthesis, utilization by hemoproteins, degradation and both intracellular and intercellular trafficking.This review focuses on recent findings highlighting the importance of controlling intracellular heme levels to counteract heme-induced oxidative stress. The contributions of heme scavenging from the extracellular environment, heme synthesis and incorporation into hemoproteins, heme catabolism and heme transport in maintaining adequate intracellular heme content are discussed. Particular attention is put on the recently described mechanisms of heme trafficking through the plasma membrane mediated by specific heme importers and exporters. Finally, the involvement of genes orchestrating heme metabolism in several pathological conditions is illustrated and new therapeutic approaches aimed at controlling heme metabolism are discussed. <br/

    Lack of Plasma Protein Hemopexin Results in Increased Duodenal Iron Uptake

    Get PDF
    PURPOSE:The body concentration of iron is regulated by a fine equilibrium between absorption and losses of iron. Iron can be absorbed from diet as inorganic iron or as heme. Hemopexin is an acute phase protein that limits iron access to microorganisms. Moreover, it is the plasma protein with the highest binding affinity for heme and thus it mediates heme-iron recycling. Considering its involvement in iron homeostasis, it was postulated that hemopexin may play a role in the physiological absorption of inorganic iron. METHODS AND RESULTS:Hemopexin-null mice showed elevated iron deposits in enterocytes, associated with higher duodenal H-Ferritin levels and a significant increase in duodenal expression and activity of heme oxygenase. The expression of heme-iron and inorganic iron transporters was normal. The rate of iron absorption was assessed by measuring the amount of (57)Fe retained in tissues from hemopexin-null and wild-type animals after administration of an oral dose of (57)FeSO4 or of (57)Fe-labelled heme. Higher iron retention in the duodenum of hemopexin-null mice was observed as compared with normal mice. Conversely, iron transfer from enterocytes to liver and bone marrow was unaffected in hemopexin-null mice. CONCLUSIONS:The increased iron level in hemopexin-null duodenum can be accounted for by an increased iron uptake by enterocytes and storage in ferritins. These data indicate that the lack of hemopexin under physiological conditions leads to an enhanced duodenal iron uptake thus providing new insights to our understanding of body iron homeostasis

    Investigating the Connection Between Endogenous Heme Accumulation and COX2 Activity in Cancer Cells

    Get PDF
    Heme, an iron-containing porphyrin, is fundamental for a variety of functions in cell homeostasis. Nevertheless, recent data indicate that dysregulation of heme metabolism might promote tumorigenesis. The intracellular heme pool is finely regulated through the control of heme synthesis, degradation, incorporation into hemoproteins and trafficking across membranes. All these processes might be potentially targeted to alter endogenous heme content in order to counteract cancer growth. Nevertheless, these putative therapeutic interventions have to take into account the possibility of undesired side effects, such as the over-activation of heme-dependent enzymes involved in cancer. Among them, cyclooxygenase-2 is a prostaglandin-producing hemoprotein, induced during inflammation and in different types of tumor, particularly in colorectal cancer. The aim of this study was to evaluate whether modulation of endogenous heme may affect cyclooxygenase-2 expression and activity, taking advantage of two different approaches able to alter heme levels: the silencing of the heme exporter Feline Leukemia Virus subgroup C receptor 1 and the induction of heme synthesis by 5-aminolevulinic acid administration. Our data demonstrate that the down-regulation of the heme exporter in colorectal cancer cells does not affect cyclooxygenase-2 expression and activity. Conversely, 5-aminolevulinic acid administration results in decreased cyclooxygenase-2 expression. However, the overall cyclooxygenase-2 enzymatic activity is maintained. The present work sheds light on the complex modulation of cyclooxygenase-2 by endogenous heme and support the idea that targeting heme metabolism could be a valuable therapeutic option against cancer

    Unraveling the Role of Heme in Neurodegeneration

    Get PDF
    Heme (iron-protoporphyrin IX) is an essential co-factor involved in several biological processes, including neuronal survival and differentiation. Nevertheless, an excess of free-heme promotes oxidative stress and lipid peroxidation, thus leading to cell death. The toxic properties of heme in the brain have been extensively studied during intracerebral or subarachnoid hemorrhages. Recently, a growing number of neurodegenerative disorders have been associated to alterations of heme metabolism. Hence, the etiology of such diseases remains undefined. The aim of this review is to highlight the neuropathological role of heme and to discuss the major heme-regulated pathways that might be crucial for the survival of neuronal cells. The understanding of the molecular mechanisms linking heme to neurodegeneration will be important for therapeutic purposes

    Design, synthesis, biophysical and biological studies of trisubstitutednaphthalimides as G-quadruplex ligands

    Get PDF
    A series of trisubstituted naphthalimides have been synthesized and evaluated as telomeric G-quadruplex ligands by biophysical methods. Affinity for telomeric G-quadruplex AGGG(TTAGGG)3 binding was first screened by fluorescence titrations. Subsequently, the interaction of the telomeric G-quadruplex with compounds showing the best affinity has been studied by isothermal titration calorimetry and UVmelting experiments. The two best compounds of the series tightly bind the telomeric quadruplex with a 2:1 drug/DNA stoichiometry. These derivatives have been further evaluated for their ability to inhibit telomerase by a TRAP assay and their pharmacological properties by treating melanoma (M14) and human lung cancer (A549) cell lines with increasing drug concentrations. A dose-dependent inhibition of cell proliferation was observed for all cellular lines during short-term treatment
    corecore