
Fiorito et al.

1

ORIGINAL RESEARCH COMMUNICATION

Crucial role of Flvcr1a in the maintenance of intestinal heme homeostasis

SHORT TITLE: Role of Flvcr1a in mouse intestine

Veronica Fiorito1,2, Marco Forni3, Lorenzo Silengo1,2, Fiorella Altruda1,2 and Emanuela

Tolosano1,2

1Molecular Biotechnology Center, University of Torino, 10126, Torino, Italy
2Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126,

Torino, Italy
3 EuroClone S.p.A Research Laboratory, Molecular Biotechnology Centre (MBC), University

of Torino, 10126, Torino, Italy

CORRESPONDENCE:

Emanuela Tolosano, PhD

Molecular Biotechnology Center

Dept. Molecular Biotechnology and Health Sciences

Via Nizza 52

10126 Torino, Italy

Phone: +39-011-6706423

Fax: +39-011-6706432

email: emanuela.tolosano@unito.it

WORD COUNT: 5976

REFERENCE NUMBER: 35

GREYSCALE ILLUSTRATIONS: 4

COLOR ILLUSTRATIONS: 3 (hardcopy)



Fiorito et al.

2

ABSTRACT

Aims.The maintenance of heme homeostasis, mucosa cell renewal and redox environment in

the intestine is essential to permit digestion, absorption, cell proliferation, cell apoptosis, and

immune response and to avoid the development of gut disorders.

The Feline Leukemia Virus, subgroup C, Receptor 1a (FLVCR1a) is a heme exporter

expressed in almost all cell types including intestinal cells.

This work investigates the role of FLVCR1a in the intestine taking advantage of an intestine

specific conditional Flvcr1a-knockout mouse and of Flvcr1a-depleted Caco2 cells.

Results.The data show that FLVCR1a does not participate in the absorption of dietary heme,

whereas it is involved in the export of de novo synthesized heme from intestinal cells. The

loss of Flvcr1a is associated to a decrease of intestinal cell proliferation and to alterations in

the peculiar homeostasis of proliferating cells, including the maintenance of their redox

status. The involvement of Flvcr1a in these processes renders this exporter crucial for the

survival of mice in a model of ulcerative colitis.

Innovation.These findings shed light on the role of heme export in the dietary heme

absorption process and unravel a new role for heme export in the control of mucosal renewal

and in proliferating cell redox status and metabolic activity, demonstrating a crucial role for

FLVCR1a in maintaining intestinal homeostasis in both physiologic and pathologic

situations.

Conclusion.By exporting the excess of de novo synthesized heme from intestinal cells,

FLVCR1a participates in the control of intestinal mucosa homeostasis.
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INTRODUCTION

Heme, a complex of iron with protoporphyrin IX, is ubiquitous in aerobic cells and it plays

pivotal roles in many cellular processes. First, heme acts as an important cofactor in oxygen

transport and storage, being a constitutive element of hemoglobin and myoglobin. Moreover,

mitochondrial electron transport depends on heme-containing protein complexes(3).

Furthermore, heme availability is crucial for the activity of cytochromes, important for drug

and steroid metabolism, as well as for that of enzymes involved in signal transduction, like

nitric oxide synthases or soluble guanylate cyclases. Heme can also regulate the transcription

of many target genes, including antioxidant-defence enzymes. Finally, heme intracellular

localization (cytosolic vs. nuclear) and concentration affects gene transcription and

translation(4,16). Besides these beneficial features, heme bears also toxic properties and an

excess of heme is deleterious to cells due to its pro-oxidant features. For these reasons, cells

and organisms have evolved several mechanisms to regulate heme concentration(4).

The control of heme homeostasis and oxidative stress appears particularly important in

intestinal cells. The maintenance of the intestinal epithelial redox environment is essential for

the activities of key physiological processes that include digestion and absorption, cell

proliferation and apoptosis, and immune response. The fine tuning of the extracellular redox

environment is also crucial in the intestinal stem cell niche that signals intestinal cell

genesis(5). Accordingly, the disruption of intestinal redox homeostasis has been associated to

the development of gut disorders(1,36), among which intestinal ulcers and cancer.

The control of intracellular heme levels in enterocytes was previously thought to occur

through a balance among the uptake of heme from dietary sources, its biosynthesis,
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utilization by hemoproteins, and catabolism by heme oxygenase (HO) (predominantly by the

heme-inducible HO-1)(15). However, the expression of heme exporters, such as the Feline

Leukemia Virus, subgroup C, Receptor 1 (FLVCR1) and the ATP-binding cassette, sub-

family G, member 2 (ABCG2) in the intestine, suggests the existence of a mechanism of

heme export from the enterocytes. The physiological significance of such secretory systems

is unknown, but a likely hypothesis is that they may keep safe cells from the accumulation of

an excess of heme, thus reducing cytotoxicity and representing a valuable system of cell

protection.

Flvcr1a is one of the two isoforms codified by the Flvcr1 gene. FLVCR1a is a cell surface

protein composed of 12 membrane-spanning domains. It is a member of the major-facilitator

superfamily of secondary transporters, capable of transporting small solutes in response to

chemiosmotic ion gradients(31). Flvcr1a mRNA is expressed ubiquitously with the highest

expression observed in the liver, duodenum, kidney, lung, spleen, brain, placenta and bone

marrow(15). The role of FLVCR1a as a heme exporter has been described in different cell

types, including erythroid cells, macrophages and hepatocytes(2,14,25,33).

The present work demonstrates that FLVCR1a acts as a heme exporter in intestinal cells and

that is crucial for the normal intestinal cell proliferation in vivo. Moreover, it demonstrates

the importance of FLVCR1a for the maintenance of the peculiar homeostasis of proliferating

intestinal cells, including the ability to counteract heme-mediated oxidative effects. Finally, it

shows that Flvcr1a depletion is associated with a reduced animal survival in a mouse model

of ulcerative colitis.
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RESULTS

Generation of intestine specific conditional Flvcr1a-null mice.

In order to study the role of Flvcr1a in the intestine, an intestine specific conditional Flvcr1a-

knockout mouse was generated. To this purpose, LoxP sites were introduced into the regions

flanking Flvcr1 exon 1 to generate a floxed allele(33). Mice homozygous for the floxed allele

are referred to as Flvcr1aflox/flox. Flvcr1aflox/flox mice were then bred to transgenic Villin-Cre

mice(7), expressing Cre ricombinase under the control of the Villin promoter. Following

subsequent matings, Flvcr1aflox/flox;Vil-Cre mice (referred to as Cre+ mice in the figures) were

obtained. Flvcr1aflox/flox mice (referred to as Cre- mice in the figures) were used as controls.

Polymerase chain reaction (PCR) assay on several adult Flvcr1aflox/flox;Vil-Cre mouse tissues

showed the presence of the wild-type Flvcr1a allele in all the organs analysed, except for the

intestine (duodenum and colon-rectum are shown as representative intestinal regions) where

the recombinant allele appeared, correspondent to the exon 1-excised Flvcr1a allele

(Supplementary Figure S1A and Supplementary Table S1). However, both recombinant and

non-recombinant alleles were detected in the intestine of the Flvcr1aflox/flox;Vil-Cre mouse

(Supplementary Figure S1A) indicating either that the recombination of the Flvcr1aflox/flox

allele in intestinal mucosa cells is incomplete or that DNA from other cells not expressing the

Cre ricombinase (muscle cells, endothelial cells, etc.) contributes to the signal of the intact

Flvcr1aflox/flox allele.

Nevertheless, Flvcr1a transcript was strongly reduced in Flvcr1aflox/flox;Vil-Cre intestine

(duodenum and colon-rectum) respect to control animals (Supplementary Figure S1B).

Flvcr1aflox/flox;Vil-Cre mice were viable and fertile, with normal sex ratio at birth.

Haematoxylin-Eosin staining of duodenum, liver, spleen and kidney sections from two
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month-old animals revealed no apparent morphological tissue abnormalities (Supplementary

Figure S1C). Moreover, ten month-old mice colon-rectum sections appeared comparable to

that of wild-type mice (Supplementary Figure S1D), excluding age-dependent defects in the

morphology of Flvcr1aflox/flox;Vil-Cre intestinal mucosa.

Two month-old mice were used for subsequent analyses.

FLVCR1a protein is located at the latero-apical side of intestinal cell membrane

The localization of heme and iron transporters in non-polarized and polarized cells and in the

intestine has been carefully analysed(6,34). Nevertheless, very poor information is available

about the precise cellular localization of FLVCR1a protein. Considering its role as the

receptor for the feline leukaemia virus, a plasma membrane localization for this protein has

been postulated and so far this hypothesis has been confirmed in FLVCR1a-overexpressing

HEp-2 cells(35), in HepG2 cells(33) and in Hela cells(2).

In order to fill the gap in the knowledge of FLVCR1a localization on intestinal cells, human

colon adenocarcinoma Caco2 cells stably expressing a C-terminal myc-tagged form of the

murine FLVCR1a protein were analysed. The observation of non-polarized Caco2 cells

confirmed the expected plasma membrane localization of FLVCR1a (Figure 1A and

Supplementary Figure S2). Moreover, the analysis of polarized Caco2 cells revealed a latero-

apical localization of the protein (Figure 1B).

Loss of Flvcr1a results in increased heme levels in intestinal cells.

As FLVCR1a is reported to act as a heme exporter in erythroid cells, macrophages and

hepatocytes(2,14,25,33), a similar function for this protein was expected also in intestinal

cells. To address this point, the expression of the heme-induced genes HO-1, ferroportin 1
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(Fpn1) and H-ferritin (H-Ft) was assessed in Flvcr1aflox/flox;Vil-Cre mice intestine as a read-

out of heme content in intestinal cells. Duodenum was chosen as a representative intestinal

region for the analysis. Increased HO-1 and Fpn1 mRNA levels were observed in the

duodenum of Flvcr1aflox/flox;Vil-Cre mice (Figure 2A). Moreover, H-Ft mRNA and protein

levels were higher in Flvcr1aflox/flox;Vil-Cre mice than in controls (Figure 2A, B).

To further confirm the role of FLVCR1a as a heme exporter in intestinal cells, cellular heme

content was measured in Caco2 cells stably expressing a short hairpin RNA (shRNA) against

Flvcr1a transcript (Supplementary Figure S3). Heme level was significantly higher in Flvcr1a

depleted cells than in control cells expressing a scramble shRNA (Figure 2C).

Collectively, all the data support the idea that FLVCR1a acts as a heme exporter in intestinal

cells as in other cell types. Moreover, they demonstrate that the lack of Flvcr1a in the

intestine results in increased heme catabolism in intestinal cells.

Loss of Flvcr1a in the intestine does not affect dietary heme absorption.

Heme content in intestinal cells is accounted for by two main sources: dietary heme and heme

derived from local biosynthesis. The role of FLVCR1a in the export of heme deriving from

both these sources was analysed.

First, the effect of the lack of Flvcr1a on dietary heme absorption was assessed.

The intestinal absorption of a molecule is a multistep process involving its uptake from gut

lumen, its retention in intestinal cell cytosol and its export towards the bloodstream.

To analyse the involvement of Flvcr1a in the export step of the heme absorption process,

intestinal mucosa heme retention was measured in Flvcr1aflox/flox;Vil-Cre mice following

administration of an oral dose of 57Fe labelled heme (57Fe-heme). In case of defects in heme

export, increased mucosal heme retention was expected. The analysis was focused on
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duodenum as dietary heme absorption mainly occurs in this intestinal region(6) and 57Fe, an

iron isotope naturally occurring in animal tissues, was used as tracer due to its low natural

abundance(9).

Ninety minutes after the administration of 57Fe labelled heme, a higher amount of 57Fe was

detected in the duodenal mucosa of the administered mice as compared with vehicle-treated

controls. The amount of heme-derived 57Fe retained in the mucosa was comparable in

Flvcr1aflox/flox;Vil-Cre mice and Flvcr1aflox/flox controls (Figure 3A), suggesting that dietary

heme export is poorly influenced by the presence or absence of FLVCR1a in the duodenum.

To further address this point, Flvcr1aflox/flox;Vil-Cre mice were maintained on an heme-

supplemented diet for one week and the mRNA levels of the transcriptionally heme-regulated

gene Fpn1 was measured. As expected, Fpn1 mRNA levels increased following heme-

supplementation (Figure 3B). Nevertheless, the increase was comparable in

Flvcr1aflox/flox;Vil-Cre mice and in controls, indicating that dietary heme retention, and

consequently heme export, was similar in the two genotypes.

The lack of FLVCR1a involvement in the export of heme deriving from diet was supported

also by other indications. Analyses on tissues iron levels, mainly determined by dietary heme

and iron absorption, did not reveal any abnormalities in Flvcr1aflox/flox;Vil-Cre mice (Figure

3C and Supplementary Figure S4). Moreover, Flvcr1aflox/flox;Vil-Cre mice showed normal

haematological parameters (Figure 3D). Finally, the mRNA level of the liver hormone

Hepcidin, the master regulator of iron absorption, was comparable in Flvcr1aflox/flox;Vil-Cre

mice and controls (Figure 3E).

Collectively, all the data indicate that the lack of Flvcr1a in the duodenum does not affect

dietary heme absorption.

In agreement with this conclusion, an enhanced duodenal HO-1 mRNA level and HO

activity, as well as Fpn1 mRNA level was observed in wild-type mice maintained on a heme-
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supplemented diet for one week, while Flvcr1a mRNA level was unaffected, confirming that,

following uptake, dietary heme was mainly catabolised inside the enterocytes rather than

exported (Supplementary Figure S5).

FLVCR1a mediates the export of de novo synthesized heme.

As mentioned before, in addition to dietary heme absorption, local heme biosynthesis

represents a second process contributing to heme supply in enterocytes. Thus, the

involvement of FLVCR1a in the export of de novo synthesized heme was examined.

In order to address this point, wild-type mice were orally administered with the heme-

biosynthesis inducer aminolevulinic acid (ALA) for three days and the expression of HO-1

and Flvcr1a was measured as an indication of heme catabolism and export, respectively. An

increase of both HO-1 and Flvcr1a mRNA levels was observed, indicating that the excess of

heme produced upon stimulation of heme biosynthesis in the intestine is partly degraded and

partly exported (Figure 4A). To confirm this hypothesis, in vitro experiments on Caco2 cells

were performed. ALA treatment for two days was able to induce both HO-1 and Flvcr1a

mRNA levels in these cells (Figure 4B).

Moreover, five hours following ALA treatment the heme content of Caco2 cells expressing a

shRNA against Flvcr1a was significantly higher than in ALA-treated control cells expressing

a scramble shRNA (Figure 4C).

Together, the data show an involvement of FLVCR1a in the export of the novo synthesized

heme.

Loss of Flvcr1a impairs normal cell proliferation in vivo
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Besides important beneficial features, heme bears toxic properties(22,32) and an excessive

release of heme by hemoproteins and mitochondria is associated with deleterious effects on

cellular functions and oxidative status.

To get an insight into the biological importance of FLVCR1a-mediated heme export, heme

effects on intestinal oxidative status and cell proliferation were examined in

Flvcr1aflox/flox;Vil-Cre mice.

Despite higher intestinal mRNA levels of the antioxidant enzyme superoxide dismutase 1

(Sod1) in Flvcr1aflox/flox;Vil-Cre mice than in controls (Figure 5A and Supplementary Figure

S6), the intestinal SOD1 protein levels were comparable in the two genotypes (Figure 5B).

Moreover, the intestinal mRNA levels of thioredoxin reductase (Txnrd1) and gamma

glutamyl cysteine synthetase (γ-GCS) were comparable in Flvcr1aflox/flox;Vil-Cre and

Flvcr1aflox/flox mice (Figure 5A and Supplementary Figure S6).

To directly assess the level of reactive oxygen species in the intestine, tissue homogenates

and fresh intestinal rings were analysed. The results obtained did not reveal differences

between Flvcr1aflox/flox;Vil-Cre mice and controls (Figure 5C and Supplementary Figure S6).

Similarly, intestinal lipid peroxidation was comparable in the two genotypes (Supplementary

Figure S6). Thus, the lack of Flvcr1a is not associated to increased oxidative stress in the

intestine of mice under steady state conditions.

More interesting results were obtained analysing cell proliferation in mice intestinal sections.

Indeed, a lower amount of Ki67-positive cells was observed in the intestinal mucosa of the

Flvcr1aflox/flox;Vil-Cre mice as compared to the Flvcr1aflox/flox mucosa (Figure 5D), indicating

that the loss of Flvcr1a impairs intestinal cell proliferation in vivo.

Loss of Flvcr1a impairs the peculiar homeostasis of proliferating tumor cells



Fiorito et al.

11

To further address the role of Flvcr1a in intestinal cell proliferation and homeostasis, the

effect of Flvcr1a loss in proliferating adenocarcinoma Caco2 cells was dissected.

The measure of apoptosis and the analysis of cell cycle phases did not reveal any apparent

alteration in Caco2 cells stably expressing a shRNA against Flvcr1a transcript as compared to

control cells expressing a scramble shRNA (Supplementary Figure S7), indicating that in a

context of abnormal proliferation the lack of Flvcr1a is not sufficient to further perturb the

already altered rate of cell division. Nevertheless, several parameters were impaired in

Flvcr1a-depleted Caco2 cells.

First, the measure of the redox status indicated increased oxidative stress in Flvcr1a-depleted

Caco2 cells than in control cells (Figure 6A). Interestingly, despite the higher amount of

reactive oxygen species and an increase in SOD1 mRNA level (Figure 6B), SOD1 protein

levels in Flvcr1a-depleted cells were comparable to that observed in control cells (Figure 6C).

This indicates that proliferating cells lacking Flvcr1a are unable to efficaciously counteract

the increase of excessive reactive oxygen species derived from heme accumulation.

Second, a perturbation of cell-cell contacts was observed in Flvcr1a-depleted cells, as

demonstrated by the decrease of cell monolayer permeability (Figure 6D) and the

concomitant increase of the tight junction claudin V protein expression (Figure 6E).

Finally, the metabolic activity of Caco2 cells stably expressing a shRNA against Flvcr1a

transcript was lower than that observed in control cells expressing a scramble shRNA (Figure

6F).

The data reported herein collectively demonstrate that the export of heme mediated by

FLVCR1a is crucial to maintain the proliferation of normal intestinal cells in vivo. Moreover,

in proliferating tumor cells FLVCR1a allows the maintenance of crucial features for their
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peculiar homeostasis, such as the ability to counteract heme-mediated oxidative effects, to

regulate cell-cell contacts and to preserve high metabolic activity.

Flvcr1a depletion impairs mice survival to ulcerative colitis.

Several studies pointed to a correlation between imbalance in the cellular oxidative status and

inflammation, bowel diseases and cancer(26). Ulcerative colitis (UC) is an idiopathic disease

characterized by mucosal inflammation of the large bowel. The etiopathogenesis remains

uncertain, but oxidative stress and oxidative cellular damage play key roles. An intermittent

disease evolution characterized by a flare-up/remission cycle can be observed in UC patients,

with increased mucosa cellular turnover occurring during the remission periods(29). To

investigate whether the enhanced oxidative stress in proliferating cells and the decreased

intestinal mucosa cells proliferation associated to Flvcr1a loss could influence the response to

this pathology, Flvcr1aflox/flox;Vil-Cre mice and controls were challenged with dextran

sulphate sodium (DSS), a chemical known to induce colitis in rodents that is clinically and

histologically reminiscent of human UC(19,29). Both groups of mice developed the disease,

showing similar short-term survival, colon-cecum length shortening, weight loss,

inflammatory infiltrates and disease scoring during the seven days of DSS treatment (Figure

7A-D). Thus, the “flare-up phase” of the disease seemed to be unaffected by the loss of

Flvcr1a. Nevertheless, analysing the animals ten days after the end of the DSS treatment, a

period correspondent to the remission phase, the survival of Flvcr1aflox/flox;Vil-Cre mice

appeared significantly compromised as compared with that of Flvcr1aflox/flox controls (Figure

7E). Indeed, the majority of Flvcr1aflox/flox;Vil-Cre animals died and only a limited number of

these mice overcome this phase, showing colon-rectum length, body weight and disease score
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comparable to that of Flvcr1aflox/flox mice (Supplementary Table S2 and Supplementary

Figure S8).

Collectively, the data reported herein indicate that the intestinal mucosa cell defects

associated to the loss of Flvcr1a reduce the long term survival of Flvcr1aflox/flox;Vil-Cre

animals to ulcerative colitis, likely because of an impaired ability of these mice to regenerate

the mucosal integrity in the sites of damage.
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DISCUSSION

FLVCR1a is a heme exporter ubiquitously expressed in the organism. Previous studies have

described the importance of FLVCR1a function particularly in erythroid cells,

lymphocytes(23) and hepatocytes(2,14,25,33).  The present work establishes for the first time

a role for FLVCR1a in the export of heme excess from intestinal cells to limit heme

deleterious effects. Particularly, FLVCR1a collaborates to the maintenance of heme

homeostasis in both normal intestinal cells and in intestine-derived tumor cells. The data

reported describe a previously unknown involvement of Flvcr1a in the maintenance of the

normal intestinal cell proliferation rate. Furthermore, they show that FLVCR1a is important

to maintain the peculiar state of intestine-derived tumor cells, including high metabolic

activity and ability to counteract oxidative stress. Finally, the results obtained show a

decreased survival of intestinal conditional Flvcr1a-null mice to ulcerative colitis, a bowel

disease affecting a wide portion of human population(36).

The first point described in this study is the role of Flvcr1a as a heme exporter in the

intestine.

The destiny of dietary heme taken up from gut lumen has been a matter of debate for years.

Data reported in this work demonstrate that FLVCR1a does not export heme deriving from

dietary sources. Accordingly, the presence or absence of Flvcr1a does not affect dietary heme

absorption. The observed apical localization of FLVCR1a protein in polarized Caco2 cells

further discourages the possibility that FLVCR1a could participate to the export of dietary

heme in the bloodstream. These results do not exclude the possibility that other transporters

could export dietary heme from intestinal cells. However, the induction of HO-1 upon dietary

heme supplementation strongly supports the idea that most of dietary heme undergoes
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degradation after the entry in the enterocytes. Conversely, our data show the involvement of

FLVCR1a in the export of heme excess released by mitochondria during heme biosynthesis.

This is in agreement with previously reported data on the role of Flvcr1a in hepatocytes(33).

Thus, Flvcr1a has a specific role in heme handling associated to endogenous heme

biosynthesis and its function cannot be compensated by increased heme catabolism. Further

studies are required to elucidate whether FLVCR1a-mediated heme export is directed

towards gut lumen in order to detoxify intestinal cells from excessive heme accumulation or,

alternatively, whether an exchange of heme among neighbouring cells could take place to

distribute this molecule along the intestinal mucosa.

A second point emerging from the analysis of Caco2 cells lacking FLVCR1a is that this

protein contributes to maintain the high metabolic activity(11) and the low cell-cell

adhesion(18) typical of proliferating tumor cells. Several studies showed that proliferating

cancer cells reduce their mitochondrial activity to favour a glycolisis based-metabolism(11).

However, other studies exist, demonstrating that mitochondrial activity, including respiratory

chain activity and heme biosynthesis, still retain a great importance in proliferating tumor

cells(13). It could be hypothesised that a balance between heme export from mitochondria to

cytosol, mediated by the FLVCR1b isoform, and that out of the cell, executed by FLVCR1a

protein, must be maintained to preserve mitochondrial functions and, consequently, the

enhanced metabolic activity of proliferating cells. In agreement with this hypothesis, a similar

function for Flvcr1a has been described in the erythropoietic system(20).

Regarding cell-cell contacts, the latero-apical localization of FLVCR1a could suggest yet

unknown direct or indirect interactions of this transmembrane protein with members of the

tight-junction complexes and/or adhesion molecules.
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Whatever the mechanism could be, the general effect of Flvcr1a depletion is a reduction of

some of the typical features of proliferating cells. This is further supported by the observation

in vivo of a decreased proliferation of the intestinal mucosa cells.

The analysis of Caco2 cells lacking Flvcr1a reveals another important function for this heme

exporter in proliferating cells that is its contribution to limit cell oxidative stress.

Proliferating tumour cells show adaptation to high levels of reactive oxygen species(17).

However, an excessive accumulation of these species could be deleterious for their

wellness(17).

Several studies indicate that the excess of heme favours the establishment of cellular

oxidative stress(22). In addition, oxidative stress conditions are often associated with heme

release from hemoproteins, this event further contributing to exacerbate the cytotoxic

context(12). For these reasons, most if not all forms of oxidative stress are associated with a

rapid increase in the rate of cellular heme catabolism through the induction of HO-1

expression. By coupling oxidative stress to HO-1 activation, cells would limit heme-driven

cytotoxicity(12). In this context, heme export through FLVCR1a represents a complementary

strategy exploited by cells to counteract heme-associated toxic effects. These findings are in

agreement with previously published data about the role of FLVCR1a in the liver(33) and the

regulation of Flvcr1a during hypoxia(10), a condition related to redox disturbances.

In vivo, the involvement of FLVCR1a in the protection of intestinal mucosa from oxidative

stress does not emerge. Several explanations could be proposed. First, as FLVCR1a carries

out this function together with HO and many other antioxidant proteins, it is possible that in a

physiological context the sole absence of Flvcr1a expression is not sufficient to perturb the

complex and sophisticated system designated to maintain intestinal redox status. Second, it

cannot be excluded that FLVCR1a role becomes crucial in proliferating cells, a limited
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population in the intestinal mucosa, mainly restricted to crypts. In this case, the whole

analysis of the tissue could hide differences in a limited group of cells in the mucosa.

A very interesting point emerging from the analysis of intestinal conditional Flvcr1a-null

mice is a decreased number of proliferating cells in their intestinal mucosa. The loss of

obvious abnormalities in the intestinal mucosa of these animals suggests that, under

physiologic condition, the alteration of cellular renewal due to Flvcr1a deficiency is well

compensated. Nevertheless, the appearance of gut abnormalities with increasing age cannot

be excluded. On the other hand, our data demonstrate that this role of Flvcr1a has a crucial

impact in pathologic situations, as the response of mice to ulcerative colitis.

The use of DSS to induce ulcerative colitis in mice has been widely documented(29) and the

model is considered clinically and histologically reminiscent of human UC(19,29). The

possibility that the DSS effects observed in intestinal conditional Flvcr1a-null mice are due to

an enhanced permeability of their mucosa to this toxic compound is unlikely. Indeed,

although permeability assays have been performed in vitro, the fact that monolayers of Caco2

cells lacking Flvcr1a show a lower permeability than that of control cells suggests that the

mucosa of intestinal conditional Flvcr1a-null mice could be more resistant, rather than

permeable, to DSS entry. Moreover, the dose of DSS employed caused so dramatic damages

that an eventual difference in tissue permeability would have negligible consequences.

DSS effects are known to be largely due to inflammatory events elicited by this compound.

Intestinal conditional Flvcr1a-null mice show an immunological response comparable to that

of controls. This was expected as Flvcr1a depletion is restricted to the intestinal mucosa of

these mice.

The considerations reported herein are collectively supported by the observation of a similar

susceptibility to DSS during the “damage phase” between intestinal conditional Flvcr1a-null
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mice and control animals. The different survival observed between the two genotypes could

be ascribed to a defect in the ability to recover the damage in mice lacking Flvcr1a, a process

mainly involving proliferation rather than tissue permeability to DSS or inflammation. Thus,

the possible mechanism proposed to explain the higher survival of mice expressing Flvcr1a

observed in this work is that the presence of FLVCR1a can preserve intestinal mucosa cell

proliferation and the wellness of proliferating cells, allowing regeneration of the mucosa at

the site of damage.

The present work shows that, by exerting the export of endogenously synthesised heme,

FLVCR1a guarantees the normal intestinal cell proliferation and contribute to the

maintenance of the mucosal integrity. The activity of Flvcr1a appears particularly important

in the context of ulcerative colitis, where this heme exporter becomes crucial for animal

survival, likely thanks to its ability to sustain mucosal regeneration after the injury.

Beyond the role of Flvcr1a in mice survival to ulcerative colitis, these findings open the

intriguing possibility that Flvcr1a could exert protection against various forms of gut

pathologies. On the other hand, the effects of the block of Flvcr1a functions in tumor

proliferating cells could prepare the ground for future studies on Flvcr1a in cancer.
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INNOVATION

The present work represents the first description of Flvcr1a function in the intestine and an

advance in the understanding of heme metabolism in this tissue. The reported data indicate

that Flvcr1a-mediated heme export does not contribute to dietary heme absorption processes

and unravel a new role for heme export in the control of intestinal mucosa renewal and in the

maintenance of proliferating tumor cells homeostasis, including redox status. Furthermore,

the data reported enlighten the importance of Flvcr1a function in mice survival to ulcerative

colitis, opening the intriguing possibility that Flvcr1a could exert protection against various

forms of gut pathologies.
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MATERIALS AND METHODS

Animals

Intestine specific conditional Flvcr1a-knockout mice were generated in the mixed 129Sv x

C57BL/6 genetic background. Transgenic Villin-Cre mice in the C57BL/6 genetic

background were from Charles River Laboratories International, Inc. (Wilmington MA,

USA).

Wild-type mice in the Sv129 background were used for some experiments.

Mice fed on a heme-supplemented diet received drinking water supplemented with 250

μmol/L Hemin (Sigma-Aldrich, Milano, Italy) and 2 mmol/L L-Arginin (Sigma-Aldrich,

Milano, Italy).

Mice treated with ALA were given drinking water supplemented with 2 mg/mL of δ-

aminolevulinic acid (ALA; A3785; Sigma-Aldrich, Milano, Italy), as described

previously(24).

All experiments were approved by the animal studies committee of the University of Torino

(Italy).

Haematological parameters

Blood was collected from anesthetized mice by cardiac puncture and haematological

parameters were determined according to standard procedures on an automatic analyzer.

Haematoxylin and Eosin staining and Immunohistochemistry

Standard procedures were followed for haematoxylin and eosin (H&E) staining of kidney,

liver, spleen and duodenum 5 μm thick paraffin sections,
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For colon-rectum, the tissue (from the cecum till the anal sphincter) was removed, washed

with 0.1 M phosphate buffer saline (PBS) and opened longitudinally to expose the mucosa.

Following over-night fixation in 4% formaldehyde at 4ºC, colon-rectum specimens were

arranged in a “Swiss” roll, processed and embedded in paraffin. 5 μm thick tissue sections

were stained with H&E. Alternatively, colon-rectum slides were immunostained, according

to standard procedures, with a rabbit antibody to Ki-67 (dilution 1:250, Abcam, Cambridge,

UK) after antigen retrieval with 10 mM citric acid pH 6 for 5 minutes at 95ºC.

Tissue iron measurement

Total Fe was determined using inductively coupled plasma mass spectrometry (ICP-MS) as

described previously(8).

Tissue iron was also measured by the 4,7-diphenyl-1, 10-phenantroline disulphonic acid

(BPS)-based colorimetric method and by Perls’ stain, as previously reported(21).

57Fe-heme absorption

57Fe-heme absorption analyses were performed as described previously (8,9).

Heme oxygenase activity

HO activity was evaluated in tissue microsomal fractions by measuring bilirubin production

as previously described(8).

Western blotting

Western blotting analysis of H-ferritin and SOD1 protein in mouse intestine and of SOD1 and

Claudin V in Caco2 cells was performed on total duodenum or cells lysates, respectively,
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according to standard procedures using an antibody against H-ferritin(27), or SOD1 (Santa

Cruz Biotechnology Inc., Dallas, Texas, USA) or Claudin V (Abcam, Cambridge, UK) .

RNA extraction and real-time PCR analysis

RNA extraction and quantitative real time PCR (qRT-PCR) were performed as previously

reported(8) using the Universal Probe Library system (Roche, Milano, Italy). Primers and

probes were designed using the ProbeFinder software (www.roche-applied-science.com).

For Flvcr1a specific primers and the probe were designed using Primer Express Sofware

Version 3.0 (Applied Biosystems).

Transcript abundance, normalized to 18S mRNA expression (for mouse tissues) or to beta-

actin mRNA expression (for Caco2 cells), is expressed as a fold increase over a calibrator

sample.

Cell culture

The Caco2 cells (ATCC: HTB-37™) were propagated in appropriate standard conditions.

To induce polarization 1*105 cells/cm2 were seeded on transwell permeable supports

(Corning, NY) endowed with a polyester membrane of 0.33cm2 and pores of 0.4μm. Full

polarization was considered to be achieved about 20 days post-confluence.

To activate heme biosynthesis, Caco2 cells were treated for 5 or 48 hours with 5mM δ-

aminolevulinic acid (ALA; A3785; Sigma-Aldrich, Milano, Italy).

Flvcr1a silencing

For gene silencing, a shRNA (TRC Lentiviral pLKO.1 Human Flvcr1 shRNA set RHS4533-

NM_014053, clone TRCN0000059599, Thermo Fisher Scientific, Inc. Waltham MA, USA)

targeting the first exon of human Flvcr1 gene was used to specifically down-regulate
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Flvcr1a. For control cells, a pLKO.1 scramble shRNA (Thermo Fisher Scientific, Inc.

Waltham MA, USA) was used.

Following lentiviral transduction, cells were selected with 0.02µg/ml puromycin.

Flvcr1a-Myc expression

To obtain myc-tagged FLVCR1a expressing cells, Caco2 cells were transduced with a

lentiviral pCCL.ET vector carrying the mouse Flvcr1a cDNA fused to the Myc epitope under

the enhanced transthyretin promoter.

Immunofluorescence

Immunofluorescence was performed according to standard procedures with a home made

mouse antibody to Myc. A goat anti-mouse Alexa Fluor 488 conjugated secondary antibody

(Molecular Probes, Inc., Eugene, OR) was employed. Cell nuclei were stained with 4',6-

diamidin-2-fenilindolo (DAPI, Sigma-Aldrich, Milano, Italy) while cell membrane with

Alexa Fluor 594 conjugated wheat germ agglutinin (WGA, Thermo Fisher Scientific, Inc.

Waltham MA, USA). For analyses on polarized cells, the polyester filter of transwell inserts

was removed and mounted with ProLong antifade reagent (Molecular Probes, Inc., Eugene,

OR). Cells were examined with a Zeiss Observer-Z1 microscope, equipped with the

ApoTome system (Zeiss, Jena, Germany). Images and Z-stacks were acquired and processed

with the digital image processing software Axiovision (Zeiss, Jena, Germany).

Measurement of heme concentration

Intracellular heme concentration was measured using a fluorescence assay, as previously

reported(30). Briefly, Caco2 cells untreated or treated for 5 hours with ALA were collected

and 2M oxalic acid was added to them. Samples were heated at 100°C for 30 minutes leading
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to iron removal from heme. Fluorescence (wavelength: excitation 400nm - emission 662nm)

of the resultant protoporphyrin was assessed on a Glomax Multi Detection System (Promega

Corporation, Madison WI, USA).

The endogenous protoporphyrin content (measured in parallel unheated samples in oxalic

acid) was subtracted. Data were normalized to total protein concentration in each sample.

Results were expressed as pmol of heme/mg total protein.

Measurement of intracellular reactive oxygen species accumulation

Accumulation of reactive oxygen species (ROS) in Caco2 cells and in mouse intestine was

assessed using the oxidant-sensitive fluorescent dye 29,79-dichlorodihydrofluoroscein

diacetate (H2DCFDA; Molecular Probes, Inc., Eugene, OR). Caco2 cells were incubated with

5M H2DCFDA in cell medium for 30 min at 37 °C under 5% CO2 atmosphere. Then, cells

were washed twice with 0.1 M PBS and lysed in 0.1M PBS. A quantity of lysate

correspondent to 10μg protein was analysed. Mouse intestine was dissected after transcardial

perfusion of mice with PBS. Mouse intestinal homogenates were prepared in PBS containing

butylated hydroxytoluene. After centrifugation at 6000 rpm for 10 minutes at 4°C, a quantity

of lysates correspondent to 300μg protein was incubated with 20M H2DCFDA in PBS for

30 min at 37 °C under 5% CO2 atmosphere.

Fluorescence was recorded at excitation and emission wavelengths of 485 and 530

respectively on a Glomax Multi Detection System (Promega Corporation, Madison WI,

USA). Background fluorescence of cells or homogenates, respectively, untreated with

H2DCFDA was subtracted from the total fluorescence. Results were expressed as arbitrary

fluorescence unit.

MTT assay
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8*103 Caco2 cells were plated on 96 multi-wells, and every 24 h cell growth was evaluated

by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay (Roche,

Milano, Italy) according to the manufacturer’s instructions.

Cell cycle and apoptosis analysis.

For cell cycle analysis 8x105 cells were harvested by centrifugation at 1200 rpm for 5

minutes at 4°C and fixed with cold 70% ethanol O.N. at -20°C. Samples were pelleted,

treated with 0.1 mg RNAse (type I-A) (Sigma-Aldrich, Milano, Italy) and resuspended in

PBS containing propidium iodide (Sigma-Aldrich, Milano, Italy). For apoptosis analysis 5

x105 cells were collected, washed in PBS, resuspended in 10 mM Hepes, 150 mM NaCl, 5

mM CaCl2 buffer, and labelled with annexinV (BD Biosciences) for 20 minutes. Then, 2 μl

propidium iodide (1 mg/ml) (Sigma-Aldrich, Milano, Italy) was added.

AnnexinV emission was detected in the green channel (525nm) and  propidium iodide in the

red channel (575nm) on a FACSCalibur (BD Biosciences, Milano, Italy) using CellQuest

Software (BD Biosciences, Milano, Italy).

TEER measure.

The permeability of the cell monolayer was monitored by measuring the trans-epithelial

electrical resistance (TEER) using an epithelial voltohmeter (World Precision Instrument,

Sarasota, Florida, USA). At the indicated time point, the medium TEER of three independent

measures for every sample was recorded. Data are expressed as Ohm*cm2.

Induction of colitis

Induction of colitis was achieved as described previously(28). Briefly, the animals were

divided into groups and mice receiving DSS were administered 3 % w/v DSS (dextran

sulphate sodium salt, MW 36000-50000, MP Biomedicals LLC, Illkirch Cedex, France)
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dissolved in autoclaved tap water for 7 days. Healthy control animals received autoclaved tap

water. At day 7, tap water was administered to all mice. A part of mice per group was

sacrified at day 8. The remaining animals were administered tap water for nine additional

days and sacrified at day 17. Colon-rectum sections were stained with H&E. Damage scores

on colon-rectum slides were assigned in a blinded fashion, on an scale of 0 to 6, as reported

previously(19), where 0 = no signs of damage; 1 = few inflammatory cells, no signs of

epithelial degeneration; 2 = mild inflammation, few signs of epithelial degeneration; 3 =

moderate inflammation, few epithelial ulcerations; 4 = moderate to severe inflammation,

ulcerations in more than 25% of the tissue section; 5 = moderate to severe inflammation,

large ulcerations of more than 50% of the tissue section; 6 = severe inflammation and

ulcerations of more than 75% of the tissue section.

Statistical Analysis

Results were expressed as mean ±SEM. Statistical analyses were performed using one-way or

two-way analysis of variance followed by the Bonferroni correction for multiple group

comparisons. An unpaired Student’s t-test was used when only two groups were compared. A

P value of less than 0.05 was regarded as significant.
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Fpn1 (ferroportin 1)

γ-GCS (gamma glutamyl cysteine synthetase)
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H-Ft (H-ferritin)

57Fe-heme (57Fe labelled heme)

HO (heme oxygenase)

ICP-MS (coupled plasma mass spectrometry)
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Txnrd1 (thioredoxin reductase)
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FIGURE LEGENDS

Figure 1. FLVCR1a protein is located at the latero-apical side of intestinal cells

membrane. (A) Undifferentiated FLVCR1a-myc expressing Caco2 cells stained with DAPI

(i) and an antibody to myc (ii). The merged image is shown on iii. Bar= 20µm. (B) Polarized

FLVCR1a-myc expressing Caco2 cells stained with DAPI (i) and an antibody to myc (ii).

The merged image is shown on iii. The lateral view (XZ image) (iv) is made up by the

addition of 50 consecutive z-stack images in the y-axis. Nuclei are in blue and FLVCR1a-

myc protein is in green. In this image, the cell apical side is up, whereas the cell basal side is

down. Latero-apical localization of FLVCR1a-myc protein can be appreciated. Bar= 40µm.

Figure 2. Lack of Flvcr1a results in increased heme levels in intestinal cells. (A) qRT-

PCR analysis of HO-1, Fpn1 and H-Ft expression in the duodenum of Flvcr1aflox/flox (Cre-)

and Flvcr1aflox/flox;Vil-Cre (Cre+) mice. Transcript abundance, normalized to 18S RNA

expression, is expressed as a fold increase over a calibrator sample. Data represent mean ±

SEM, n= 5; *=P<0.05. (B) Representative Western blot of H-Ft expression in the duodenum

of Flvcr1aflox/flox (Cre-) and Flvcr1aflox/flox;Vil-Cre (Cre+) mice. Band intensities were

measured by densitometry and normalized to actin expression. Densitometry data represent

mean ± SEM, n=3; *=P<0.05. (C) Heme content in Caco2 cells in which the expression of

Flvcr1a was down-regulated using a specific shRNA. Values are expressed as pmol heme/

mg protein. Data represent mean ± SEM, n=10; *=P<0.05.

Figure 3. Lack of Flvcr1a in the intestine does not affect dietary heme absorption. (A)

57Fe retention in the duodenal mucosa of Flvcr1aflox/flox (Cre-) and Flvcr1aflox/flox;Vil-Cre

(Cre+) mice measured by ICP-MS 90 minutes after oral administration of a solution

containing 20 mmol/L 57Fe labelled heme (57Fe-heme). Control mice were administered
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vehicle solution and represented the “0” time point of the experiment. Values are expressed

as μg 57Fe/ g tissue. Data represent mean ± SEM, n=3 for each experimental point; *=P<0.05,

**=P<0.01 (comparing control mice with the corresponding group of 57Fe-heme-

administered mice).  (B) qRT-PCR analysis of Fpn1 expression in the duodenum of

Flvcr1aflox/flox (Cre-) and Flvcr1aflox/flox;Vil-Cre (Cre+) mice maintained on a standard diet or

on a heme-supplemented diet for one week. Transcript abundance, normalized to 18S RNA

expression, is expressed as a fold increase over a calibrator sample. Data represent mean ±

SEM, n=3; *=P<0.05. (C) Total iron content in the spleen, muscle, liver, kidney and

duodenum of Flvcr1aflox/flox (Cre-) and Flvcr1aflox/flox;Vil-Cre (Cre+) mice measured by ICP-

MS (for the spleen, muscle, liver, kidney) or by the BPS-based colorimetric method (for the

duodenum). Values obtained by ICP-MS are expressed as μg iron/g wet tissue while values

obtained by the BPS-based colorimetric method as μg iron/g dry tissue. Data represent mean

± SEM, n=5. (D) Reticulocytes percentage (%Ret), haematocrit (HCT), mean corpuscular

volume (MCV), platelet count (PLT), red blood cell count (RBC) and white blood cell count

(WBC) in blood sample from Flvcr1aflox/flox (Cre-) and Flvcr1aflox/flox;Vil-Cre (Cre+) mice.

Units of measure for each parameter are reported in the table. Data represent mean ± SEM,

n=3. (E) qRT-PCR analysis of Hepc expression in the liver of Flvcr1aflox/flox (Cre-) and

Flvcr1aflox/flox;Vil-Cre (Cre+) mice. Transcript abundance, normalized to 18S RNA

expression, is expressed as a fold increase over a calibrator sample. Data represent mean ±

SEM, n=6.

Figure 4. FLVCR1a mediates the export of de novo synthesized heme. (A) qRT-PCR

analysis of HO-1 and Flvcr1a expression in the duodenum of wild-type mice maintained on a

δ-aminolevulinic acid (ALA)-supplemented diet for 3 days. Control mice were maintained on

a standard diet and represented the “0” time point of the experiment. Transcript abundance,
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normalized to 18S RNA expression, is expressed as a fold increase over a calibrator sample.

Data represent mean ± SEM, n=3; **=P<0.01, ***=P<0.001. (B) qRT-PCR analysis of HO-1

and Flvcr1a expression in Caco2 cells untreated (-) or treated (+) with δ-aminolevulinic acid

(ALA) for 48 hours. Data represent mean ± SEM, n=5; *=P<0.05. (C) Heme content in

Caco2 cells in which the expression of Flvcr1a was down-regulated using a specific shRNA.

Heme biosynthesis was stimulated with δ-aminolevulinic acid (ALA) for 5 hours. Caco2 cells

untreated (-) or treated (+) with δ-aminolevulinic acid (ALA) are compared. Values are

expressed as pmol heme/ mg protein. Data represent mean ± SEM, n=6; **=P<0.01,

***=P<0.001.

Figure 5. Loss of Flvcr1a impairs normal cell proliferation in vivo. (A) qRT-PCR

analysis of SOD1, γ-GCS and Txnrd1 expression in the colon-rectum of Flvcr1aflox/flox (Cre-)

and Flvcr1aflox/flox;Vil-Cre (Cre+) mice. Transcript abundance, normalized to 18S RNA

expression, is expressed as a fold increase over a calibrator sample. Data represent mean ±

SEM, n=5; *=P<0.05. (B) Representative Western blot of SOD1 expression in the intestine of

Flvcr1aflox/flox (Cre-) and Flvcr1aflox/flox;Vil-Cre (Cre+) mice. Band intensities were measured

by densitometry and normalized to vinculin expression. Densitometry data represent mean ±

SEM, n=3. (C) ROS amount measured by detection of H2DCFDA fluorescence in intestinal

homogenates from Flvcr1aflox/flox (Cre-) and Flvcr1aflox/flox;Vil-Cre (Cre+) mice. Values are

expressed as arbitrary fluorescence unit. Data represent mean ± SEM, n=6. (D)

Representative sections of the colon-rectum of a Flvcr1aflox/flox (Cre-) (i, iii, v) and a

Flvcr1aflox/flox;Vil-Cre (Cre+) mouse (ii, iv, vi) stained with an antibody to Ki-67. Enlarged

details of sections iii, iv are shown in v, vi respectively. The Ki-67-positive signal was more

intense in the Flvcr1aflox/flox (Cre-) mouse than in the Flvcr1aflox/flox;Vil-Cre (Cre+) animal.

Bar i, ii = 200μm; bar iii, iv = 100 μm. The number of Ki-67-positive cells per crypt on the
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total number of cells per crypt is shown as a percentage in the graph. Data represent mean ±

SEM, n=3; *=P<0.05.

Figure 6. Lack of Flvcr1a impairs the peculiar homeostasis of proliferating tumor cells.

(A) Intracellular ROS accumulation measured by detection of H2DCFDA fluorescence in

Caco2 cells in which the expression of Flvcr1a was down-regulated using a specific shRNA.

Values are expressed as arbitrary fluorescence unit. Data represent mean ± SEM, n=5;

**=P<0.01. (B) qRT-PCR analysis of SOD1 expression in Caco2 cells in which the

expression of Flvcr1a was down-regulated using a specific shRNA. Transcript abundance,

normalized to βActin RNA expression, is expressed as a fold increase over a calibrator

sample. Data represent mean ± SEM, n=6; *=P<0.05. (C) Western blot of SOD1 expression

in undifferentiated and polarized Caco2 cells in which the expression of Flvcr1a was down-

regulated using a specific shRNA. Actin expression is shown as a loading control. Data are

representative of three independent experiments. (D) Representative TEER measure on

Caco2 cells in which the expression of Flvcr1a was down-regulated using a specific shRNA.

Data are expressed as Ohm*cm2. At the indicated time point, the medium TEER of three

independent measures for every sample was recorded. Data represent mean ± SEM, n=12;

***=P<0.001. Data are representative of three independent experiments. (E) Western blot of

Claudin V expression in undifferentiated and polarized Caco2 cells in which the expression

of Flvcr1a was down-regulated using a specific shRNA. Actin expression is shown as a

loading control. Data are representative of three independent experiments. (F) MTT-based

proliferation analysis of Caco2 cells in which the expression of Flvcr1a was down-regulated

using a specific shRNA. Values are expressed as MTT absorbance. Data represent mean ±

SEM, n=3 for each experimental point; *=P<0.05, ***=P<0.001 (comparing cells at different
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time points with the corresponding cell group at “day 0”), ##=P<0.01, ###=P<0.001

(comparing scramble-shRNA expressing cells with Flvcr1a-shRNA expressing cells).

Figure 7. Flvcr1a depletion impairs mice survival to ulcerative colitis. (A) Colon length

of Flvcr1aflox/flox (Cre-) and Flvcr1aflox/flox;Vil-Cre (Cre+) mice at day 8 of the experiment

(one day after the cessation of DSS administration). Vehicle-treated mice represented the “0”

time point of the experiment. Data represent mean ± SEM, n=5; **=P<0.01, ***=P<0.001.

(B) Body weight of Flvcr1aflox/flox (Cre-) and Flvcr1aflox/flox;Vil-Cre (Cre+) mice administered

with DSS  and analysed at day 0 and day 8 of the experiment. Data represent mean ± SEM,

n=12; **=P<0.01, ***=P<0.001. (C) Representative sections of the colon-rectum of

Flvcr1aflox/flox (Cre-) (i) and Flvcr1aflox/flox;Vil-Cre (Cre+) (ii) mice treated with DSS and

stained with H&E. Colon-rectum was dissected at day 8 of the experiment (one day after the

cessation of DSS administration). Similar inflammatory infiltrates can be observed in the two

genotypes. Bar= 100μm. (D) Representative sections of the colon-rectum of two

Flvcr1aflox/flox (Cre-) (i, v) and two Flvcr1aflox/flox;Vil-Cre (Cre+) mice (ii, vi) treated (v, vi) or

not (i, ii) with DSS and stained with H&E. Colon-rectum was dissected at day 8 of the

experiment (one day after the cessation of DSS administration). Higher magnification of

sections i, v, ii, vi are shown in iii, iv, vii, viii respectively. Bar i, ii, v, vi = 1000μm; bar iii,

iv, vii, viii = 200 μm. The disease score, shown in the graph, was assigned analysing colon-

rectum sections of Flvcr1aflox/flox (Cre-) and Flvcr1aflox/flox;Vil-Cre (Cre+) mice at day 8 of the

experiment (one day after the cessation of DSS administration). Vehicle-treated mice

represented the “0” time point of the experiment. Data represent mean ± SEM, n=5;

***=P<0.001. (E) Percentage survival of Flvcr1aflox/flox (Cre-) and Flvcr1aflox/flox;Vil-Cre

(Cre+) mice treated with DSS for 7 days followed by one or ten additional days with water.

Data are presented as a Kaplan-Meier plot, n=12; *=P<0.05.
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7


