13 research outputs found

    Effect of heterogeneity on the elastic properties of auxetic materials

    Get PDF
    Copyright © 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics 94 (2003) and may be found at http://link.aip.org/link/?jap/94/6143Auxetic materials are gaining practical interest for their unusual and sometimes extreme mechanical response. The process of modeling these materials so far has highlighted a number of microstructural properties that are key to these materials. However these models often rely on the assumption of homogeneity and order within the materials. Practically, a homogeneous auxetic material such as foam is unlikely to be manufactured. This work seeks to analyze the effect of fluctuations within the microstructure of the material. Numerical results show the effect of fluctuations in an auxetic granular substance and analytical work indicates the relation between microscale fluctuations and the elastic moduli for a general auxetic material

    cardiac pump

    No full text
    International audienc

    Multiscale characterization of skin mechanics through in situ imaging

    No full text
    International audienceThe complex mechanical properties of skin have been studied intensively over the past decades. They are intrinsically linked to the structure of the skin at several length scales, from the macroscopic layers (epidermis, dermis and hypodermis) down to the microstructural organization at the molecular level. Understanding the link between this microscopic organization and the mechanical properties is of significant interest in the cosmetic and medical fields. Nevertheless, it only recently became possible to directly visualize the skin’s microstructure during mechanical assays, carried out on the whole tissue or on isolated layers. These recent observations have provided novel information on the role of structural components of the skin in its mechanical properties, mainly the collagen fibers in the dermis, while the contribution of others, such as elastin fibers, remains elusive. In this chapter we present current methods used to observe skin’s microstructure during a mechanical assay, along with their strengths and limitations, and we review the unique information they provide on the link between structure and function of the skin
    corecore