266 research outputs found

    NHI Toetsing, Ontwikkeling en toepassing van methode voor toetsing van NHI 2.1 inclusief vergelijking met NHI 2.0.

    Get PDF
    Dit rapport beschrijft de achtergrond van de methode om NHI2.1 te toetsen aan de criteria die opgesteld zijn door Rijkswaterstaat Waterdienst geldend voor 2010 en bevat de resultaten van die toetsing en de vergelijking met resultaten van NHI2.0. Volgens de criteria is de berekende aan en afvoer van oppervlakte water verbeterd. Op enkele belangrijke meetpunten van de oppervlaktewaterverdeling zijn signifinante verbeteringen te zien

    The role of target closure in detachment in Magnum-PSI

    Get PDF
    A cylindrical target with a high degree of closure was exposed to ITER divertor-relevant plasmas with typical electron temperatures of 2 eV, electron densities of 5⋅1020 m−3, and heat fluxes up to 20 MWm−2 in the linear device Magnum-PSI. By terminating the plasma in an unpumped closed volume, neutral pressures were enhanced from about 0.5 to 20 Pa without any increase in the neutral flux returning to the plasma. Such pressures were sustained largely by the pressure exerted by the incoming plasma. By means of hydrogen gas injection, internal neutral pressures of up to 40 Pa were reached during plasma exposure. We find that at these high neutral pressures, a &lt; 1 eV recombination front forms and expands from the back of the cylinder, so that downstream density drops dramatically. Furthermore, in these scenarios, heat deposition to the back plate vanishes and is redirected to the upstream part of the cylinder and to hot neutrals, which can carry 50% of the plasma input power. A power balance analysis reveals that even without additional gas puffing, only about 10% of the incoming heat load reaches the back plate for the 20 MWm−2 plasma. These results demonstrate the important role of closed target configurations and local gas puffing in mitigating plasma heat loads and indicate that the gained experience should be taken into account in next-generation divertor designs.</p

    Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia

    Get PDF
    The accuracy of three satellite rainfall products (TMPA 3B42RT, CMORPH and PERSIANN) was investigated through comparison with grid cell average ground station rainfall data in Indonesia, with a focus on their ability to detect patterns of low rainfall that may lead to drought conditions. Each of the three products underestimated rainfall in dry season months. The CMORPH and PERSIANN data differed most from ground station data and were also very different from the TMPA 3B42RT data. It proved possible to improve TMPA 3B42RT estimates by applying a single empirical bias correction equation that was uniform in space and time. For the six regions investigated, this reduced the root mean square error for estimates of dry season rainfall totals by a mean 9% (from 44 to 40 mm) and for annual totals by 14% (from 77 to 66 mm). The resulting errors represent 10% and 3% of mean dry season and annual rainfall, respectively. The accuracy of these bias corrected TMPA 3B42RT data is considered adequate for use in real-time drought monitoring in Indonesia. Compared to drought monitoring with only ground stations, this use of satellite-based rainfall estimates offers important advantages in terms of accuracy, spatial coverage, timeliness and cost efficiency

    Thermalized collisional pre-sheath detected in dense plasma with coherent and incoherent Thomson scattering

    Get PDF
    In the direct vicinity of plasma-facing surfaces, the incident plasma particles interact with surface-recombined neutrals. Remarkably high near-surface pressure losses were observed in the high-flux linear plasma generator Magnum-PSI. Combining the incoherent and coherent Thomson scattering diagnostics, we directly measured particle, momentum and energy fluxes down to 3 mm from the plasma target surface. At the surface, the particle and total heat flux were also measured, using respectively an in-target Langmuir probe and thermographic methods. The near-surface momentum and energy losses scale with density, and amount to at least 50 % and 20%, respectively, at ne=8centerdot1020m-3. These losses are attributed to the efficient exchange of charge, momentum and energy between incident plasma and surface-recombined neutrals. In low-temperature plasmas with sufficient density, incident particles go through several cycles of interaction and surface deposition before leaving the plasma, thereby providing an effective alternative dissipation channel to the incident plasma. Parallel plasma parameter profiles exhibit a transition with increasing plasma density. In low-density conditions, the plasma temperature is constant and near-surface ion acceleration is observed, attributed to the ambipolar electric field. Conversely, deceleration and plasma cooling are observed in dense conditions. These results are explained by the combined effect of ion-neutral friction and electron-ion thermal equilibration in the so-called thermalized collisional pre-sheath. The energy available for ambipolar acceleration is thus reduced, as well as the upstream flow velocity. In the ITER divertor, enhanced near-surface p-n interaction is expected as well, given the overlap in plasma conditions. Including these effects in finite-element scrape-off layer models requires a near-surface resolution smaller than the neutral mean free path. This amounts to 1 mm in Magnum-PSI, and possibly an order of magnitude smaller in ITER.</p

    Accelerated/reduced growth of tungsten fuzz by deposition of metals

    Get PDF
    From the helium (He) plasma irradiations to tungsten performed in the Magnum-PSI device, the effects of deposition of metals on the helium-plasma induced fiberform nanostructures (fuzz) are discussed. It was found that fuzz was not formed at the center of the plasma cylinder if there were significant metallic impurities from the source. Deposition of metallic impurities (mainly molybdenum and copper) counteracted the growth of fuzz. In addition to the effects of metals from the source, we installed a sputtering source near the sample to replicate the deposition environment in fusion devices. The thickness of fuzzy layer was ∼7&nbsp;µm, which was about five times greater than that without deposition, at the He flux of 1.3×1026&nbsp;m−2, suggesting that the growth rate of fuzz layer was significantly accelerated due to the deposition of tungsten.</p

    High-resolution analysis of cis-acting regulatory networks at the &#945;-globin locus.

    Get PDF
    We have combined the circular chromosome conformation capture protocol with high-throughput, genome-wide sequence analysis to characterize the cis-acting regulatory network at a single locus. In contrast to methods which identify large interacting regions (10–1000 kb), the 4C approach provides a comprehensive, high-resolution analysis of a specific locus with the aim of defining, in detail, the cis-regulatory elements controlling a single gene or gene cluster. Using the human α-globin locus as a model, we detected all known local and long-range interactions with this gene cluster. In addition, we identified two interactions with genes located 300 kb (NME4) and 625 kb (FAM173a) from the α-globin cluster

    Plasma detachment study of high density helium plasmas in the Pilot-PSI device

    Get PDF
    We have investigated plasma detachment phenomena of high-density helium plasmas in the linear plasma device Pilot-PSI, which can realize a relevant ITER SOL/Divertor plasma condition. The experiment clearly indicated plasma detachment features such as drops in the plasma pressure and particle flux along the magnetic field lines that were observed under the condition of high neutral pressure; a feature of flux drop was parameterized using the degree of detachment (DOD) index. Fundamental plasma parameters such as electron temperature (T e) and electron density in the detached recombining plasmas were measured by different methods: reciprocating electrostatic probes, Thomson scattering (TS), and optical emission spectroscopy (OES). The T e measured using single and double probes corresponded to the TS measurement. No anomalies in the single probe I – V characteristics, observed in other linear plasma devices [16, 17, 36], appeared under the present condition in the Pilot-PSI device. A possible reason for this difference is discussed by comparing the different linear devices. The OES results are also compared with the simulation results of a collisional radiative (CR) model. Further, we demonstrated more than 90% of parallel particle and heat fluxes were dissipated in a short length of 0.5 m under the high neutral pressure condition in Pilot-PSI.</p
    corecore