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Abstract. We have investigated plasma detachment phenomena of high-density helium 
plasmas in the linear plasma device Pilot-PSI, which can realize a relevant ITER 
SOL/Divertor plasma condition. The experiment clearly indicated plasma detachment 
features such as drops in the plasma pressure and particle flux along the magnetic field 
lines that were observed under the condition of high neutral pressure; a feature of flux 
drop was parameterized by using the degree of detachment (DOD) index. Fundamental 
plasma parameters such as electron temperature (Te) and electron density in the 
detached recombining plasmas were measured by using different methods: reciprocating 
electrostatic probes, Thomson scattering (TS), and optical emission spectroscopy (OES). 
The Te measured by using single and double probes corresponded to the TS 
measurement. No anomalies in the single probe I-V characteristics, observed in other 
linear plasma devices [16,17,36], appeared under the present condition in the Pilot-PSI 
device. A possible reason for this difference is discussed by comparing the different 
linear devices. The OES results are also compared with the simulation results of a 
collisional radiative model. Further, we demonstrated more than 90% of parallel particle 
and heat fluxes were dissipated in a short length of 0.5 m under the high neutral 
pressure condition in Pilot-PSI. 
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1. Introduction 

Handling enormous plasma heat and particle loads to divertor plates is essential to the achievement of 

high fusion gain in magnetically confined fusion. In ITER with fusion power (Pfus) of 500 MW, most 

of the exhausted power crossing the separatrix from the core (PSOL) of ~ 100 MW must flow along 

open field lines in the scrape-off layer (SOL) connecting directly to the divertor target plates [1, 2]. 

Assuming Pfus ~ 3 GW class DEMO fusion reactor with the ITER-size plasma, PSOL is expected to be 

~ 500 MW [3]. On the other hand, the technologically feasible capability for heat handling of the 

divertor is typically 10 MW m–2 for an actively cooled structure in ITER [4], while in DEMO it could 

be below 10 MW m–2 due to neutron irradiation effects [5–7]. Consequently, a radiative divertor 

scenario should be developed to reduce PSOL below 50 MW handled by total heat sink in divertors, 

where a radiation loss fraction (Prad/PSOL, Prad is radiation power) of larger than 50% in ITER and 90% 

in DEMO is required in edge and divertor regions [8, 9]. 

     The plasma heat flux q to the divertor plate is simply described by: 

,                               (1) 

where  is the particle flux to the divertor plate, Te is the electron temperature,  is the effective 

energy transmission factor through the sheath and Ei is the surface recombination energy 

corresponding to the ionization potential energy, respectively [3, 10]. Because ions have an intrinsic 

ionization potential energy Ei, which is released on the divertor plate due to the surface recombination 

process, simple cooling of the kinetic plasma energy Te is insufficient for the reduction of the heat load 

onto the divertor plate. Therefore, the electron-ion recombination (EIR) process, including radiative 

and three body recombination, is required to dissipate  and reduce q. In plasma detachment physics, 

especially, detailed investigation of detached recombining plasmas associated with the EIR process is 

required to control the heat load to the divertor plate. In addition to the EIR process, the effects of 

radial/anomalous transport in the private and SOL regions also contribute to  reduction, leading to 

q reduction [11]. 

     Linear plasma devices are able to simulate the open magnetic field geometry from the SOL to 

the divertor plate in magnetically confined fusion devices, and various experiments in detached 

recombining plasma are possible due to their experimental flexibility compared to fusion devices. So 

far, linear plasma devices have contributed significantly to understanding the mechanisms of plasma 

detachment [12]. For example, experimental proofs for volumetric recombination processes in helium 

and helium-hydrogen mixture plasmas [13–15], anomalous characteristics of single Langmuir probes 

in detached recombining plasmas [16,17], and plasma fluctuations associated with non-diffusive radial 

transport [18,19] were observed in NAGDIS-II. An observation of hydrocarbon-enhanced molecular 

activated recombination (MAR) processes [20] and detailed measurements of recombining plasma 

parameters by using a laser Thomson scattering (TS) system and a high-resolution spectrometer 
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[21,22] were performed in MAP-II. In TPD-SheetIV, experiments with a V-shaped target in detached 

hydrogen sheet plasma were performed [23], and direct observations of hydrogen molecular ions (such 

as H2
+ and H3

+) with an omegatron mass-analyzer were also carried out to understand dissociative 

recombination processes in MAR [24]. The neutral pressure dependence of vibrational, rotational, and 

kinetic temperatures of hydrogen molecules [25] and helium atom emission from an ionized 

cylindrical plasma with a recombining edge [26] was measured in PISCES-A. 

     Additional studies on plasma detachment in more relevant divertor plasma conditions with high 

density and high particle flux are required for demonstrating the effectiveness of plasma detachment in 

next-generation fusion devices such as ITER and DEMO. Further, in the ITER research plan, initial 

studies of H-modes and ELM control are planned in helium plasmas because the predicted H-mode 

threshold power in helium plasma is lower than that of hydrogen [27]. In helium plasma, the higher 

heat flux due to surface recombination than hydrogen is expected, because of its high ionization 

potential energy (24.6 eV). Therefore, it is also necessary to conduct plasma detachment experiments 

under the high-density helium plasma condition that is relevant to detached divertor operations in 

ITER. The linear devices, Magnum-PSI and Pilot-PSI, which can generate high-density plasma (> 1020 

m–3) and strong ion fluxes (> 1024 ions m–2 s–1), have been used for the many experiments from the 

viewpoint of plasma-material interactions [28–31]. The density reduction due to the volumetric 

recombination has been already found by using TS measurement in hydrogen plasma of Pilot-PSI [32]. 

However the fundamental study of detached recombining plasma such as momentum loss and plasma 

physics in high neutral pressure has not been sufficiently explored. 

     Secondly, resolution of the anomaly of Langmuir probe characteristics is crucial in plasma 

detachment studies. On divertor probe measurements in JET, the problem was highlighted with 

current-voltage (I-V) characteristics becoming distorted away from the conventional exponential curve 

during the high recycling and detached discharges [33,34]. The reduced ratio of the electron to ion 

saturation current was observed, which resulted in an overestimation of Te. From the simulation results, 

the elevated non-Maxwellian tail was claimed to be the cause for overestimating Te estimated by 

single probe [35]. The similar tendency was also observed experimentally in linear plasma devices. It 

was found that Te obtained by using the single probe is much larger than that measured with optical 

emission spectroscopy (OES) in NAGDIS-II [16,17]. Measured Te by using the single probe initially 

decreases with increasing neutral pressure and was found to saturate to be larger than 1 eV, and a 

further increase in neutral pressure correlated with an increase of Te. In the detached recombining 

plasma in the NAGDIS-II, prominent continuum emission due to radiative recombination and line 

emissions from highly excited levels due to three-body recombination were clearly observed. This is 

therefore difficult to reconcile with Te above 1 eV, because the three body recombination process 

dominates only for Te below 1 eV. A similar anomaly in I-V characteristics was also observed in 
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MAP-II by comparing the electrostatic probe measurement to the TS measurement [36]. For a detailed 

investigation of this anomaly, additional experiments in other plasma devices are necessary. Also, 

detailed studies comparing electrostatic probes and other methods, such as the TS measurement, are 

required because the TS method can properly provide the local Te. 

     In this study, in order to understand the fundamental properties of detached recombining helium 

plasma under more relevant ITER plasma conditions, the radial profiles of plasma parameters, such as 

Te, and the electron density (ne) have been measured in the Pilot-PSI device with reciprocating 

electrostatic probes, the TS measurement and OES, focusing on the neutral pressure dependence. 

Firstly the experimental results obtained by using these electrostatic probes were compared with those 

obtained by using the TS method and OES to determine the details of the probe anomaly. By 

comparing the plasma fluctuations in the linear plasma devices Pilot-PSI and NAGDIS-II, the 

mechanisms underlying the electrostatic probe anomaly are assessed. The evolution of the plasma 

pressure and flux drop along the magnetic field lines owing to momentum loss including the EIR 

process is also discussed, and the observed line emissions from the detached recombining plasmas are 

compared with the simulation results of a collisional radiative model. Finally, we investigate the 

parallel particle and heat fluxes in detached recombining plasmas in Pilot-PSI. 

 

2. Experimental setup 

The experiment was performed by using the Pilot-PSI [37] device, as shown in figure 1(a). The device 

consisted of a 1.2 m long and a 0.4 m diameter vacuum vessel that was placed inside five magnetic 

coils. The maximum magnetic field strength was 1.6 T at the vessel center. In this experiment, a DC 

cascaded arc produced a steady state helium plasma with a discharge current of 170 A and a discharge 

voltage of ~60 V. An axial magnetic field of 0.05 T confined and guided the plasma to the floating 

target that was located at z ~ 560 mm, where z is the distance from the plasma source. A gas flow was 

set to 2.5 standard liters per minute (slm). The neutral pressure (P) was monitored by using a baratron 

gauge on the top port of the machine above the target plate. By changing the pumping speed, P could 

be controlled (ranging from 4 to 18 Pa), while the plasma source parameters remained almost constant. 

Figure 2 shows the radial profiles of ne and Te at the upstream position (z ~ 40 mm) measured by using 

TS measurement during various P conditions. Although ne profiles broadened slightly with P, the peak 

density did not change. This was because the low temperature (3–4 eV) meant that full ionization did 

not occur in all cases at column center, and in all cases the column profile is similar upstream 

regardless of P. Therefore, P was the key parameter for determining the detachment condition 

downstream. Here, we note that the pressure range from 4 to 18 Pa is higher than the detached plasma 

operations in other linear plasma devices, such as NAGDIS-II [38] and MAP-II [36]. However, it is 

similar to the detached condition expected in ITER [39]. The electrostatic probe was installed on the 
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horizontal port, 540 mm downstream from the source. TS measurement and OES were also performed 

at z ~ 540 mm (TS measurement was also carried out at z ~ 40 mm). The viewing systems of both 

diagnostics were set at the opposite port with respect to the electrostatic probe. The reciprocating 

electrostatic probe measurement was able to support the TS, especially in the plasma peripheral region, 

where the scattered light became weak. 

     Figure 1(b) shows the probe head designed for measuring Te, ne, ion saturation current (Isat) and 

the floating potential (Vf) simultaneously. Four tungsten electrodes, numbered #1 to #4, with diameters 

of 0.5 mm were placed at the distance of 1.0 mm outside of an alumina rod. Electrodes #2 and #4 

worked as single probes and together worked as a double probe oriented along the magnetic field lines. 

For the single probe and double probe measurements, the probe voltage Vp (a 50 Hz triangular wave, 

–70 V to 20 V for the single probes and –30 V to 30 V for the double probe, respectively) was applied 

by using a bipolar power supply. Considering the shadowing effect of the upstream electrode, the 

probe head was at an angle (θ ~ 15°) relative to the magnetic field lines. When bias voltages for 

electrodes #2 and #4 were fixed at –100 V, the probe drew the ion saturation current, Isat. Electrodes 

#1 and #3 measured the Vf continuously. The sampling rate of the 12 bit A-D convertor was 5M 

samples/s for the single and double probes and Vf and 1M samples/s for Isat. In the data acquisition 

system, the frequency response of probe current was 20 kHz. The reference potential for each probe 

tip was the vacuum vessel, and is referred to as the system ground. The anode of the cascaded arc was 

also grounded. 

     Figure 1(c) schematically shows the probe experiment. The probe head was horizontally driven 

by an electric motor at the constant velocity of 100 mm/s and swept in the plasma ~20 mm in front of 

the target plate (at z ~ 540 mm). As a result, radial profiles of the plasma parameters could be 

obtained. 

 

3. Experimental results 

 

3.1 Ion saturation current measurements 

Figure 3(a) shows the neutral pressure (P) dependence of ion saturation current (Isat) at the plasma 

center (radial position, r, of 0 mm) and far-peripheral position (r = –40 mm), measured by the 

electrostatic probe located at z ~ 540 mm. At r = 0 mm, Isat decreased with increasing P. The strong 

decrease in plasma particle flux to the target at the center of the column is most likely due to 

recombination. However, at r = –40 mm, Isat does not exhibit the strong reduction; moreover, Isat 

slightly increases with increasing P. This result indicates that profile could be flattened at high P; and 

this tendency was also observed in NAGDIS-II [40]. Large error bars for Isat at r = –40 mm indicates 

the large fluctuations in the peripheral region, because the error bars were based on standard deviation 



 

 6 

of Isat. Figures 3(b) and (c) show linear and logarithmic plots for radial profiles of Isat, captured for the 

lowest (4 Pa), the intermediate (11 Pa), and the highest (18 Pa) values of P in this experiment. The 

radial profiles also reveal a dramatic reduction in the particle flux at the plasma center and profile 

flattening owing to the increasing P. The EIR process is more effective at the center of plasma column 

because high ne leads to the enhancement of EIR [41]. As shown in figure 3(c), comparing the cases of 

the intermediate pressure (P = 11 Pa, square) and the lowest pressure (P = 4 Pa, circle), Isat around r < 

–20 mm for the intermediate P was larger than that for the lowest P, while the opposite was observed 

at r = 0 mm. This implies that the plasma density was slightly increased at periphery with increasing P. 

The possible reasons for the increase of density and flattening of the profile under the high P 

conditions are discussed in section 4.2. 

 

3.2 I-V characteristics from the single probe and double probe measurements 

Figure 4(a) shows the I-V characteristics for the single probe at r = 0 mm. By comparing the cases for 

the lowest P (left axis) and the highest P (right axis), it can be deduced that I-V characteristics are 

clearly different between the two cases. Te was measured from the slope of the I-V characteristics on 

the logarithmic scale, as shown in figure 4(b). From the fit, we obtained Te of ~1.5 eV and ~0.3 eV for 

the lowest and highest P cases, respectively. 

     Figure 5 shows the I-V characteristics for the double probe. The figure also shows a comparison 

between the lowest and highest P cases at r = 0 mm. Because special care was taken to sustain the 

electrical isolation between the double probe tips and the grounded area, the measured I-V 

characteristics were symmetric and the probe current, Ip, was almost zero when the Vp was zero. 

Analysis of the I-V characteristics of the double probe yielded a Te of ~1.2 eV and ~0.35 eV for the 

lowest and highest P cases, respectively. The value of Te measured by using the double probe was 

consistent with that measured by using the single probe. These results demonstrate that electrostatic 

probes can be used for high neutral pressure plasma in the Pilot-PSI system and for the experimental 

conditions described in section 2. It is interesting to note that this result contradicts the previously 

obtained results for other linear devices mentioned earlier, where anomalous probe measurements 

were observed to yield higher Te in recombining plasma [16, 17, 36]. 

 

3.3 Comparison of electrostatic probes with Thomson scattering measurement 

A Thomson scattering (TS) measurement system for measuring ne and Te was also installed in 

Pilot-PSI [42,43]. Figures 6(a) and (b) show the P dependence of ne and Te measured at r = 0 mm, 

with the double probe, single probe, and TS measurement at z ~ 540 mm. ne measured by using the 

single probe and the double probe, monotonically decreased with P, while the TS measurement 

indicated a peak at P ~ 8 Pa. For the calculation of ne, the ion saturation currents in the I-V 
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characteristics curves were used, and the probe surface area was set to a geometrical projection along 

the magnetic field lines by assuming a weakly magnetized plasma (actually, ion cyclotron frequency 

of ~ 0.2 MHz and ion–neutral collision frequency of ~ 1 MHz, when P ~ 4 Pa, i.e. the Hall parameter 

is 0.2). Considering the shadowing effect due to ion flow, only an upstream side of geometrical 

projection was used. Further, assuming that Ti ~ Te under the high density plasma condition, the ion 

sound speed of Cs = (2Te/mi)1/2 was used in the calculations, where Ti and mi are ion temperature and 

ion mass. Because of these assumptions, to quantitatively compare the ne values that were measured 

by the electrostatic probes and TS, a careful estimation of the effective collection area of the probes is 

necessary. On the other hand, the value of Te measured by both the single and double probes was in a 

good agreement with that measured by using TS. At P < 10 Pa, the reduction in Te was steeper than 

that in ne with increasing P, and Te exhibited the lowest value (~ 0.2–0.4 eV) and was almost constant 

at P > 10 Pa. Although the double probe shows slightly higher Te than that obtained by using other 

methods, it is difficult to compare Te at P > 10 Pa because of the large error bars in Te measured by 

double probe of ±0.2–0.4 eV.  

     Figure 7 shows the radial profiles of ne and Te at P values of ~ 4 and ~18 Pa, measured by using 

the double probe, the single probe and the TS measurement at z ~ 540 mm. At P ~ 4 Pa, ne values 

determined by both electrostatic probes corresponded to that measured by using the TS, as shown in 

figure 7(a), and the radial profile of Te measured by using the double probe was in a good agreement 

with that obtained by using the TS (figure 7(b)). At P ~ 18 Pa, both ne and Te exhibited flat profiles, as 

in figure 7(c) and (d). These results imply that with increasing P, the recombination dominantly starts 

at the center of plasma column and the plasma will diffuse across the magnetic field, corresponding to 

the results of Isat measurement in figure 3. Again, it is worth noting that the electrostatic probes yielded 

a rather low temperature (below 1 eV) without any anomaly even at P ~ 18 Pa. 

 

3.4 Optical emission spectroscopy 

OES was also performed at z ~ 540 mm. The line of sight of an optical fiber was installed to pass 

through the plasma center. Figure 8 shows a typical spectrum of visible light emission in the 310–370 

nm range, at P ~ 9 Pa. The emission from this recombining region exhibits a continuum radiation 

below ~ 344 nm into the 23P state and line emission of the 23P-n3D series transitions. We can 

distinguish the line emission up to the principal quantum number n ~ 16. The continuum and 

line-series emissions from highly excited levels are due to the radiative and three-body recombination 

processes, respectively. These recombination processes mainly occur when the temperature is typically 

below 1 eV, and contribute to reducing the ion flux and heat load on the target. 

     In recombining plasmas, partial local thermodynamic equilibrium (pLTE) is satisfied above a 

certain quantum number. The population of atoms with highly excited levels obeys the Boltzmann 
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relation. In order to determine Te by using spectroscopy, we used the Boltzmann plot method for a 

series of Balmer-type lines, which correspond to the transitions from highly excited levels to the n = 2 

level, for helium atoms [15,45]. Figure 6(b) shows the Te measured by using OES as a function of P 

and the results are compared with those obtained by using the probes and the TS. The Te values 

measured by using OES are the lowest among the values obtained by using the different measurement 

techniques and exhibits a weak dependence on P, while Te measured by using other methods decreases 

with increasing P. The apparently low central Te obtained from the spectroscopy method is likely due 

to the line-integrated emission [26]. As shown in figure 6(b), at the low P (especially at P ~ 4 Pa), the 

largest difference of Te between OES and other methods was observed. This is because the OES 

integrated the emissions along the line of sight, while other methods were localized at the plasma 

center. From the radial profile of Te shown in figure 7(b), when P ~ 4 Pa, Te measured by using OES 

of ~ 0.2 eV was obtained by combining emissions from the Te ~ 1.2–1.5 eV core and the Te ~ 0.2 eV 

halo around the core. In general, line spectra due to three-body recombination are dominated by 

emissions from the low Te and high ne region, because the EIR process strongly depends on ne and Te. 

In the present study, measured Te by using OES is affected by the low Te recombining edge plasma, 

especially during low P operation. 

 

4. Discussion 

 

4.1 Influence of plasma fluctuations on the probe measurements 

In this section, the effect of fluctuations on the probe measurements in detached recombining plasmas 

is discussed. A large plasma fluctuation was pointed out as one of the reasons for overestimation of Te 

in recombining plasmas of NAGDIS-II and MAP-II [17,36]. Figures 9(a) and (b) show the fluctuation 

levels of Isat and Vf as a function of radial position, comparing between the typical recombining 

plasmas in the NAGDIS-II and Pilot-PSI devices. Here, the fluctuation levels are defined as 

 for Isat and  for Vf, respectively, where  indicates the 

time-averaging and superscript ~ denotes the fluctuation component obtained by subtracting 

the mean value  and  from the original Isat and Vf. It is known that Isat is proportional to 

neTe
1/2, and that Vf can be expressed as Vf = Vs - αTe, where α is a constant. It is assumed that  

in the detached recombining plasma because  is small due to small Te values. Therefore, 

fluctuation of Isat and Vf are mainly determined by the density and potential fluctuations, respectively. 

The magnetic field strength and P were 0.15 T and 2 Pa in NAGDIS-II, while they were 0.05 T and 9 

Pa in Pilot-PSI. As shown in figure 9(a) and (b) both the density and the potential fluctuation levels 
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were much higher for NAGDIS-II than for Pilot-PSI. It was considered that the plasma potential 

fluctuation especially affects the probe I-V characteristics [14]. Figure 10 schematically shows the 

influence of plasma potential fluctuation on the single probe I-V characteristics. The slope of the 

time-averaged I-V curve obtained in the experiments might not be changed when the amplitude of  

is much less than Te. However, when the amplitude of  extends to the saturation region, the slope 

of the time-averaged I-V curve is varied to give higher Te because the I-V curve is rounded by the 

influence of the plasma potential fluctuation. As shown in figure 9(b), the difference of potential 

fluctuation level normalized by Te between NAGDIS-II and Pilot-PSI was more than one order of 

magnitude at the center and approximately one order of magnitude on the periphery. Moreover, the 

amplitude of the fluctuating component  is ten times larger than Te in NAGDIS-II, while it 

was less than Te in Pilot-PSI. 

     In the present study, it was shown that Te was properly measured even in the recombining 

plasmas without any anomaly of probe I-V characteristics. In the past experiments in NAGDIS-II and 

MAP-II, however, the anomalous probe measurements resulted in an overestimation of Te in the 

recombining plasma [16,17,36]. By comparing the fluctuations in NAGDIS-II and Pilot-PSI, it was 

found that the plasma fluctuations could be a significant factor affecting the probe measurement, 

especially the Te analysis. From the present results, it can be also said that anomaly of Langmuir probe 

characteristics are not necessarily observed in detached plasmas, especially at low fluctuation levels. 

     It was reported that an intermittent density fluctuation is frequently produced near the 

recombination front in detached recombining plasma in NAGDIS-II [46]. This result suggests that the 

recombination front, which exists in the transition region from the ionizing plasma to the recombining 

plasma, might be the fluctuation source. In the present study, on the other hand, the transition region 

similar to the recombination front was not observed in Pilot-PSI. It could be considered that the high 

density plasma upstream led to the strong recombination process, although Te ~ 3–4 eV at the center. 

In other experimental conditions such as hydrogen discharges or in low density plasma, however, the 

fluctuation level might be larger because of the existence of ionizing plasma as well as a 

recombination front in upstream. This hypothesis should be investigated in more detail. In order to 

reveal the behavior of plasma instabilities, further experiments and theoretical studies are needed. In 

addition, it was also reported that the non-Maxwellian tail strongly affects the plasma diagnostics [35]. 

The effect of velocity distribution function on electrostatic probe measurements should be also 

investigated under the detached recombining plasma conditions. 

 

4.2 Intermittent radial transport 

Experimental results indicated that plasma density profile became flat in high P operation as shown in 
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Isat profiles in figure 3 and ne profiles in figure 7. Although the reasons to cause this tendency are not 

currently clear, we speculate that one possibility is intermittent cross-field transport as observed in 

other linear magnetized plasmas [18,19,46–48]. This is similar to transport associated with plasma 

blobs occurring in magnetically confined fusion devices [49–51]. Intermittent radial transport, having 

a higher density than the ambient plasma in the peripheral region, is transported convectively by the 

centrifugal force of plasma rotation or the effect of a neutral wind, which is generated by a charge 

exchange process in the plasma column [52]. These drive mechanisms in linear plasma devices are 

different from those in fusion devices. Tanaka et al. [18] reported detailed analytical analysis on 2D 

motion of spiral structures in peripheral regions across the magnetic field under detached recombining 

plasma conditions in NAGDIS-II. These structures were radially localized and propagated far from the 

plasma column, increasing the ambient plasma density. 

     A possible reason causing the similar broadening of the plasma profile here could be such 

intermittent radial transport. However, intermittent radial transport was especially enhanced during the 

transition from attached to detached plasma [40], and some other reasons might be considered, e.g. 

diffusive and anomalous transport in a radial direction and the effect of radiation transport. For 

example, radiation from the central region should be trapped by ground state and enhance the 

population of the singlet system at the peripheral region [53], and result in increasing ne due to the low 

ionization energy of excited neutrals. Many highly excited neutrals produced in high density center are 

also candidates for causing broad profile, because they become free from the magnetic confinement 

immediately after the recombination and increase ne in the periphery like the radiation transport. 

 

4.3 Pressure balance 

In order to quantitatively compare the observations described in the previous section, the extent of 

plasma detachment has to be defined numerically. For this purpose, the concepts of “pressure balance” 

and “degree of detachment” are introduced. The pressure balance is explained in section 4.3, and the 

degree of detachment is explained in section 4.4. 

     Assuming no pressure/momentum source or loss in a flux tube, the static pressure component 

neTe + niTi plus the dynamic pressure component nimiv2 should be constant along the magnetic field 

lines, where ni, Ti, mi, and v are the ion density, ion temperature, ion mass, and flow velocity. When Te 

= Ti and ne = ni are assumed in the high-density plasma of Pilot-PSI, the plasma static pressure is 2neTe. 

At the sheath edge, v should be ion sound speed Cs = (2Te/mi)1/2. Based on the OES analysis of 

Pilot-PSI, it was measured that velocities at the source can be approximately 0.2Cs [54]. Thus, the 

relation between the static and dynamic pressures at the downstream and upstream is, 

,                  (2) 

where the subscripts “d” and “u” denote the downstream and upstream location, respectively. It was 
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assumed that the flow velocity at the downstream position was also 0.2 Cs. The sheath edge was 

located much closer to the target plate in comparison with the distance between the probe and the 

target plate (20 mm). Sheath thickness was 1.5×10-5m given by 10 times larger than the Debye length 

under the condition that ne ~ 5×1018m-3 and Te ~ 0.2 eV. Eq. (2) therefore becomes, 

.                                (3) 

Eq. (3) prescribes that the static plasma pressure is conserved along the magnetic field lines. On the 

other hand, in general tokamak SOL physics, static plasma pressure will drop by half during the 

transport from the upstream location to the target. This follows because the upstream location, where 

ionization collisions are dominant and the dynamic pressure is negligible, is characterized by v = 0, i.e. 

a so called stagnation point [55,56]. 

     Figure 11(a) shows the P dependence of the plasma pressure, which is estimated as the averaged 

neTe at different positions along the magnetic field. The quantities  and  are the radial 

averaged plasma pressure over the center of the plasma column obtained from ne and Te measured by 

the TS at the downstream (z ~ 540 mm) and at the upstream location (z ~ 40 mm), respectively. Here, a 

radial average over the center of the plasma was calculated by using the following formula, 

,                     (4) 

where S is the area of a circle with the radius of 10 mm in the plasma, where 10 mm is the 

approximate half width at half maximum (HWHM) of the ne profile obtained by using the TS 

measurement. Eq. (4) assumes the profile to be rotationally symmetrical. In figure 11(a),  

monotonically decreases with increasing P, while  remains almost constant. Figure 11(b) shows 

the  to  ratio. As shown in eq. (3), which assumes the conservation of the static pressure 

plus dynamic pressure,  should be comparable to . However, the measured ratio is ~0.25 

at P ~ 4 Pa, corresponding to the lowest P in this experiment. Furthermore, the ratio continues to 

decrease with increasing P, up to < 0.01. The result is unexplainable without assuming the loss of 

momentum along the magnetic field lines, because the plasma pressure is not conserved. Under the 

condition of a high neutral pressure, a reduction in the plasma pressure can be induced by the 

momentum losses owing to ion-neutral collisions, including charge-exchange and EIR processes. The 

experimental results were also unexplainable by eq. (3) even at low P conditions. Because the 

emission due to the EIR was observed when P ~ 4 Pa, the recombining plasma appears to already exist 

at low P in front of the target plate. The EIR as well as the charge exchange might also contribute to 
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the pressure drop between upstream and target in low P conditions. 

 

4.4 Degree of detachment 

The reduction in the ion flux into the target is one of the characteristic observations defining 

detachment. A useful concept for quantitatively understanding the onset and extent of the detachment 

is the degree of detachment (DOD) [56–58], defined as, 

,                          (5) 

where  is the measured ion flux onto the target by the electrostatic probes, and, 

,                              (6) 

is calculated by extrapolating the ion flux onto the attached target. Eq. (6) is based on the prediction of 

the basic two-point model, 

,                             (7) 

where  is the ion flux onto the target, q is the heat flux, and L is the connection length. C is the 

normalization constant, which is obtained experimentally from the ion flux measured by using the 

electrostatic probes. Generally, in the experimental devices such as JET, C is obtained during the 

attached phase of discharge [57,58]. In this study, C was chosen by using the ion flux at P ~ 4 Pa, the 

lowest P. The quantity nu is the electron density measured by using the TS in the upstream region. 

Therefore, could be estimated under the present experimental conditions. The  was 

estimated from the Isat measured by using the electrostatic probes 20 mm in front of the target, because 

the flux measurement was not conducted at the target plate. 

     Figure 12(a) shows the P dependences of  and . The quantity  

decreases with increasing P, although  did not decrease. The  was calculated from 

Isat profile by using same radial averaging procedure expressed in eq. (4). The reduction of ion flux 

was likely due to the decrease of Te, leading to enhanced recombination. Other processes that can also 

lead to decreased ion flux are: a lower flow velocity at low Te, higher neutral pressures, which impede 

the ion flow through ion-neutral collisions, including charge exchange. Lastly, a drop in particle 

source (ionization in the plasma between the upstream and the recombination region) can also lead to 

a drop in ion flux. As shown in figure 12(b), the DOD increases with increasing P. As described in 

section 4.3, the EIR process is dominant even for 4 Pa. These results quantify the further detachment 

with increasing P. 

     In addition to the plasma pressure (described in section 4.3), the ion flux also decreased. This, 

too, was likely caused by the momentum loss. Momentum loss is one of the characteristics of plasma 

detachment [38, 59, 60]. Figure 13 shows a schematic illustration of the formation of detached helium 
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plasma and axial profiles of ne and Te under high neutral pressure. The figure describes the transition 

from a radiation region to a recombination region in the divertor plasma of a fusion device. The major 

mechanisms of the electron energy loss are the ionization and radiation processes at Te above 5 eV. 

However, when Te is below 5 eV, the energy relaxation between electrons and ions becomes the 

dominant electron energy loss channel instead of the ionization and radiation processes, because the 

electron-ion energy relaxation time is proportional to Te
3/2. The ions lose their energy in 

charge-exchange and ion-neutral elastic collisions. These processes make the ions and electrons 

sufficiently cold. Below Te < 1eV, the EIR process become dominant. In the Pilot-PSI operation, the 

neutral and plasma species densities are high. Therefore, the ion energy is decreased by interactions 

with neutral particles, and the electrons and ions are strongly coupled through the energy relaxation 

process. The plasma pressure and the particle flux drops along the magnetic field lines were observed 

at high neutral pressure owing to these momentum loss processes, including the EIR and 

charge-exchange processes. Further, the EIR process mainly affects the momentum losses in the case 

of low Te, typically Te < 1 eV, because the rate coefficients for the EIR process strongly depend on Te 

while charge-exchange exhibits a weak dependence on the temperature. Because Te in the upstream 

region is < 5 eV, in this experiment, the detached helium plasma was mainly determined by the 

electron-ion energy relaxation process, as shown in the last half of figure 13. 

 

4.5 Comparison with the collisional radiative model 

In order to understand the fundamental properties of atomic processes in the Pilot-PSI system, the 

He–I lines from low–n and high–n states were compared. As well as Te estimation by using OES, the 

line of sight of an optical fiber was installed to pass through the plasma center at z ~ 540 mm. Under 

the present experimental conditions, because Te was below 1.5 eV in front of the target, the population 

of high–n states was likely to be determined by the EIR process. In recombining plasma, the 

transitions from highly excited levels are the indications of EIR. Figure 14 shows the P dependences 

of the low–n He–I (471.3 nm: 23P–43S) emission, the high–n He–I (355.4 nm: 23P–103D) emission, 

and the ratio of 355.4 nm /471.3 nm. Both the low–n and high–n emissions exhibit a peak at P ~ 9 Pa 

and decrease gradually with increasing P. Regarding the high–n emission, the increase up to P ~ 9 Pa 

could be due to enhancement of the EIR process and the decrease by the extinction of plasma. When 

the population of low–n states is primarily filled up with the electrons excited from the ground state, 

the low–n emission should depend on ne and decrease with increasing P. However, both low–n and 

high–n emissions exhibit similar tendencies. Moreover, the ratio gradually reduces with increasing P, 

indicating that the EIR rate decreases. Owing to the steep reduction in Te and the enhancement of the 

EIR process, the assumption that low–n state population depends on the excitation from the ground 

level is not realistic. 
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     Here, in order to investigate the transition rate into the 43S excited state caused by the EIR and 

excitation processes, a collisional radiative (CR) model for neutral helium was applied [61,62]. In this 

model, the densities of the various excited states of a specific atom or ion can be calculated as the 

outputs of relevant input parameters, such as the ground state (11s) density, n0, the ion density, ni, Te, 

and ne. The population density of the level p, n(p), is calculated by considering the coupling with other 

levels (spontaneous transition and electron impact transition of excitation or de-excitation), electron 

impact ionization and recombination. In many cases, the relaxation time of the excited level 

population is sufficiently short, compared with the time constants for changes in Te and ne, so that the 

time derivative of n(p) can be approximately zero. When this quasi-steady-state approximation is valid, 

the simultaneous equations for all of the excited levels can be easily solved, and the quantity n(p) can 

be expressed as a sum of two terms, 

.                    (8) 

The coefficients R0(p) and R1(p) are the functions of Te and ne and are called the reduced population 

coefficients. R0(p) and R1(p) are calculated as the results of CR model and reflect the collisional and 

radiative processes in the plasma. The first and second terms on the right hand side are the 

recombining- and ionizing-plasma components, respectively. Therefore, the transition rate into the 43S 

level owing to the recombination and excitation processes can be separately calculated by using the 

CR model. 

     Figures 15(a) and (b) show the logarithmic and linear plots for the P dependence of the 

recombining-plasma component R0(p)neni and ionizing-plasma component R1(p)nen0, calculated by 

using the CR model, where Te and ne, measured by using the TS in front of the target plate, were used 

for the CR model. The population density of the 43S level is more dominantly determined by the 

recombination component than the ionization component, throughout the presently considered range 

of pressures. This could explain why the low–n and high–n line emissions exhibit similar tendencies, 

as shown in figures 14(a) and (b). With increasing P, the ionizing component sharply decreases due to 

the significant loss of energetic electrons, and the recombination component exhibits a peak at P ~ 9 

Pa, because the recombination process should be enhanced by the steep Te reduction. After the peak, 

the recombination component decreases owing to the plasma extinction. The tendency of the 

recombination component calculated by using the CR model is consistent with the experimental result 

of high–n line emission in figure 14(b). It can be said that the optical emission observed in Pilot-PSI 

strongly depends on the plasma recombination processes under these experimental conditions such as 

the helium discharge and the low magnetic field of 0.05T. 

 

4.6 Strong reduction of particle and heat fluxes due to EIR process 

As a final part of the discussion, the parallel heat flux in detached recombining plasma in Pilot-PSI is 
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investigated. As explained in the section 1, the plasma heat flux q is simply described by eq. (1). Once 

Te << 3 eV (Ei/ ) the heat flux to the target is dominated by the particle flux. Therefore, any further 

reductions in particle flux, likely due to EIR, but possibly other processes described in section 4.4, is 

essential to reduce parallel heat flux toward the divertor plate. Figures 16(a) and (b) show the particle 

flux and heat flux at the central region of plasma column, calculated by using the peak value of ne and 

Te measured by TS measurement in upstream (z ~ 40mm) and TS and single probe measurements in 

front of the target plate (z ~ 540mm). This might be considered equivalent to the estimation of heat 

flux reduction into the strike-point of a divertor plate. The particle flux  is calculated by the 

following formula, 

.                           (9) 

Eq. (9) is different estimation from the  by using Isat in DOD. The heat flux was calculated by 

eq. (1), where  and Ei were assumed to be 8 and 24.6 eV, respectively. As shown in figures 16(a) 

and (b), the particle and heat fluxes downstream dramatically decrease with P, while they are almost 

constant upstream. As with the above discussions, the momentum and energy losses increased with 

increasing P, leading to an enhancement of the EIR process. Thus, it can be said that EIR contribution 

to the reduction of particle and heat fluxes is increasing with P. At P ~ 18 Pa, the particle flux 

decreases from 1024 to 1022 m-2s-1 and heat flux from 7 MW/m2 to 0.1 MW/m2 between upstream and 

downstream regions, whose inter-distance is 0.5 m. The measured Te at the plasma center was varied 

from 3 eV upstream to 0.2 eV downstream, and strong reduction of ne from 1020 m-3 to 1019 m-3 was 

also observed along the magnetic field length, when P ~ 18 Pa. These results indicate more than 90% 

of particle and heat fluxes were dissipated in the short detached recombining plasma between the 

source and the target. The ion current losses are likely associated with recombination, but there are 

other processes described above in section 4.4. We have not quantitatively connected recombination to 

those ion current and power losses, the latter also affected by charge exchange and line emission. It is 

significant to investigate the reduction of heat flux at the plasma center under high particle flux (~ 1024 

m–2s–1) conditions to aid predictions of the contribution of the EIR process to the detached divertor 

operation in fusion devices such as ITER. The stable control of the detached recombining plasma 

region is quite essential to reduce the heat load to the divertor plates. 

 

5. Conclusion 

 

In order to understand the fundamental properties of high-density and high-flux detached recombining 

helium plasma under the more ITER relevant conditions, Te and ne have been measured by using 

reciprocating electrostatic probes, TS measurement and OES in Pilot-PSI. In the present study, the 
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single probe properly showed the low Te of less than 1 eV without any anomaly in recombining 

plasma, and Te measured by using the electrostatic probes approximately corresponds to the TS 

measurement. The effect of plasma fluctuations is proposed as one of the explanations for incorrectly 

measured Te by using electrostatic probes in other devices. Also, Te was determined by using the 

Boltzmann plot method, using the emission from highly excited levels of helium atoms. It was shown 

that the Te obtained by using OES was the lowest among all values obtained by using the measurement 

techniques considered in the present study, and exhibited only a small dependence on P. By comparing 

the plasma parameters in the upstream and downstream regions, the plasma column under the high 

neutral pressure condition exhibited a steep plasma pressure drop along the magnetic field lines, as 

well as a flux drop, estimated by the concept of DOD. This tendency was attributed to the momentum 

losses caused by processes such as EIR and charge-exchange. Based on the comparison between the 

population distributions obtained from the experiments and from the CR model calculations, we 

showed that the line emissions at z ~ 540 mm (in front of the target) owing to recombination process is 

strongly dominant over excitation there under Pilot-PSI experimental conditions. We also 

demonstrated that under high neutral pressure conditions (at P ~ 18Pa) the particle flux parallel to the 

magnetic field decreases from 1024 to 1022 m-2s-1 and parallel heat flux from 7 MW/m2 to 0.1 MW/m2, 

strongly correlating with, and likely due to recombination and charge exchange processes. These 

results indicated that more than 90% of particle and heat fluxes were dissipated in the short length of 

only 0.5 m in Pilot-PSI. 
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Figure 1. (a) Schematic top view of the Pilot-PSI system, (b) a schematic of the electrostatic probe 

head designed for the single probe, the double probe, and the measurements of Isat and Vf, and (c) the 

movement of the probe into the plasma, approximately 20 mm in front of the target. The electrostatic 

probe measurement, TS measurement and OES were performed downstream (z ~ 540 mm). TS 

measurement was also carried out upstream (z ~ 40 mm). (Double column) 
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Figure 2. Radial profiles of (a) ne and (b) Te for various P, measured by using the TS measurement at 

z ~ 40 mm. (Single column) 
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Figure 3. (a) Neutral pressure dependence of Isat measured at the plasma center (r = 0 mm) and plasma 

edge (r = –40 mm), and (b) linear and (c) logarithmic plots of Isat radial profiles for the pressures of 

approximately 4, 11, and 18 Pa. The error bars represent the standard deviation of Isat. (Single column) 
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Figure 4. Comparison between the I-V characteristics of the single probe measured at r = 0 mm at the 

lowest and highest considered pressures. (a) The probe current on the linear scale and (b) the electron 

current on the logarithmic scale, for estimation of Te. (Single column) 
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Figure 5. Comparison between the I-V characteristics of the double probe, measured at r = 0 mm at 

the lowest and highest considered pressures. (Single column) 
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Figure 6. Neutral pressure dependence of (a) ne and (b) Te measured at the plasma center by using the 

double probe, the single probe, the TS, and spectroscopy at z ~ 540 mm. The error bars represent the 

analytical error in the Te estimation by fitting for the probes and errors for TS measurements were 

determined from the least mean square fit (error is inversely proportional to square root of the number 

of photoelectrons collected at the photocathode of the intensified CCD camera) [44]. (Single column) 
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Figure 7. Radial profiles of (a) ne and (b) Te for P ~ 4 Pa and (c) ne and (d) Te for P ~ 18 Pa, measured 

by using the double probe, the single probe and the TS measurements at z ~ 540 mm. (Double column) 
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Figure 8. Visible light emission spectra from helium recombining plasma at P ~ 9 Pa. (Single column) 
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Figure 9. Radial profiles of fluctuation levels of Isat (a) and Vf (b) measured in typical detached 

recombining plasmas in NAGDIS-II and Pilot-PSI. Standard deviations of Isat and Vf were normalized 

by averaged Isat and Te, respectively. In NAGDIS-II, Te was assumed to be 0.5 eV, having the ± 30% 

errors. (Single column) 
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Figure 10. Effect of plasma potential fluctuation on the single probe I-V characteristics, when the 

amplitude of plasma potential fluctuation is larger than Te. (Single column) 

 

 



 

 31 

 

 

Figure 11. Neutral pressure dependence of plasma pressure (a), estimated as radially-averaged neTe at 

different positions (z ~ 40 and 540 mm) along the magnetic field lines, and the ratio (b). (Single 

column) 
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Figure 12. Neutral pressure dependence of ,  (a) and DOD (b). (Single column) 
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Figure 13. Schematic illustration of the formation of detached helium plasma and axial profiles of ne 

and Te during the transport into the divertor plate under high neutral pressure conditions, where the 

divertor plasma in a fusion device is assumed. The labels ‘e’, ‘i’, ‘n’ and ‘I’ indicate ‘electron’, ‘ion’, 

‘neutral helium’ and ‘impurity’, respectively. The large bubbles correspond to highly excited atoms, 

and the color shows the energy. (Double column) 
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Figure 14. Neutral pressure dependence of the low–n He–I (471.3 nm: 23p–43s) emission (a), the 

high–n He–I (355.4 nm: 23p–103d) emission (b), and the ratio of 471.3/355.4 nm (c). (Single column) 
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Figure 15. Logarithmic (a) and linear (b) plots for neutral pressure dependence of the recombining 

plasma component R0(p)neni and the ionizing plasma component R1(p)nen0, calculated by using the CR 

model. (Single column) 
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Figure 16. Neutral pressure dependence of particle (a) and heat (b) fluxes calculated upstream (z ~ 40 

mm) and downstream (z ~ 540 mm). Particle flux is Γ = 0.61ne(2Te/mi)1/2, and heat flux is q = Γ[γ’Te + 

Ei], where γ’ was assumed to be 8 and Ei to be 24.6 eV. Downstream, Γ and q calculated by using 

results measured by both TS and single probe are shown. (Single column) 

 


