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Letter to the Editor

Enhancer deletion generates cellular
phenotypic diversity due to bimodal gene
expression

To the editor:

Remote cis-regulatory elements, such as enhancers have multiple
roles with consequences of increased transcription of their target
genes. Disruption of these elements can lead to alterations in gene ex-
pression, causing both Mendelian and complex diseases. Examples of
such altered gene regulation, underlying the aetiology of human dis-
eases, are the deletions in the α and β globin cis-regulatory elements
leading to thalassemia. However, the phenotypic change resulting
from these genetic variations has been always evaluated in cell popula-
tion-based studies. In such studies cells are believed to be, as they are
genetically, homogeneous also in respect of the target-gene expression.
However, cell-population expression studies lack the resolution to re-
veal heterogeneity at single cell level, resulting from the different way
a regulatory element may act on the target gene.

Over two decades ago, several groups suggested that enhancers
could act in a rheostatic mode affecting the rate of transcription of a tar-
get gene [1,2]. This model of “uniform and progressive response” of a
gene to enhancer activity proposes that enhancers can increase the
levels of gene expression. Another proposed model for enhancer activi-
ty, the “on or off response”model, suggests that enhancers can increase
the probability a gene will become transcriptionally active and stay ac-
tive. Indeed, the analysis of transcriptional activation by enhancers on a
single cell basis (by using immunofluorescence or fluorescence-activat-
ed cell sorting to determine reporter gene activity) has led to the obser-
vation that enhancers increase the probability that a gene will be
transcribed in any particular cell while not affecting the rate of tran-
scription in the cells inwhich the gene is active [1,3–5]. Recent evidence
also supports this “on or off response” model and suggests that en-
hancers can increase the occurrence of transcriptional bursting but not
the amplitude of transcriptional burst size [6].

We previously developed a “humanisedmouse”model in which the
entire mouse α-globin locus is replaced by the human locus, and fully
recapitulates the normal developmental pattern ofα-globin expression.
This model has been very valuable to address the role of the major en-
hancer (MCS-R2) in the expression of the α-globin gene (reviewed in
[7]). In the absence of MCS-R2 (ΔMCS-R2), low levels of RNA-Polymer-
ase II are detected by chromatin immunoprecipitation (ChIP) at the α-
globin gene and low levels (~1–2% of normal) of α-globin mRNA accu-
mulate in the cells [7].

Here,we investigated theα-globinmRNAexpression inΔMCS-R2 vs
normal humanised erythroblasts to determine whether this expression
is derived from few cells (expressing α-globin mRNA at high levels) or
from all cells (expressing α-globin mRNA at basal levels). As expected,
human α-globin transcripts were detected in nearly all mouse erythro-
blasts containing the normal human α-globin cluster (Fig. 1A). On the

basis that a single normal erythroid cell may contain ~10,000 α and β-
globin mRNAmolecules [8] wewould expect that theΔMCS-R2mutant
(expressing ~1–2% α-globin mRNA), should contain about 100–200
copies per cell. However, we found a detectable level of fully extended
α-globin transcripts in only 47% of β-globin positive mutant cells
(Fig. 1B) compared to 85% of normal cells.

The basal level of expression in ΔMCS-R2mutant at either a popula-
tion or a single-cell basis could reflect the transcription status at a given
time. Therefore no detectable mRNA would be just a consequence of a
delayed basal level of expression.We thus investigated if the accumula-
tion of theα-globin chains in enucleated red cellswould give amore ho-
mogenous pattern than mRNA transcription. Immunofluorescence
staining of peripheral blood in normal vs ΔMCS-R2 mutant humanised
mice was performed using an antibody specific for human α-globin
chains (Suppl Fig. 1). In normal humanised mice, the expression is
high with a homogenous pattern in all erythroid cells (Fig. 2). The use
of a humanised system is thus not subjected to a variation of expression
as previously observed in transgenicmodels (PEV) and is therefore suit-
ablemodel. In the absence ofMCS-R2, a heterogeneous level ofα-globin
chains is evident in about one third of the cells (ΔMCS-R2, Fig. 2). The
immunofluorescence data were confirmed by flow cytometry analysis,
which allowed us to measure more accurately a positive population of
28% and the degree of α-globin production (Suppl Fig. 2).

This study describes an example where the same inherited autoso-
mal genetic defect can generate two opposite gene-expression pheno-
types at the cellular level. We have shown that in the absence of a
tissue-specific enhancer element, a significant number of red cell pro-
genitors (~50%) succeed to activate α-globin transcription (binary
mode). Transcription is then retained in a smaller proportion of cells
(~30%) throughout differentiation until these cells enucleate into ma-
ture red cells. This demonstrates that the active transcriptional status
is maintained through cell divisions, albeit at different level thus also
reflecting a rheostatic mode of gene expression.

Our results have implications also in the interpretation of studies on
the epigenetic mechanisms modulating gene expression. We have pre-
viously shown that the balance of active and repressive epigenetic
marks may reflect different degrees of silencing and transcription with-
in a population of cells rather than a bivalent (H3K4me3 and
H3K27me3) chromatin domain [7]. Here, we have shown evidence of
the co-presence of two transcriptionally unique, and genetically identi-
cal, populations of the same cell identity. Therefore, in transcriptionally
mixed cell populations, any epigenetic analysis could lead to misinter-
pretation of data. Recently, there have been breakthroughs in the anal-
ysis of bivalent marks using combinatorial indexed ChIP (co-iChIP) [9]
[10] and singlemoleculemodification imaging combinedwith sequenc-
ing [11]. However, these studies still don't address whether or not the
starting material is homogenous at the expression level of a single
gene. If evidence of a mixed population, with regards to the expression
of a single gene (in this case, α-globin), is observed such ChIP experi-
ments would first require a separation of these two populations. Al-
though we made several gene-targeting attempts, the generation of a
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humanised α-globin reporter mouse model has proved particularly
challenging due to the inherent repetitive nature of theα-globin cluster.

In conclusion, this study describes a striking example where the
same inherited autosomal mutation can generate two opposite

transcriptional phenotypes within the same cellular type, a phenome-
non that has to be taken in accountwhen performing epigenetic studies.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bcmd.2017.02.006.

Fig. 1. Single cell PCR analysis in humanised erythroid cells. An example ofα globin expression analysis carried out in 90mouse single erythroblasts (Ter119+). Each lane (numbered 1 to
20 and 1 to 24) corresponds to the same single cell. The expression of human α-gobin (hα) has been compared to mouse β-globin (mβ) in mouse normal (A) and in ΔMCS-R2 (B)
humanised erythroblasts. The red asterisks represent no detectable expression of hα compared to mβ. The black asterisks represent no detectable expression for both mβ and hα and
were not considered as informative. M = molecular weight marker (2-Log NEB). NTC = no template control. 10× cells = PCR analysis performed on 10 cells, as a control. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Immunofluorescence of red cells using a specific antibody against humanα-globin chains. (Top) Illustrations representing the two scenarios (rheostatic and binarymodes) bywhich
gene expression can be modulated down to 1–2% in the absence of an enhancer. (Bottom) Immunostaining with anti-human α-globin antibody (1:100) (Santa Cruz D-16 sc-31,110) of
mouse normal humanised red cells, mouse and human red cells at 100:1 ratio (showing species specificity of the antibody but also as an example of how an exclusive enhancer-binary
mode activity should appear in ΔMCS-R2), and mouse humanised red cells without the enhancer (ΔMCS-R2). Secondary antibody was used at 1:200 dilution (Alexa Fluor 488
Invitrogen A11055). Images were captured using a Nikon eclipse E600 microscope with a Nikon digital camera DXM1200C using NIS elements BR2.30 SP4 imaging software (all from
Nikon UK, Kingston-upon-Thames, United Kingdom). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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