530 research outputs found

    Using Gap Charts to Visualize the Temporal Evolution of Ranks and Scores

    Get PDF
    To address the limitations of traditional line chart approaches, in particular rank charts (RCs) and score charts (SCs), a novel class of line charts called gap charts (GCs) show entries that are ranked over time according to a performance metric. The main advantages of GCs are that entries never overlap (only changes in rank generate limited overlap between time steps) and gaps between entries show the magnitude of their score difference. The authors evaluate the effectiveness of GCs for performing different types of tasks and find that they outperform standard time-dependent ranking visualizations for tasks that involve identifying and understanding evolutions in both ranks and scores. They also show that GCs are a generic and scalable class of line charts by applying them to a variety of different datasets

    From point cloud to digital fabrication: A tangible reconstruction of Ca' Venier dei Leoni, the Guggenheim Museum in Venice

    Get PDF
    The paper describes how new digital methodologies can be used within the field of Cultural Heritage, not only with the aim of documenting the actual state of an architecture but to review the past transformations it has undergone, conserving and representing these histories as well. The premise to conservation and enhancement of our Heritage is a deep study in terms of position, shape, colour, and also of the historical and artistic features. Survey methods have acquired data acquisition techniques in line with technological progress: today's electronic and IT technologies, that are the tools of modern Geomatics, allow the effective survey and representation of 3D objects, from architectural structures to sculptures or archaeological finds. Over the last few years, the methodologies of acquisition and integrated representation for 3D patrimony documentation have developed and consolidated considerably: the possibilities of the digital realm can augment the understanding and the valorisation of a monument. The specific case offered in the present paper, Ca' Venier dei Leoni, the palace where is the Guggenheim Museum in Venice, is a significant example. It suggests not only the theme of the "no longer existing", or better never built, but also the opportunity to formulate hypotheses regarding its implementation and the impact that the palace would have had in the Venetian contest

    Tooteko: A case study of augmented reality for an accessible cultural heritage. Digitization, 3D printing and sensors for an audio-tactile experience

    Get PDF
    Tooteko is a smart ring that allows to navigate any 3D surface with your finger tips and get in return an audio content that is relevant in relation to the part of the surface you are touching in that moment. Tooteko can be applied to any tactile surface, object or sheet. However, in a more specific domain, it wants to make traditional art venues accessible to the blind, while providing support to the reading of the work for all through the recovery of the tactile dimension in order to facilitate the experience of contact with art that is not only "under glass." The system is made of three elements: A high-tech ring, a tactile surface tagged with NFC sensors, and an app for tablet or smartphone. The ring detects and reads the NFC tags and, thanks to the Tooteko app, communicates in wireless mode with the smart device. During the tactile navigation of the surface, when the finger reaches a hotspot, the ring identifies the NFC tag and activates, through the app, the audio track that is related to that specific hotspot. Thus a relevant audio content relates to each hotspot. The production process of the tactile surfaces involves scanning, digitization of data and 3D printing. The first experiment was modelled on the facade of the church of San Michele in Isola, made by Mauro Codussi in the late fifteenth century, and which marks the beginning of the Renaissance in Venice. Due to the absence of recent documentation on the church, the Correr Museum asked the Laboratorio di Fotogrammetria to provide it with the aim of setting up an exhibition about the order of the Camaldolesi, owners of the San Michele island and church. The Laboratorio has made the survey of the facade through laser scanning and UAV photogrammetry. The point clouds were the starting point for prototypation and 3D printing on different supports. The idea of the integration between a 3D printed tactile surface and sensors was born as a final thesis project at the Postgraduate Mastercourse in Digital Architecture of the University of Venice (IUAV) in 2012. Now Tooteko is now a start up company based in Venice, Italy

    A Statistical Analytical Model for Hydrophilic Electropore Characterization: A Comparison Study

    Get PDF
    Molecular dynamics (MD) simulations have proved to be a useful tool for unveiling many aspects of pore formation in lipid membranes under the influence of external electric fields. In order to compare the size-related properties of pores in bilayers of various compositions, generated and maintained under different physical and chemical conditions, reference metrics are needed for characterizing pore geometry and its evolution over time. In the present paper three different methodologies for evaluating electropore geometrical behavior will be compared: (i) the first allows analysis of the dimensions of the pore through an algorithm that uses a Monte Carlo simulated annealing procedure to find the best route for a sphere with variable radius to squeeze through the pore channel; (ii) a more recent procedure extracts pore volume from an integration of a three-dimensional model of the irregular shape of the pore; (III) a new method based on a statistical approach (following essential dynamics principles) describes pore geometrical fluctuations in a robust and reproducible way. For the same pore height of 2 nm the three methods give rise to mean electropore radii up to 3-fold different. The three approaches described here are not system-specific, i.e. the methods can be generalized for any kind of pore for which appropriate structural information is available

    Renal disease in nail-patella syndrome: Clinical and morphologic studies

    Get PDF
    Renal disease in nail-patella syndrome: Clinical and morphological studies. Clinical and morphological features of seven patients with the nail-patella syndrome are described. Progression to renal failure after a prolonged period of asymptomatic proteinuria is reported. Kidney tissue from these seven patients studied by light, immunofluorescent and electron microscopy demonstrated abnormalities characteristic of this disease. Focal glomerular basement membrane thickening was observed by light microscopy. Immunofluorescent microscopy showed focal glomerular basement membrane and arteriolar staining with serum proteins, predominantly IgM and β1C. Electron microscopy revealed markedly abnormal glomerular basement membranes containing bundles of cross-striated fibrils. These fibrils were more readily demonstrated in phosphotungstic acid-stained sections. The data presented suggest that the inborn error of connective tissue metabolism of the nail-patella syndrome is associated with renal disease as the result of deposition of collagen moieties in glomerular basement membranes with subsequent alterations of glomerular structure and function

    Cross time-bin photonic entanglement for quantum key distribution

    Get PDF
    We report a fully fibered source emitting cross time-bin entangled photons at 1540 nm from type-II spontaneous parametric down conversion. Compared to standard time-bin entanglement realizations, the preparation interferometer requires no phase stabilization, simplifying its implementation in quantum key distribution experiments. Franson/Bell-type tests of such a cross time-bin state are performed and lead to two-photon interference raw visibilities greater than 95%, which are only limited by the dark-counts in the detectors and imperfections in the analysis system. Just by trusting the randomness of the beam-splitters, the correlations generated by the source can be proved of non-classical origin even in a passive implementation. The obtained results confirm the suitability of this source for time-bin based quantum key distribution.Comment: 5 pages, double column, 3 captioned figure

    Theory of Current-Driven Domain Wall Motion: A Poorman's Approach

    Full text link
    A self-contained theory of the domain wall dynamics in ferromagnets under finite electric current is presented. The current is shown to have two effects; one is momentum transfer, which is proportional to the charge current and wall resistivity (\rhow), and the other is spin transfer, proportional to spin current. For thick walls, as in metallic wires, the latter dominates and the threshold current for wall motion is determined by the hard-axis magnetic anisotropy, except for the case of very strong pinning. For thin walls, as in nanocontacts and magnetic semiconductors, the momentum-transfer effect dominates, and the threshold current is proportional to \Vz/\rhow, \Vz being the pinning potential

    SURVEY METHODS FOR SEISMIC VULNERABILITY ASSESSMENT OF HISTORICAL MASONRY BUILDINGS

    Get PDF
    On 20th and 29th of May 2012, two powerful earthquakes struck northern Italy. The epicentres were recorded respectively in Finale Emilia (magnitude 5.9 Ml) and Medolla (magnitude 5.8 Ml) in the province of Modena, though the earthquake was formed by a series of seismic shakes located in the district of the Emilian Po Valley, mainly in the provinces of Modena, Ferrara, Mantova, Reggio Emilia, Bologna and Rovigo. Many monuments in the city of Mantova were hit by the earthquake and, among these, Palazzo Ducale with the well-known Castello di San Giorgio which host the noteworthy "Camera degli Sposi". This building, the most famous of the city, was so damaged that it was closed for more than one year after the earthquake. The emblem of the Palace and Mantova itself, the previously cited "Camera degli Sposi" realized by Andrea Mantegna, was damaged and all the economic and social life of the city was deeply affected. Immediately after the earthquake, the Soprintendenza per i Beni Architettonici e Paesaggistici of Brescia, Cremona and Mantova establish an agreement with the University Iuav of Venice, requiring an analysis and assessment of the damage in order to proceed with the development of an intervention project. This activity turned out to be very important not only from the point of view of the recovery of the architectural and artistic heritage but also because the city's economy is based primarily on tourism. The closure of one of the most important monuments of Mantova has led to a significant and alarming decline in the government income

    Magnetic properties and domain structure of (Ga,Mn)As films with perpendicular anisotropy

    Full text link
    The ferromagnetism of a thin GaMnAs layer with a perpendicular easy anisotropy axis is investigated by means of several techniques, that yield a consistent set of data on the magnetic properties and the domain structure of this diluted ferromagnetic semiconductor. The magnetic layer was grown under tensile strain on a relaxed GaInAs buffer layer using a procedure that limits the density of threading dislocations. Magnetometry, magneto-transport and polar magneto-optical Kerr effect (PMOKE) measurements reveal the high quality of this layer, in particular through its high Curie temperature (130 K) and well-defined magnetic anisotropy. We show that magnetization reversal is initiated from a limited number of nucleation centers and develops by easy domain wall propagation. Furthermore, MOKE microscopy allowed us to characterize in detail the magnetic domain structure. In particular we show that domain shape and wall motion are very sensitive to some defects, which prevents a periodic arrangement of the domains. We ascribed these defects to threading dislocations emerging in the magnetic layer, inherent to the growth mode on a relaxed buffer

    Demographic and socioeconomic disparity in nutrition: Application of a novel correlated Component Regression Approach

    Get PDF
    OBJECTIVES: This study aimed to examine the most important demographic and socioeconomic factors associated with diet quality, evaluated in terms of compliance with national dietary recommendations, selection of healthy and unhealthy food choices, energy density and food variety. We hypothesised that different demographic and socioeconomic factors may show disparate associations with diet quality. STUDY DESIGN: A nationwide, cross-sectional, population-based study. PARTICIPANTS: A total of 1352 apparently healthy and non-institutionalised subjects, aged 18–69 years, participated in the Observation of Cardiovascular Risk Factors in Luxembourg (ORISCAV-LUX) study in 2007–2008. The participants attended the nearest study centre after a telephone appointment, and were interviewed by trained research staff. OUTCOME MEASURES: Diet quality as measured by 5 dietary indicators, namely, recommendation compliance index (RCI), recommended foods score (RFS), non-recommended foods score (non-RFS), energy density score (EDS), and dietary diversity score (DDS). The novel Correlated Component Regression (CCR) technique was used to determine the importance and magnitude of the association of each socioeconomic factor with diet quality, in a global analytic approach. RESULTS: Increasing age, being male and living below the poverty threshold were predominant factors associated with eating a high energy density diet. Education level was an important factor associated with healthy and adequate food choices, whereas economic resources were predominant factors associated with food diversity and energy density. CONCLUSIONS: Multiple demographic and socioeconomic circumstances were associated with different diet quality indicators. Efforts to improve diet quality for high-risk groups need an important public health focus
    corecore