10,893 research outputs found

    Environment of compact extragalactic radio sources

    Get PDF
    We have studied the interrelation of young AGN with their hosts. The objects of study are the young and powerful GPS and CSS radio sources. Due to their small size, GPS and CSS sources are excellent probes of this relation. Furhthermore, their young age allows us to compare them to the larger, old radio sources and establish a time-line evolution of this relation. Combining imaging and spectroscopy at UV, optical and radio wavelengths we find evidence of strong interaction between the host and the radio source. The presence and expansion of the radio source clearly affects the properties and evolution of the host. Furthermore, the radio source and host significantly affect each other's evolution. We describe our results and how these interactions take place.Comment: 6 pages. To appear in "Highlights of Spanisg astrophysics IV. Proceedings of the VII scientific meeting of the Spanish Astronomical Society". Editors: F. Figueras, J.M. Girart, M.Hernanz, C. Jordi. Springe

    Hydrogen storage in Mg-Ti thin film alloys : an in situ characterization study

    Get PDF
    Depleting fossil fuel reserves and growing climate threats urge us towards a sustainable society. Moreover, we should preferably not solely rely on fossil fuels for our primary energy needs as part of the fossil fuels is imported from politically unstable regions. We should therefore think of new ways to ensure our energy needs are met in the near future. Most likely, a mixture of different sources will be used. These resources are preferable renewable in nature, e.g. solar, biomass, wind, water and geothermal, which can typically be used for stationary applications. For mobile applications, however, the use of an on-board energy storage system is indispensible. Especially for the latter, hydrogen is expected to play a dominant role. One of the important aspects of hydrogen is that only environmentally friendly products are emitted in the exothermic reaction of hydrogen with oxygen in a fuel cell. However, the feasibility of hydrogen production, storage and finally the use in fuel cells are still under debate. In prototype applications, such as fuel cell-driven automobiles, hydrogen is generally stored in high-pressure cylinders. New lightweight composite cylinders have been developed that are capable of withstanding pressures of up to 800 bars. Even though hydrogen cylinders are expected to withstand even higher pressures in the near future, their large volumes and the energy required to compress hydrogen will limit their practical applicability. As opposed to storing molecular hydrogen it can also be stored atomically in a metal hydride (MH), which can reduce the volume significantly. In addition, MHs provide relatively safe storage as they can be handled without extensive safety precautions unlike, for example, compressed hydrogen gas. Currently, the foremost problem of solid state hydrogen storage is to find a metal-hydrogen system with a gravimetric capacity that exceeds 6 wt.% H and absorbs/desorbs hydrogen at atmospheric pressures at ambient temperatures. One of the most promising elements that can reversible absorb and desorb a significant amount of hydrogen is magnesium, which has an intrinsic gravimetric storage capacity of 7.7 wt.% H. In spite of its excellent gravimetric storage capacity, the high desorption temperature (279 °C) and extremely slow hydrogen (de)sorption kinetics prevent Mg from being employed commercially. Mg is, however, often a large constituent of new hydrogen storage materials as it lowers the weight of the material and therefore increases the gravimetric capacity, which is necessary to fulfill the weight restrictions. In this thesis the hydrogen storage characteristics of Mg alloyed with other metals are addressed. The primary aim is to enforce a high absorption and desorption rate, and limit the weight of the alloys. Chapter 2 describes the experimental settings of the thin films preparation methods and characterization techniques. The thin films were prepared by means of electron beam deposition and magnetron co-sputtering and hereafter investigated by means of Rutherford Backscattering Spectroscopy to accurately determine the film thickness and composition. Electrochemistry was used as the main tool to investigate the hydrogen storage properties of the films in detail. One of the advantages of using electrochemistry is that the electrochemical equilibrium potential can be used to calculate the equivalent hydrogen partial pressure, which gives information about the thermodynamics of the metal-hydrogen system. The electrochemical setup is not straightforward as it requires a special three-electrode setup to obtain reliable experimental data. The experimental pitfalls and solutions, like for instance the need of an oxygen scrubber, to avoid incorrect electrochemical analyses are described in detail. By applying a fixed current, which is equivalent to a fixed (de)hydrogenate rate, the possibility to rapidly insert or extract hydrogen from the hydrogen absorbing medium can be addressed. Electrochemical control also offers the possibility to calculate and tune the hydrogen content in the films with high precision. The former was used to determine if the materials are interesting from a gravimetric point-of-view, while the latter was adopted in combination with other characterization techniques, like for example X-ray diffraction, which provides new insights into the effects of the hydrogen content on the host material. The theoretical background and experimental settings of several electrochemical techniques, e.g. amperometry, cyclic voltammetry, Galvanostatic Intermittent Titration Technique and impedance spectroscopy, were discussed. X-ray diffraction was used throughout the thesis to resolve the crystallography of the phases in the as-prepared samples. To acquire crystallographic data as a function of the hydrogen content custom made in situ X-ray diffraction setups were used. The theoretical background of X-ray diffraction and a detailed description of the experimental setups and settings are described. A Pd topcoat is often applied to hydride-forming thin film materials to protect them from oxidation and catalyze the dissociation of H2 or electrocatalyze the reduction of H2O. As a 10 nm Pd caplayer was applied to all Mg-based alloys described in this thesis, it is useful to determine its thermodynamic and electrocatalytic properties separately, which is presented in Chapter 3. A lattice gas model was presented recently and successfully applied to simulate the absorption/desorption isotherms of various hydride-forming materials. The simulation results are expressed by parameters corresponding to several energy contributions, e.g. interaction energies. The use of a model-system is indispensable in order to show the strength of these simulations. The palladium-hydrogen system is one of the most thoroughly described metal hydrides found in the literature and is therefore ideal for this purpose. The effects of decreasing the Pd thickness on the pressure-composition isotherms were monitored experimentally and subsequently simulated. An excellent fit of the lattice gas model to the experimental data was obtained and the corresponding parameters were used to describe several thermodynamic properties. It was found that the contribution of H-H interaction energies to the total energy and the influence of the host lattice energy are significantly and systematically changing as a function of Pd thickness. Conclusively, it was verified that the lattice gas model is a useful tool to analyze the thermodynamic properties of hydrogen storage materials. Also, the electrocatalytic properties of a 10 nm thick Pd film were determined by means of electrochemical impedance spectroscopy, which revealed that the best electrocatalytic properties are found for ??-phased Pd hydride. Determining the properties of a single-layer 10 nm thick Pd film was valuable as it was used to determine its influence on the Pd-coated Mg-based thin film alloys that were the topic of investigation for the remainder of the thesis. Recently, a thin film approach revealed that new lightweight alloys of Mg with Ti, V or Cr can be prepared that cannot be synthesized via standard alloying techniques, because the alloys are thermodynamically unstable. Electrochemical measurements showed that especially the Mg-Ti system possesses the ability to reversibly store a considerable amount of hydrogen, which can be absorbed and desorbed at relatively high rates compared to pure Mg. The systematic investigation of hydrogen storage properties of the binary MgyTi1-y alloy composition is described in Chapter 4. It is shown from X-ray diffraction (XRD) measurements that as-prepared electron-beam deposited and sputtered MgyTi1-y thin films with y ranging from 0.50 to 1.00 are crystalline and single-phase. Galvanostatic (de)hydrogenation measurements were performed to unveil the effects of the Mg-to-Ti ratio on the hydrogen absorption and desorption rates. Increasing the Ti-content up to 15 at.% does not change these rates much and hydrogen can only be desorbed at a relatively low rate. Beyond 15 at.% Ti, however, the hydrogen desorption rate increases substantially. A superior reversible hydrogen storage capacity that exceeds 6 wt.% H, along with excellent hydrogen absorption and desorption rates, was found for the Mg0.80Ti0.20 alloy. The close analogy of the electrochemical behavior of MgyTi1-y and MgySc1-y alloys points to a face-centered cubic-structured hydride for the alloys showing fast hydrogen uptake and release rates, whereas for the hydrides of alloys rich in Mg (>80 at.%), that show a slow desorption rate, probably crystallize into the common MgH2 body-centered tetragonal structure. The cycling stability of electron-beam deposited and sputtered thin film Mg0.80Ti0.20 alloys was found to be constant over the first 10 cycles, hereafter it decreased sharply caused by delamination of the film from the substrate. The intrinsic cycling stability is therefore expected to be higher. Isotherms of MgyTi1-y thin films showed that the desorption plateau pressure is not strongly affected by the Mg-to-Ti ratio and is almost equal to the equilibrium pressure of the magnesium-hydrogen system. Impedance analyses showed that the surface kinetics can be fully attributed to the Pd-topcoat. The impedance, when the MgyTi1-y thin film electrodes are in their hydrogen-depleted state, was found to be dominated by the transfer of hydrogen across the Pd/MgyTi1-y interface. In Chapter 4 it was argued that the symmetry of the crystal lattice of the host material probably strongly affects the hydrogen uptake and release rates. The largest difference for the (de)hydrogenation rates was found for MgyTi1-y alloys containing 70 to 90 at.% Mg. Therefore, the crystallography of these alloy compositions was resolved by in situ XRD and the results are presented in Chapter 5. Firstly, in situ gas phase XRD measurements were performed to identify the crystal structures of as-deposited and hydrogenated MgyTi1-y thin film alloys. The preferred crystallographic orientation of the films in both the as-prepared and hydrogenated state made it difficult to unambiguously identify the crystal structure and therefore the identification of the symmetry of the unit cells was achieved by in situ recording XRD patterns at various tilt angles. The results reveal a hexagonal closed packed structure for all alloys in the as-deposited state. Hydrogenating the layers under 1 bar H2 transforms the unit cell into face-centered cubic for the Mg0.70Ti0.30 and Mg0.80Ti0.20 compounds, whereas the unit cell of hydrogenated Mg0.90Ti0.10 has a body-centered tetragonal symmetry. The (de)hydrogenation kinetics changes along with the crystal structure of the hydrides from rapid for face-centered cubic-structured hydrides to sluggish for hydrides with a body-centered tetragonal symmetry and emphasized the influence of the symmetry of the crystal lattice on the hydrogen transport properties

    Introduction: memory on the move

    Get PDF

    Fraction auctions: the tradeoff between effciency and running time

    Get PDF
    This paper studies the sales of a single indivisible object where bidders have continuous valuations. In Grigorieva et al. [13] it was shown that, in this setting, query auctions necessarily allocate inefficiently in equilibrium. In this paper we propose a new sequential auction, called the c-fraction auction. We show c-fraction auctions guarantee approximate efficiency at any desired level of accuracy, independent of the number of bidders. We discuss the running time and the efficiency in the ex-post equilibrium of the auction. We show that by changing the parameter c of the auction we can trade off efficiency against running time.operations research and management science;

    Inefficiency of equilibria in query auctions with continuous valuations

    Get PDF
    Query auctions are iterative auctions in which bidders have to select in each round an action from a finite set. We show that, when bidders have continuous valuations, any ex post equilibrium in an ex post individually rational query auction can only be ex post efficient when the running time of the auction is infinite for almost all realizations of valuations of thebidders. Thus, when valuations are drawn from a continuous probability distribution, efficiency can only be bought at the expense of a running time that is infinite with probability one. For two bidders we even show this to be true when we only require efficiency with probability one.mathematical economics;

    On The Fastest Vickrey Algorithm

    Get PDF
    We investigate the algorithmic performance of Vickrey-Clarke-Groves mechanisms in the single item case. We provide a formal definition of a Vickrey algorithm for this framework, and give a number of examples of Vickrey algorithms. We consider three performance criteria, one corresponding to a Pareto criterion, one corresponding to worst case analysis, and a third criterion related to first-order stochastic dominance. We show that Pareto optimal Vickrey algorithms do not exist and that worst case analysis is of no use in discriminating between Vickrey algorithms. For the case of two bidders, we show the bisection auction to be optimal according to the third criterion. The bisection auction istherefore optimal in a very strong sense.operations research and management science;

    Inefficiency of equilibria in query auctions with continuous valuations

    Get PDF
    We show that, when bidders have continuous valuations, any ex post equilibrium in an ex post individually rational query auction can only be ex post efficient when the running timeof the auction is infinite for almost all realizations of valuations of the bidders. We also show that this result applies to the general class of bisection auctions. In contrast we show that, when we allow for inefficient allocations with arbitrarily small probability, there is a query auction (to be more specific, a bisection auction) that attains this level of approximate efficiency in equilibrium, while additionally the running time of the auction in equilibrium is finite for all realizations of valuations.mathematical economics;

    The family of c-bisection auctions: efficiency and running time

    Get PDF
    In this paper we analyze the performance of a recently proposed sequential auction, called the c-bisection auction, that can be used for a sale of a single indivisible object. We discuss the running time and the e±ciency in the ex-post equilibrium of the auction. We show that by changing the parameter c of the auction we can trade o® e±ciency against running time. Moreover, we show that the auction that gives the desired level of e±ciency in expectation takes the same number of rounds for any number of players.computer science applications;

    Selective metal/metal oxide etch process

    Get PDF
    corecore