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Summary. We show that, when bidders have continuous valuations, any ex post equilibrium

in an ex post individually rational query auction can only be ex post efficient when the running

time of the auction is infinite for almost all realizations of valuations of the bidders. We also

show that this result applies to the general class of bisection auctions. In contrast we show

that, when we allow for inefficient allocations with arbitrarily small probability, there is a query
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realizations of valuations.
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1 Introduction

This paper concerns the sales of a single indivisible item to n buyers by means of an auction,

each buyer having a private valuation vi for the item. 1 This setting has been thoroughly

analyzed and is very well understood. (see for example Krishna (2002)). The sealed-bid second

price auction by Vickrey (1961), and the ascending clock version of the English auction are

two strategically equivalent designs that solve the allocation problem in dominant strategies.

In the dominant strategy equilibrium both auctions allocate the item efficiently –they both

award the item to the bidder with the highest valuation. The Vickrey auction collects sealed

bids, allocates to the bidder with the highest bid (if more than one, using a lottery), and sets

the price equal to the second-highest bid. The ascending clock version of the English auction

continuously increases the price on a price clock, and bidders step out if the price becomes

larger than their willingness to pay. The clock stops when the second last bidder stepped out.

If at some point all remaining bidders step out simultaneously, the item is assigned by a lottery

among them at the current price.

This is in many cases a satisfactory way to auction a single indivisible item. It is however not

always feasible to execute either the Vickrey auction or the ascending clock auction, or for that

matter any other auction that is strategically equivalent to these. Our first main result identifies

such an environment –continuous valuations combined with a multi round query auction– in

which in equilibrium necessarily the item will be assigned inefficiently with positive probability,

unless one accepts the unrealistic phenomenon that the auction will last indefinitely –i.e. the

auction runs an infinite number of rounds– for almost all realizations of valuations. In other

words, any implementation of the Vickrey auction by means of a query auction in a model with

continuous valuations will necessarily have an infinite running time for almost all realizations

of valuations, and is hence not a feasible option in any practical sense.

We will now turn to a more detailed description of the exact environment in which and the

exact conditions under which our inefficiency result holds.

Continuous valuations. In many applications, there is nothing wrong with assuming dis-

crete valuations. It is however sometimes desirable to be able to run an auction without an

a-priori agreement on the discretization of bids. The leading example from which we draw our

motivation is a computerized bidding environment in multi-agent systems. In such an envi-

ronment the precision with which bidding agents represent their valuations might be unknown,

1We assume quasi-linear utilities throughout the paper.
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and therefore preferably be left unspecified. One way to model this is to allow valuations to

take on continuous values. Also time constraints –an issue of some importance in combinatorial

auctions like the UMTS auctions– can thus be captured, since time restrictions might force an

auctioneer to determine valuations only up to a level of precision that is not of the same order

of magnitude in which bidders do, or would like to, express valuations.

Query auctions. The computerized bidding environment is modeled as a query auction. In a

query auction the auctioneer sequentially offers bidders the opportunity to take one of a finite

set of actions. Such an offer is referred to as a query. 2 During the course of the auction each

bidder may be, and usually will be, queried more than once. Typically an “action” takes the

form of an answer to a query regarding the valuation of the bidder in question, such as “Is your

valuation larger than 15?” to which the response can be either a yes or a no.

Determination of winner and payment in a query auction are based exclusively on the actions

taken by the bidders in response to the queries of the auctioneer. The auction ends as soon as

both winner and payment are determined. The number of times a particular bidder is queried

during the auction is not assumed to be bounded, and the auction may thus potentially take

an infinite number of query rounds. We will only consider ex post individually rational query

auctions, meaning that each bidder, given his valuation vi, has a plan of action in the auction

that guarantees him a non-negative payoff, regardless of the behavior of the other bidders.

Inefficiency of ex post equilibrium. In this paper we investigate the efficiency of ex post

equilibria in query auctions. An ex post equilibrium is a strategy profile such that, given any

realization of valuations, the plan of action prescribed to a bidder in the auction by his strategy

is a best response to the plans of action prescribed by the strategies of the other bidders given

their valuations. The first main result in this paper can now be precisely formulated as follows.

An ex post equilibrium is called sometimes finite if the set of realizations of valuations for which

in equilibrium the auction ends in finite time has positive Lebesgue measure. The result is that,

given any ex post individually rational query auction, any ex post equilibrium in that auction

that is sometimes finite cannot be ex post efficient.

Existence of ex post equilibrium in bisection auctions. Still, ex post equilibrium need

2Each separate query by the auctioneer could be thought of as a round in the auction because the action
taken by the queried bidder is, at least in our setting, supposed to be publicly observable. Only actions whose
effects can only be observed at the same moment in time by other bidders are usually considered to be taken
in the same round. Rounds typically differ from each other in terms of the information available to bidders. In
that sense each query could be counted as a round. In this paper though we deviate slightly from this standard
interpretation. The order in which bidders are queried is usually fixed, and a round is a sequence of queries in
which each bidder is queried exactly once.
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not always exist, which would render our first result useless. Therefore we show that for a very

wide class of query auctions, namely the so-called bisection auctions, an ex post equilibrium

exists. We show that a bisection auction is indeed ex post individually rational, and that the

ex post equilibrium in a bisection auction is indeed sometimes finite. Thus our first result

applies to this class of auctions. Moreover, under a mild assumption (namely that the price in

the auction can in principle be driven up to exceed any possible valuation of any bidder, an

assumption that is met by all existing auctions) the equilibrium can even be shown to be finite

for any realization of valuations.

The bisection mechanism works as follows. Valuations of bidders are assumed to be drawn from

an interval I = [α, β). Before the auction starts, an order of the bidders in the auction is chosen

randomly. We assume that this ordering is 1 ≺ 2 ≺ 3 ≺ · · · ≺ n − 1 ≺ n.

The auction runs for an a priori indefinite number of rounds. In each round there is a specific

payment P to be made by a bidder if he wins in this round. In every round there is also a query

price Q which is higher than the current payment and an upper bound H on future payments

that is higher than the query price. Initially the payment and the upper bound are set as P = α

and H = β, and all bidders are active. In every round the auctioneer asks the bidders that are

active in that round whether they would be willing to pay the query price. Bidders are queried

openly in increasing order.

If only one bidder is willing to pay the query price, he becomes the winner of the auction. He

has to pay the current payment (not the query price). If more than 1 bidder is willing to pay

the query price, the auction proceeds into the next round. Only those bidders who agreed to

pay the query price stay active. The query price becomes the payment, and the new query

price is raised to a level strictly above the old query price, but still below the upper bound. If

no bidder is willing to pay the query price all bidders stay active, the payment stays the same,

the old query price becomes the new upper bound, and the new query price is set between the

new payment and the new upper bound. In case no winner is found, i.e., should the auction

run indefinitely, then among the bidders who are still active the one with highest ranking wins

and he pays the lowest price that is still higher than or equal to any of the payments that were

announced while the auction was running.

Effectively a bisection auction is a variation of the bisection auction presented in Grigorieva et al.

(2002), the main two differences being that in the present paper the auction may last indef-

initely, and that the auction stops as soon as the winner is found. The bisection auction in
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Grigorieva et al. (2002) was designed to handle the situation in which bidders have discrete valu-

ations. The present definition of a bisection auction is specifically designed to handle continuous

valuations.

The second result of this paper is that each bisection auction has an ex post equilibrium. Given

a bisection auction we construct a specific equilibrium, called the bluff equilibrium, for that

auction. The bluff equilibrium requires each bidder to act as follows. When there still is an

active bidder with a lower rank in the ordering, the bidder stays in the auction until the query

price exceeds his valuation. As soon as he becomes the active bidder with the lowest rank, he

stays in the auction until the lower bound exceeds his valuation (effectively a bluff since he

will say yes to a query price exceeding his valuation). We show that this strategy is ex post

individually rational, and that the resulting profile where each bidder uses this strategy is an

ex post equilibrium. We also show that the bluff equilibrium is sometimes finite –and hence

not ex post efficient according to our first result.

In the second half of the paper we analyze exactly how (in)efficient ex post equilibria, in

particular the bluff equilibrium, may be. In particular we show that approximate efficiency can

be achieved within the family of fixed fraction auctions, a special class of bisection auctions.

Fixed fraction auctions. In a fixed fraction auction, given the payment P and upper bound

H in any round, the query price in that round is given by Q = (1 − c)P + cH, where c is a

real number in the interval (0, 1). Thus, the increment with which the payment P is increased

is a fixed fraction c of the current price interval [P,H) (the interval that contains all future

payments, no matter what responses the bidders give to future queries).

As a measure of inefficiency we employ the probability of inefficient allocation. We assume that

valuations of bidders are drawn independently from the uniform distribution on the interval

[α, β). 3 The probability of inefficient allocation is the probability –according to the joint prob-

ability distribution on [α, β)n– of the set of realizations of valuations for which in equilibrium

the item does not get assigned to a bidder with the highest valuation.

The main finding in this part of the paper is that for the fixed fraction auction with fraction

c the probability of inefficient allocation is smaller than or equal to c, no matter how many

bidders participate in the auction. Moreover, the running time of a fixed fraction auction in the

bluff equilibrium is finite for all realizations of valuations. Thus, the minimum level of efficiency

3We use the uniform distribution merely for ease of exposition. Our results in the second part of the paper
hold as soon as valuations are i.i.d. draws from an arbitrary continuous probability distribution on [α, β).



Inefficiency of equilibria in query auctions with continuous valuations 5

can be determined by the auctioneer before it is known how many bidders will participate in the

auction by choosing the appropriate fraction c, and finite running time is guaranteed. However,

we also show that the probability of inefficient allocation is bounded away from zero. In other

words, given the fraction c, the probability of inefficient allocation does not converge to zero as

the number of participants becomes large. This implies that c is the only tool available to the

auctioneer to control the level of inefficiency, increasing the number of participants is not an

appropriate method.

As a comment on the full generality of these statements, we stress again that the same con-

clusions can be obtained for any continuous probability distribution on [α, β) from which val-

uations are independently drawn. In this general setting we construct a bisection auction, not

necessarily a fixed fraction auction, for which all the above claims hold as well.

These results alleviate the severity of our initial inefficiency result. The inefficiency result

said that in our setting efficiency can only be achieved at the expense of an infinite running

time of the auction for almost all realizations of valuations. The second part of the paper

on the other hand shows that, by choosing the appropriate auction, we can have approximate

efficiency (meaning that the probability of inefficient allocation can be made arbitrarily small)

in equilibrium, while the running time of the auction in equilibrium is finite for all realizations

of valuations. Moreover, given the desired level of efficiency, the particular choice of auction

can be made independently of the number of bidders that will participate in the auction.

Related literature. Rothkopf and Harstad (1994) study a model with continuous valuations

where bidders are obedient and can only bid on a finite number of bid levels. They derive

bounds on the loss of welfare and show that, when valuations are uniformly distributed, for 2

bidders and m bid levels the evenly spaced bid level auction is revenue optimal as well as welfare

optimal, with a loss of welfare of 1
6m2 . In the same model David et al. (2005) argue that a multi-

round version of the auction with discrete bid levels has truthful bidding as a dominant strategy

equilibrium. They show that in equilibrium for more than 2 bidders the optimal auction has

decreasing bid increments, and subsequently analyze the probability of efficient allocation for

both evenly spaced bid levels and the optimal choice of bid levels. Also Blumrosen and Nisan

(2002) and Blumrosen et al. (2003) study a model where bidders have continuous valuations and

a finite set of bid levels. They show that in their model truthful bidding is a dominant strategy

equilibrium and derive bounds on the loss of welfare in equilibrium. Parkes (2005) studies

a model in which bidders are uncertain about their preferences and preference elicitation is
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costly. He shows that in such an environment ascending price query auctions can achieve better

allocative efficiency than a sealed bid auction, using less elicitation of preferences.

Organization of the paper. Section 2 is a preliminary section where we collected most of

the known results on auction design that we use in this paper. In section 3 we show that, when

valuations are continuous, efficiency of ex post equilibria in query auctions can only be obtained

at the expense of an infinite running time of the auction for almost all realizations of valuations.

In section 4 we provide a family of query auctions, the bisection auctions, in which we prove the

existence of an ex post individually rational ex post equilibrium, called the bluff equilibrium,

that has a finite running time for a non-negligible set of valuations. Hence bluff equilibria are

ex post inefficient. In section 5 we show that, when we allow for inefficient allocations with

arbitrarily small –but positive– probability, there is a bisection auction that attains this level

of inefficiency in equilibrium, while the running time is finite for every realization of valuations.

Section 6 concludes. Appendix 1 is devoted to an elementary proof of the Theorem of Green

and Laffont in our (simple) context. Appendix 2 contains proofs of statements that are used in

section 4.

2 Preliminaries

We will briefly discuss the notions used in this paper. A single indivisible object is being sold

to a set N = {1, . . . , n} of bidders by means of a deterministic auction. The set of actions of

bidder i is denoted by Fi. Write F =
∏

i Fi. The winner determination rule

w : F → N

decides for each profile f = (fi)i∈N of actions in F who the winner of the object is. The

payment function

p : F → R

determines for each profile f of actions in F the amount p(f) the winner w(f) has to pay to

the auctioneer. A triplet (F,w, p) is an auction.

STRATEGIC BEHAVIOR Each bidder has a valuation vi for the item. Valuations are drawn

from a non-degenerate interval I and are assumed to be private information. Bidders have to

decide in advance which action to choose for each valuation they might possibly have. Thus, a

strategy of bidder i is a function si : I → Fi stating that bidder i, when having valuation vi ∈ I,

will take action si(vi) in Fi. A vector s = (si)i∈N of strategies is called a strategy profile.
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A realization v = (vi)i∈N of valuations defines an ex post game (F,w, p, v) with action space

Fi for bidder i and payoff function ui(vi) : F → R defined by

ui(vi)(f) :=

{

vi − p(f) if i = w(f);
0 otherwise.

Since the ex post game (F,w, p, v) is a game in normal form, the classical definition of Nash

equilibrium applies. An action profile f = (fi)i∈N is a Nash equilibrium of the ex post game

(F,w, p, v) if for every bidder i and every action gi ∈ Fi of that bidder it holds that

ui(vi)(f) ≥ ui(vi)(f | gi)

where (f | gi) denotes the action profile where bidder i chooses gi and every other bidder j

chooses fj . A strategy profile s = (si)i∈N is an ex post equilibrium of the auction (F,w, p) if

for every realization v = (vi)i∈N of valuations the action profile s(v) := (si(vi))i∈N in F is a

Nash equilibrium of the ex post game (F,w, p, v).

In the same way other notions also carry over to the setting of an auction. A strategy si of

bidder i is dominant if for every realization vi of the valuation of bidder i and any profile f of

actions

ui(vi)(f | si(vi)) ≥ ui(vi)(f | gi)

holds for any action gi ∈ Fi. Given a strategy profile s, strategy si is a best response for player

i to s if

ui(vi)(s(v)) ≥ ui(vi)(s(v) | fi)

for any realization v = (vi)i∈N of valuations and any action fi ∈ Fi. Strategy si is ex post

individually rational if for every realization vi of the valuation of bidder i and any profile f of

actions,

ui(vi)(f | si(vi)) ≥ 0.

The auction (F,w, p) itself is called ex post individually rational if every bidder has an ex post

individually rational strategy in it. A strategy profile s is called ex post efficient if for every

realization v = (vi)i∈N it holds that

w(s(v)) ∈ arg max{vi | i ∈ N}.

DIRECT AUCTIONS An auction (F,w, p) is called direct if Fi = I for each bidder i. In other

words, the action a bidder has to take in the auction is to report a valuation (not necessarily his

true valuation). Since in a direct auction it is clear what the action spaces are, we will simply
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write (w, p) to denote such an auction. A straightforward but important observation is that

any strategy profile s in (F,w, p) automatically induces a direct auction (w ◦ s, p ◦ s).

A direct auction (w, p) is called a Vickrey auction if for every profile r = (ri)i∈N of reported

valuations in IN it holds that

w(r) ∈ arg max{ri | i ∈ N} and p(r) := max{ri | i 6= w(r)}.

It is very well known that in a Vickrey auction bidding your valuation is a dominant strategy.

If every bidder bids according to this strategy, the outcome is ex post efficient, and the winner

pays an amount equal to the second-highest valuation.

A THEOREM OF GREEN AND LAFFONT In the next section we will use the following version

of a Theorem by Green and Laffont, which shows under precisely which conditions a direct

auction is a Vickrey auction (see Green and Laffont (1977)). For completeness a proof is given

in Appendix 7.1.

Theorem 2.1 A direct auction (w◦s, p◦s) is a Vickrey auction if the following three conditions

hold

(a) the auction (F,w, p) is ex post individually rational;

(b) the strategy profile s is an ex post equilibrium of (F,w, p);

(c) the strategy profile s is ex post efficient in (F,w, p).

QUERY AUCTIONS Query auctions are already verbally defined in the introduction. We will

give formal definitions of the two specific types of query auctions that are used in this paper,

namely bisection auctions and fixed fraction auctions. However, for our purposes the verbal

description of a general query auction that is given in the introduction suffices.

3 Efficient query equilibria are almost always infinite

Suppose we are given a query auction (F,w, p) together with an ex post equilibrium s = (si)i∈N

in this auction. Such an equilibrium is called a query equilibrium. Let Z be the set of valuations

v = (vi)i∈N for which in the action profile s(v) := (si(vi))i∈N the auctioneer asks a finite number

of queries before the auction ends. We will assume that Z is measurable, and that moreover

w ◦ s is also measurable. When Z has Lebesgue measure equal to zero, we say that the query

equilibrium s is almost always infinite. When Z has Lebesgue measure greater than zero, we

say that s is sometimes finite.
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Theorem 3.1 Let s be a query equilibrium in (F,w, p) and suppose that s is sometimes finite.

Then the corresponding direct auction (w ◦ s, p ◦ s) is not a Vickrey auction.

Proof. Define

O(Z) := {(w(s(v)), p(s(v))) | v ∈ Z}.

Let Zk be the set of valuations v ∈ Z for which the auction ends after k queries given the profile

of actions s(v). Then the cardinality of the set

O(Zk) := {(w(s(v)), p(s(v)) | v ∈ Zk}

is finite since each player only has a finite number of possible responses to each query and the

determination of winner and payment is based exclusively on the responses of the bidders to

the queries of the auctioneer. Thus O(Z) = ∪∞
k=1O(Zk) is a countable set.

Now suppose that the corresponding direct auction (w ◦ s, p◦ s) is a Vickrey auction. Note that

O(Z) = {((w ◦ s)(v), (p ◦ s)(v)) | v ∈ Z}.

Define Zi := {v ∈ Z | (w ◦ s)(v) = i}. Since Z and w ◦ s are measurable by assumption, also

each Zi is measurable. So, since the Zi’s partition Z and the Lebesgue measure of Z is larger

than zero, we know that at least one Zi must have Lebesgue measure larger than zero as well.

Take such a Zi. Define for each p∗ ∈ R

Zi(p
∗) := {v ∈ Zi | (p ◦ s)(v) = p∗}.

Since (w ◦ s, p ◦ s) is a Vickrey auction we know that each set Zi(p
∗) is a subset of the set

{

v ∈ IN | max{vi | i 6= (w ◦ s)(v)} = p∗
}

which has Lebesgue measure zero. Thus, each Zi(p
∗) itself is measurable and has Lebesgue

measure zero. Hence, the set

Pi := {p∗ | Zi(p
∗) 6= φ}

must be uncountable, because Zi = ∪p∗∈Pi
Zi(p

∗) and Zi has Lebesgue measure larger than zero.

The set O(Z) must have a cardinality that is at least as large as the cardinality of Pi because

p∗ 7→ (i, p∗) is an injective function from Pi to O(Z), so O(Z) is uncountable. This contradicts

our earlier conclusion that O(Z) is a countable set. Hence, the direct auction (w ◦ s, p ◦ s)

cannot be a Vickrey auction.
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Theorem 3.2 Any ex post efficient ex post equilibrium in an ex post individually rational query

auction is almost always infinite.

Proof. Consider an ex post efficient ex post equilibrium s in an ex post individually rational

query auction (F,w, p). Theorem 2.1 states that the corresponding direct auction (w◦s, p◦s) is

a Vickrey auction. However, if the equilibrium were sometimes finite, Theorem 3.1 states that

the corresponding direct auction (w ◦ s, p ◦ s) is not a Vickrey auction. Hence, the equilibrium

cannot be sometimes finite. Since Z is measurable by assumption, the equilibrium must be

almost always infinite.

4 Bisection auctions

Thus, in a setting with continuous valuations, any (measurable) ex post equilibrium in an ex

post individually rational query auction that ends with positive probability in finite time will

necessarily be inefficient. In this section we describe a family of query auctions, called bisection

auctions, to which this inefficiency result applies. The main characteristics of the family of

bisection auctions are that they have a fixed order in which active bidders are queried, they all

use a binary search algorithm to determine the price, and they all stop as soon as the winner

is found. We show that each bisection auction has an ex post individually rational ex post

equilibrium, called the bluff equilibrium. We also show that the bluff equilibrium is sometimes

finite, and even, under a mild condition (namely that the price in the auction can be driven

up to exceed any possible valuation of any bidder, an assumption that is met by all existing

auctions), has a running time that is finite for all realizations of valuations. Hence, these

equilibria will be inefficient. In the next section we discuss in more detail the extent to which

bluff equilibria are, or are not, efficient.

4.1 Formal definition of a bisection auction

A bisection auction in the form we describe it here is specifically designed to handle the case in

which valuations are drawn from an interval I = [α, β). We will however first give a description

of a bisection auction that is free from any reference to valuations of the bidders.

We represent a bisection auction as an extensive form game on a complete binary decision tree.

We will describe this tree first and subsequently discuss the winner determination rule W and

the payment scheme P to give a complete description of the auction.

The playing field
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We provide a complete description of the game tree. This tree is the same for the entire family

of bisection auctions. The nodes of the tree are given in (1) and the directed edges are defined

in (2). The game board has perfect information, meaning that each node in the tree will be a

decision node for one of the players. Hence information sets are obsolete.

The set of players that can participate in the game is N = {1, . . . , n}. The response set for

each player in every query node is R = {yes, no}. This reflects the fact that in each round of

the auction each player will be faced with a binary query regarding his valuation. The precise

nature of this query is explained in the next subsection.

(1) A node a in the game tree is represented by the history of responses players have to give

in order to reach this particular node. Formally, a = (ak)r
k=1 with r ∈ N where ak = (ak,i)

n
i=1

for k < r and ar = (ar,i)
j
i=1 for some j ≤ n. Here ak,i is a particular response in the set R

chosen by player i in round k.

The length of a node is defined as l(a) = (r−1)n+ j. The initial node a0 = ( ) has length zero.

This node corresponds to the first round where the first player has to respond. The nodes with

length greater than or equal to (r−1)n but less than rn correspond to round r, where the nodes

with length (r − 1)n are referred to as the start of round r. The set of nodes corresponding to

round r is denoted by Xr. For a node a ∈ Xr, the node a∗ ∈ Xr is the node of length (r − 1)n

for which a∗
k,i = ak,i for all k < r and all i ∈ N .

A node a that has a length of l(a) = (r−1)n+j−1 for some r > 0 is a decision node of player j

in round r. 4 Let Dj denote the collection of all decision nodes of player j and Djr denote the

collection of player j’s decision nodes in round r. A predecessor of a decision node a of player

j is a node from Dj that player j encounters when moving from the initial node a0 to node a.

We denote by a(k) ∈ Djk the predecessor of a in round k. Conversely, a is a successor of a(k).

(2) There is a directed edge from node a to node b if l(b) = l(a) + 1, and for all j and k for

which ak,j is defined, ak,j = bk,j . So, there is an edge between two nodes if in the second node

one player has given an additional response in comparison with the first node.

Winner determination and payment rules

The next ingredient of the description of the game is the determination of the winner of the

item and the specification of payments. As we allow bisection auctions to last indefinitely, we

will define the winner and the payment on infinite sequences of actions, which we call endnodes.

4Notice that this implies that the bidders are queried according to the fixed ordering 1 ≺ 2 ≺ 3 ≺ · · · ≺

n − 1 ≺ n.
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Thus, an endnode of the game is an infinite sequence h = (hr,i)r∈N,i∈N of nodes in the game

tree such that (1) h1,1 = a0 (the initial node is the first element of this sequence), and (2) there

is an edge from node hr,i to node hr,i+1 for any i < n, and from node hr,n to node hr+1,1 for

any r ∈ N.

Each endnode (hr,i)r∈N,i∈N may be viewed as a history of infinite length such that its upper

part of length (r − 1)n + i − 1 coincides with node hr,i. Thus, the set of all possible endnodes

of the game is order isomorphic to the set 2N.

WINNER DETERMINATION For an endnode h = (hr,i)r∈N,i∈N , we denote by A(h) the set of

players who remain active throughout the play, that is A(h) = ∩rA(hr,1), where for a node

a ∈ X1 we define the set of active players by A(a) := N and for a node a ∈ Xr+1 for some

r ≥ 1 we define the set A(a) of active players iteratively by

A(a) :=

{

A(a(r)) if ar,i = no ∀i ∈ A(a(r));
{i ∈ A(a(r)) : ar,i = yes} otherwise.

Notice that |A(h)| ≥ 1 will always hold. The winner of the game in endnode h is

W (h) := max {i | i ∈ A(h)}.

PAYMENT RULE The difference between different bisection auctions is in the payment rule.

Suppose that I = [α, β). The price the winner pays depends on when it became known that

he is the winner. We will first provide a recursive description of the way the payment rule is

constructed.

First we associate with each node a ∈ Xr of length (r−1)n a current price interval [P (a),H(a))

and a query price Q(a) in the interior of this half-open interval. The query price Q(a) bisects

the current interval [P (a),H(a)) into two intervals [P (a), Q(a)) and [Q(a),H(a)) of smaller

size. For this reason we call this auction a bisection auction.

Once the game has reached node a ∈ Xr, the price P (a∗) is the minimum amount the winner,

whoever it may be, will have to pay, regardless of what happens from now on. In the same way

H(a∗) is a hard upper bound on the payment of the winner. The query in round r associated

with the query price Q(a∗) is

Is your valuation greater than or equal to the query price Q(a∗)?

The answer to this query is an element of the response set R = {yes, no}, and only the responses

of players that are currently active (in round r that is) can influence the outcome of the auction.
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Formally P (a0) := α and H(a0) := β, and Q(a0) is an element of the interval (P (a0),H(a0)).

For a node a ∈ Xr of length (r − 1)n with r > 1 we recursively define

P (a) :=

{

P (a(r − 1)) if |{i ∈ A(a(r − 1)) : ar−1,i = yes}| ≤ 1
Q(a(r − 1)) otherwise.

and

H(a) :=

{

Q(a(r − 1)) if |{i ∈ A(a(r − 1)) : ar−1,i = yes}| ≤ 1
H(a(r − 1)) otherwise.

Finally, we again choose Q(a) in the interval (P (a),H(a)).

Now, for an endnode h = (hr,i)r∈N,i∈N with |A(h)| = 1 we define the running time of the

auction by T (h) = min{r ∈ N : |A(hr,1)| = 1}. Otherwise we define the running time by

T (h) = ∞. The price the winner in endnode h pays is

P (h) := sup {P (hr,1) | r ≤ T (h)}.

All other players pay zero. The resulting payoff in endnode h for player j having valuation vj

is given by

Uj(vj)(h) :=

{

vj − P (h) if j = W (h)
0 otherwise.

This completes the description of a bisection auction in its representation as a query auction.

Notice that effectively a bisection auction is completely characterized by the choices of α and

β, and the choices of the query price Q(a) for every node a that has a length (r − 1)n for

some r ≥ 1. The price bounds P (a) and H(a) as well as winner determination and payment

specification are uniquely determined by the choices of α, β, and the queries Q(a).

One-shot representation of bisection auctions

A bisection auction is a query auction, meaning that the auction has multiple rounds and in each

round the players can give several (two in this case) responses to the queries of the auctioneer.

We will briefly discuss how the one-shot representation (F,w, p) of such an auction looks like

in the terminology of Section 2.

A plan of action of player j is a function fj that assigns to each decision node a ∈ Dj a

response fj(a) in R. The action set Fj is the collection of all plans of action of player j.

For the profile of plans of action f = (fi)i∈N in F :=
∏

i Fi the winner w(f) and payment

p(f) are now defined as follows. The realization of f is the endnode h = (hr,i)r∈N,i∈N where

h1,1 = a0, hr,i+1 = (hr,i, fi(h
r,i)) for any i < n and hr+1,1 = (hr,n, fn(hr,n)) for any r ∈ N.

Then w(f) := W (h) and p(f) := P (h). Automatically uj(vj)(f) = Uj(vj)(h).
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This auction will be ex post individually rational as long as valuations are larger than or equal

to α. Indeed, in this case always saying no guarantees a player a non-negative payoff. If a

player does so he can win only if all other players also keep on saying no, in which case the

payment for the winner is α.

4.2 Ex post equilibrium

In this section we will introduce for each bisection auction a strategy profile that constitutes

an individually rational ex-post Nash equilibrium in the given bisection auction. We will also

show that in equilibrium there is a set of valuations whose Lebesgue measure is larger than zero

for which the auction ends in finite time. Consequently, in equilibrium, the allocation is not ex

post efficient.

Consider the bisection auction. Define the set of players who have ranking less than j and are

active in node a ∈ Dj by

Aj(a) := {i ∈ A(a) : i < j}.

These are the players whose decisions in the current round are observable for player j when he

has to make a decision in node a. Let

D1
j := ∪r{a ∈ Djr | ∃i ∈ Aj(a) : ar,i = yes}

be the set of decision nodes of player j such that there is at least one active predecessor of

player j whose action in the current round was yes. Thus, D2
j := Dj\D

1
j is the set of decision

nodes of player j such that all active predecessors of player j took decision no.

As before, a strategy for player j in the bisection auction is a function sj that assigns to each

possible valuation vj ∈ [α, β) a plan of action sj(vj) in Fj . Thus, for each decision node a ∈ Dj

of player j, sj(vj) specifies a response sj(vj)(a) in R.

Definition 4.1 Let vj be a valuation of player j and let a ∈ Dj be a decision node of player

j. The bluff strategy bj of player j is defined by

bj(vj)(a) :=







yes if a ∈ D1
j and Q(a∗) ≤ vj

yes if a ∈ D2
j and P (a∗) ≤ vj

no otherwise.

This strategy has a bluffing component with regard to the query “Is your valuation greater than

the current query price?”. Indeed, in D1
j player j compares his valuation vj with the current

query price and in any node from D2
j with the current payment. So in nodes from D2

j when his

valuation is greater than the payment even if it is smaller than the query he replies yes and thus
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deceives the auctioneer by pretending to have higher valuation than he really has. Therefore

one can think of nodes from D1
j as truthful nodes and nodes from D2

j as bluff nodes.

Now we will show that the profile b = (bi)i∈N of bluff strategies constitutes an ex post individ-

ually rational ex post equilibrium.

Proposition 4.2 A bluff strategy is ex post individually rational. Hence, as said before, bisec-

tion auctions are ex post individually rational.

Proof. Suppose that player j follows his bluff strategy and due to the plans of action chosen

by the other players endnode h is realized. If j 6= W (h) then uj(vj)(h) = 0. So, suppose that

j = W (h). We consider two cases. Case 1: if T (h) < ∞. Let a be the decision node of player j

in round T (h). Then all players in Aj(a) said no, while player j said yes. Therefore vj ≥ P (a∗),

and since P (a∗) is the price to be paid by j, he has a non-negative payoff. Case 2: if T (h) = ∞.

Since j = W (h), Lemma 7.2 implies that player j said yes in every round. Then, by definition

of the bluff strategy, P (hr,1) ≤ vj for every r. Hence, also P (h) ≤ vj .

Theorem 4.3 The strategy profile b = (bi)i∈N is an ex post Nash equilibrium.

Proof. Let (vi)i∈N be a realization of valuations and fj ∈ Fj be a plan of action of player

j. Let a be the first decision node at which player j following fj deviates from bj(vj). In case

player j is not active in node a both bj(vj) and fj yield payoff 0 and we are done. So suppose

that player j is active in node a. We consider two cases.

Case 1. In case a ∈ D1
j . If fj(a) = no and bj(vj)(a) = yes, the payoff of playing fj is 0,

while according to Proposition 4.2 the payoff of playing bj(vj) is at least 0. Consider the case

where fj(a) = yes and bj(vj)(a) = no. When player j says yes in a, there are at least two

players who say yes in the current round by definition of D1
j . So, the winning payment will be

at least Q(a∗). Further, vj < Q(a∗) because bj(vj)(a) = no. Hence, the payoff of playing fj is

non-positive while the payoff of playing bj(vj) is 0.

Case 2. In case a ∈ D2
j . If fj(a) = yes and bj(vj)(a) = no we know that P (a∗) > vj . Since

the payment of the winner is at least P (a∗), playing fj has non-positive payoff, while playing

bj(vj) guarantees non-negative payoff. Consider the case where fj(a) = no and bj(vj)(a) = yes.

Suppose that b(v) = bi(vi)i∈N is such that all successors of j say no if j says yes. Then, following

bj(vj) player j wins at price P (a∗) while following fj he might win at price at least P (a∗). Now

suppose that there is a successor i of j that plays yes if player j says yes. Since player i plays
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according to bi(vi), he will also say yes when player j switches to no. But then the payoff of

playing fj would be 0 while the payoff of playing bj(vj) is non-negative.

The following example shows that bidders that do not have the highest ranking do not have a

dominant strategy. Hence the previous result cannot be strengthened much further. It can be

shown that the bluff strategy is a dominant strategy for bidder n.

Example. Consider a game with two players and suppose that player 2 has the following

strategy: if in the first round player 1 says yes then play yes in the first round and no in all

other rounds; otherwise play no in all rounds. Then any best response of player 1 against this

strategy chooses no in the first round (and yes in some later round) whenever the valuation of

player 1 is strictly larger than zero. Now, consider another strategy of player 2: if in the first

round player 1 says yes then play no in all rounds; otherwise play yes in the first round and

no in all other rounds. In this case any best response of player 1 against this strategy chooses

yes in the first round (in decision node a0) whenever the valuation of player 1 is strictly larger

than zero. It follows that there is no strategy of player 1 which is a best response against both

strategies of player 2. Consequently player 1 doesn’t have a dominant strategy.

Theorem 4.4 The strategy profile b = (bi)i∈N is sometimes finite. Consequently, the allocation

under b is not ex post efficient.

Proof. Consider the set V of realizations v = (vi)i∈N of valuations for which α ≤ vi < Q(a0)

for all i ∈ N . Then for each v ∈ V in round 1 bidder 1 says yes and all other bidders say no.

Thus, the auction ends after this first round, and the Lebesgue measure of the set of valuations

for which the auction ends after one round is at least
(

Q(a0) − α
)n

> 0. Consequently, by

Theorems 3.2, 4.2, and 4.3, the allocation under b is not ex post efficient.

As in the above proof, consider the set V of realizations v = (vi)i∈N of valuations for which

α ≤ vi < Q(a0) for all i ∈ N . A direct way to conclude that allocation under b is not ex post

efficient is via the observation that for each v ∈ V bidder 1 wins the item (for a price of α).

So, if we take for example v1 = α, and vi = Q(a0)+α

2 for all i 6= 1, then the allocation is not ex

post efficient.

4.3 Finite running time

Not every bisection auction will have a finite running time under the bluff equilibrium for any

realization of valuations. If we take for example α = 0, β = 1, and for each a ∈ Xr

Q(a∗) = (1 −
1

(r + 1)2
)P (a∗) +

1

(r + 1)2
H(a∗)
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we get a bisection auction for which for each endnode h we have that P (h) ≤ 3
4 . 5 It is clear

that the running time in equilibrium is not finite as soon as at least two players have a valuation

larger than 3
4 . In order to exclude such pathological cases, consider the quantity

P ∗ := sup{P (a) | a is of length (r − 1)n for some r ∈ N}.

This quantity is the price the winner has to pay in the bisection auction when in any round

there are at least two players who say yes to their query in that round.

We say that a bisection auction is regular if P ∗ = β. Regularity implies for example that the

price can in principle be driven up by the bidding process to a level where a bidder makes a

loss if he becomes the winner.

As an immediate consequence of Lemma 7.3, the bluff equilibrium of a regular bisection auction

guarantees a finite running time for any realization of valuations. Notice that this statement is

stronger than just saying that we have a finite running time almost surely. Furthermore, from

Lemma 7.1 it immediately follows that, when every bidder plays according to his bluff strategy,

in any round of the auction there is at least one player that says yes. Thus we have established

the following Theorem.

Theorem 4.5 In a regular bisection auction the profile of bluff strategies has a finite running

time for any realization of valuations. Moreover, the query price increases from round to round

up to the moment where the winner is found.

5 Approximate efficiency in bisection auctions

From Theorem 4.4 we know that the bluff equilibrium of a bisection auction cannot be ex

post efficient. In the next two sections we investigate in more detail the level of inefficiency

of the bluff equilibrium. The measure of efficiency (or inefficiency) we use is the probability

that the auction allocates efficiently (inefficiently). We show that, with an appropriate choice

of auction, the probability of inefficient allocation can be made as small as we like, irrespective

of the number of bidders that will participate in the auction.

For ease of exposition we initially do this in the context of a special type of bisection auction,

called fixed fraction auctions, and for the uniform distribution on the interval [0, 1). In sub-

section 5.3 we will argue that these results can also be obtained for an arbitrary continuous

probability distribution on the interval [α, β).

5Because Q(a∗) ≤
∑

∞

r=1
1

(r+1)2
≤ 1

4
+

∫

∞

r=2
1
s
2
ds. Equivalently, use the fact that 1

(r+1)2
≤ 1

r(r+1)
= 1

r
− 1

r+1

for every r ≥ 2.
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We start with the definition of a fixed fraction auction. In the fixed fraction auction with fixed

fraction c ∈ (0, 1), the query price Q(a∗) in node a ∈ Xr is given by

Q(a∗) := (1 − c)P (a∗) + cH(a∗)

in the current price interval [P (a∗),H(a∗)). Thus the query price Q(a∗) is P (a∗) plus an

increment equal to a fixed fraction c of the size of the current price interval. It is straightforward

to check that fixed fraction auctions are indeed regular. Hence, by Theorem 4.5, under the bluff

equilibrium a fixed fraction auction ends in finite time regardless of the realization of valuations.

5.1 The associated direct auction

In the next subsection we compute the probability of inefficient allocation of fixed fraction

auctions when the equilibrium b = (bi)i∈N is played. To make these computations easier to

understand, we first provide a concrete description of the direct auction associated with the

bluff equilibrium of a fixed fraction auction. This description is used in the next subsection.

For the moment we assume that private valuations of players are independently drawn from

the uniform distribution on the interval I = [0, 1). Given the fixed fraction auction with

fraction c, consider the following associated direct auction (wdirect, pdirect). For r ∈ N, write

Ir := [1 − (1 − c)
r−1

, 1 − (1 − c)
r
). Note that the intervals I1, I2, I3, . . . partition the unit

interval [0, 1) from which valuations are drawn. Now let v = (vi)i∈N be a profile of valuations.

Write Ir(v) := Ir ∩ {vi | i ∈ N}, the set of valuations that are in Ir. Let r(v) be the highest

natural number r for which Ir(v) is not empty. Then wdirect is defined by

wdirect(v) := min{i ∈ N | vi ∈ Ir(v)}.

Let s(v) be the highest natural number r for which Ir ∩{vi | i ∈ N, i 6= wdirect(v)} is not empty.

The payment function pdirect is defined by

pdirect(v) :=

{

1 − (1 − c)
s(v)−1

if i > wdirect(v) for all i ∈ Is(v)(v)

1 − (1 − c)
s(v)

else.

We will now show that (wdirect, pdirect) equals the direct auction (w ◦ b, p ◦ b) where w and p

are defined as in Section 4 and b = (bi)i∈N is the bluff equilibrium. We call this auction the

direct fixed fraction auction.

Theorem 5.1 For any realization v = (vi)i∈N of valuations it holds that wdirect(v) = (w◦b)(v)

and pdirect(v) = (p ◦ b)(v). Consequently, truthful bidding is a dominant strategy in the direct

auction (wdirect, pdirect).
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Proof. Let v = (vi)i∈N be a realization of valuations. By Theorem 4.5 we know that the price

will always increase. Consider the round s(v) in which the price is equal to 1−(1 − c)
s(v)−1

and

the query price is equal to 1 − (1 − c)
s(v)

. The active bidders in round s(v) are (w ◦ b)(v), all

bidders i with vi ∈ Is(v), and –possibly– one more bidder i∗ with vi∗ ∈ Is(v)−1 who happened

to be the bidder with the lowest ranking number among those bidders that were active in the

previous round and said yes in that round. We distinguish three cases.

Case 1. If i∗ exists. Bidder i∗ will say no in this round s(v), and the next active bidder, say

j, in the bidding order will say yes. If j = (w ◦ b)(v) then all other active bidders say no. So,

(w ◦ b)(v) = min{i ∈ N | vi ∈ Ir(v)} and (p ◦ b)(v) = 1 − (1 − c)
s(v)−1

. If j 6= (w ◦ b)(v) then

both j and (w ◦ b)(v) say yes in this round, while all other active bidders say no. In the next

round though j will say no and (w ◦ b)(v) says yes. Hence in this case (w ◦ b)(v) = min{i ∈ N |

vi ∈ Ir(v)} and (p ◦ b)(v) = 1 − (1 − c)
s(v)

.

Case 2. If i∗ does not exist and i > (w◦b)(v) for all i ∈ Is(v)(v). In this case (w◦b)(v) says yes

in round s(v) while all other active bidders say no. Hence (w ◦ b)(v) = min{i ∈ N | vi ∈ Ir(v)}

and (p ◦ b)(v) = 1 − (1 − c)
s(v)−1

.

Case 3. When not in Case 1 or 2. Then an active bidder j 6= (w ◦ b)(v) says yes in round

s(v) together with (w ◦ b)(v), while all other bidders say no. In round s(v) + 1 bidder j says

no and bidder (w ◦ b)(v) says yes. Hence in this case (w ◦ b)(v) = min{i ∈ N | vi ∈ Ir(v)} and

(p ◦ b)(v) = 1 − (1 − c)
s(v)

.

5.2 Performance results

In this subsection we consider how efficient a fixed fraction auction is when the equilibrium

profile of bluff strategies is played. In particular we show that the probability of inefficient

allocation in the bluff equilibrium for the fixed fraction auction with fraction c is less than c,

independent of the number of bidders that participate in the auction. Thus, by choosing the

appropriate fixed fraction auction, the probability of inefficient allocation can be made as small

as we like, independent of the number of bidders !! We however also show that, for fixed c,

the probability of inefficient allocation is larger than a certain positive constant no matter how

many bidders participate in the auction. Thus, we can reduce this probability only by reducing

the fraction c, not by increasing the number of participants.

Notice that by Theorem 5.1 the probability of inefficient allocation is the same for both a fixed

fraction auction under the bluff equilibrium and for the corresponding direct auction under the
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truthtelling equilibrium. Thus it suffices to compute bounds on the probability of inefficient

allocation for the corresponding direct fixed fraction auction under the truthtelling equilibrium.

Let c be the fraction. For the direct auction (wdirect, pdirect) we derive a recurrent relation for

the probability Pn(c) that the auction with n bidders terminates in an inefficient allocation

given that all bidders bid truthfully. Let v = (vi)i∈N be a realization of valuations. First

consider the case where all valuations are smaller than c. The probability of this event is cn.

Further, in this event the auction is only efficient when bidder 1, the winner of the auction in

this case, has the highest valuation. By symmetry this happens with probability 1
n
. Thus this

event contributes a term cn n−1
n

to the total probability of inefficient allocation Pn(c). Next

consider the case where k ≥ 1 bidders have a valuation greater than or equal to c and n − k

bidders have a valuation smaller than c. If k = 1, the direct bisection auction is efficient, so this

case adds zero probability to Pn(c). The event k ≥ 2 happens with probability
(

n
k

)

cn−k (1 − c)
k
.

The probability of inefficient allocation in this case is equal to Pk(c) since the direct bisection

auction restricted to the interval [c, 1) with k bidders is isomorphic to the original direct bisection

auction with k bidders having valuations uniformly drawn from [0, 1). Hence

Pn(c) = cn n − 1

n
+

n
∑

k=2

(

n

k

)

cn−k (1 − c)
k
Pk(c)

for all n ≥ 2. This can be rewritten to

(

1 − (1 − c)n
)

Pn(c) =
n − 1

n
· cn +

n−1
∑

k=2

(

n

k

)

(1 − c)kcn−kPk(c).

In particular, P2(c) = 1
2 ·

c
2−c

. We will show that the probability of inefficiency Pn(c) is smaller

than c, and also bounded away from zero. In order to simplify computations, take λ := 1 − c.

Write

Z(c) :=

∞
∑

k=3

ck + kλck−1

1 − λk − kλck−1 − ck
.

Theorem 5.2 For all n ≥ 2, Pn(c) ≤ c and Pn(c) ≥ e−Z(c)P2(c).

Proof. First we show that Pn(c) ≤ c. Since P2(c) = 1
2 · c

2−c
≤ c, we know that our claim is
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true for n = 2. Suppose that Pk(c) ≤ c for all 2 ≤ k ≤ n − 1. Then

Pn(c) =
1

1 − (1 − c)n

[n − 1

n
· cn +

n−1
∑

k=2

(

n

k

)

(1 − c)kcn−k · Pk(c)
]

≤
1

1 − (1 − c)n

[

cn +

n−1
∑

k=2

(

n

k

)

(1 − c)kcn−k · c
]

=
1

1 − (1 − c)n

[

cn + c
(

1 − cn − n(1 − c)cn−1 − (1 − c)n
)]

=
c(1 − (1 − c)n)

1 − (1 − c)n
+

cn − cn+1 − n(1 − c)cn

1 − (1 − c)n

= c +
cn(1 − c)(1 − n)

1 − (1 − c)n
≤ c,

which concludes the proof for the upper bound on Pn(c).

Now we show that e−Z(c)P2(c) ≤ Pn(c). Define Bn(c) by B2(c) := P2(c) and

Bn(c) :=
1

1 − λn

[

n−1
∑

k=2

(

n

k

)

λkcn−kBk(c)

]

for n ≥ 3. A simple induction argument shows that Bn(c) ≤ Pn(c) for all n. We will show that

Bn(c) ≥ e−ZP2(c) for all n. Define Q2(c) := 1 and for n ≥ 3

Qn(c) :=
1 − λn − nλcn−1 − cn

1 − λn
· Qn−1(c) =

n
∏

k=3

1 − λk − kλck−1 − ck

1 − λk
.

We will first show that for all n ≥ 2, Bk(c) ≥ Qn(c)B2(c) holds for all 2 ≤ k ≤ n. Clearly

this holds for n = 2. Take n ≥ 3. Assume that for all 2 ≤ k ≤ n − 1 we have that Bk(c) ≥

Qn−1(c)B2(c). Since 0 < Qn(c) ≤ Qn−1(c) we have that Bk(c) ≥ Qn(c)B2(c) for all 2 ≤ k ≤

n − 1. For k = n,

Bn(c) =
1

1 − λn

[

n−1
∑

k=2

(

n

k

)

λkcn−kBk(c)

]

≥
1

1 − λn

[

n−1
∑

k=2

(

n

k

)

λkcn−kQn−1(c)B2(c)

]

=
1

1 − λn
· Qn−1(c) · B2(c) ·

[

n−1
∑

k=2

(

n

k

)

λkcn−k

]

=
1 − λn − nλcn−1 − cn

1 − λn
· Qn−1(c) · B2(c) = Qn(c)B2(c)

which shows that Bn(c) ≥ Qn(c)B2(c). Now notice that Z(c) > 0. So, Q2(c) = 1 ≥ e−Z(c),



Inefficiency of equilibria in query auctions with continuous valuations 22

while for n ≥ 3

log(Qn(c)) =

n
∑

k=3

(

log
(

1 − λk − kλck−1 − ck
)

− log
(

1 − λk
))

= −

n
∑

k=3

(

log
(

1 − λk
)

− log
(

1 − λk − kλck−1 − ck
))

≥ −
n

∑

k=3

kλck−1 + ck

1 − λk − kλck−1 − ck
≥ −Z(c),

where the first inequality follows from the fact that log y − log x ≤ y−x
x

for y > x. Hence, since

B2(c) := P2(c), Bn(c) ≥ Qn(c) · B2(c) ≥ e−Z(c) · P2(c) for all n ≥ 2.

5.3 The generality of the approximate efficiency result

As said before, for any continuous probability distribution G on [α, β) from which valuations

are independently drawn and for any c ∈ (0, 1), we can construct a bisection auction for which

under the bluff equilibrium the probability of inefficient allocation is smaller than or equal to c.

A bisection auction that attains a level of inefficiency less than or equal to c can be constructed

as follows. For any decision node a with length (r − 1)n for some r ≥ 1, given the lower bound

of P (a) and the upper bound of H(a), choose the query price Q(a) in such a way that, given

that the valuation of a bidder is an element of [P (a),H(a)), the probability that his valuation

is in [P (a), Q(a)) is equal to (or less than) c. In other words, choose Q(a) in such a way that

G(Q(a)) − G(P (a))

G(H(a)) − G(P (a))
≤ c.

This auction will be regular as long as we choose Q(a) sufficiently far from P (a). This can be

done in many ways, but one of them is to choose Q(a) in such a way that

G(Q(a)) − G(P (a))

G(H(a)) − G(P (a))
= c.

Continuity of the probability distribution is merely required to guarantee that choices can be

made in this way. However, less demanding conditions would clearly suffice as well.

The bisection auction thus constructed is in general not a fixed fraction auction. It is clear

though that when G is the uniform distribution the fixed fraction auction with fraction c fits

the above description. Moreover, since the conditional probabilities generated by the fixed

fraction c are the only pieces of information that we use in the proofs in the above subsections,

it is clear that all the above results, and Theorem 5.2 in particular, extend immediately to the

general setting sketched in this subsection.
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6 Conclusions

We have shown that, in a setting where bidders have continuous valuations, ex post efficiency

–allocating the item to a bidder with the highest valuation– in a query auction can only be

obtained at the price of an infinite running time of the auction for almost all realizations of

valuations. We also showed that this negative result applies to a wide class of query auctions,

in particular bisection auctions.

Nevertheless, to alleviate this result, we also show that, for any continuous probability distri-

bution from which valuations are independently drawn, when we allow the allocation to be

inefficient with an arbitrarily small but strictly positive probability, there is a bisection auction

that attains this level of efficiency, independent of the number of bidders that participate in the

auction, and with a finite running time for all realizations of valuations.

7 Appendices

This section contains the proof of the Theorem of Green and Laffont, as well as proofs of

lemmata that are used in Section 4.

7.1 Appendix 1. Proof of the Theorem of Green and Laffont

Proof. Assume that (a), (b) and (c) hold. We will show that (w◦s, p◦s) is a Vickrey auction.

To this end, let v = (vi)i∈N be a profile of valuations in IN . Since s is ex post efficient, we

know that

(w ◦ s)(v) = w(si(vi)i∈N ) ∈ arg max{vi | i ∈ N}.

So we only have to show that (p ◦ s)(v) = vsec, where

vsec := max{vi | i 6= (w ◦ s)(v)}.

Write i∗ := (w ◦ s)(v). Moreover, denote the profile of realizations of valuations ((vj)j 6=i∗ , r) by

(v | r), and the profile of actions (sj(vj)j 6=i∗ | si∗(r)) by s(v | r). The proof is in two steps.

I. First we will show that (p ◦ s)(v) ≤ vsec. To this end, take a valuation r ∈ I with r > vsec.

We show that (p ◦ s)(v) ≤ r.

Since the strategy profile s is an ex post equilibrium of (F,w, p) we know that s(v) is a Nash

equilibrium in the ex post game (F,w, p, v). Because i∗ = (w ◦ s)(v), we know that

ui∗(vi∗)(s(v | r)) ≤ ui∗(vi∗)(s(v)) = vi∗ − (p ◦ s)(v). (1)
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Now suppose bidder i∗ happens to have valuation r. Since r > vsec, ex post efficiency of the

strategy profile s in (F,w, p) implies that i∗ = (w◦s)(v | r). Moreover, since the strategy profile

s is an ex post equilibrium of (F,w, p) we know that s(v | r) is a Nash equilibrium in the ex

post game (F,w, p, (v | r)). Hence, by ex post individual rationality

ui∗(b)(s(v | r)) = b − p(s(v | r)) = b − (p ◦ s)(v | r) ≥ 0.

The last inequality implies that r ≥ (p ◦ s)(v | r).

Now, suppose that bidder i∗ chose action si∗(r) while having valuation vi∗ . Again, since r >

vsec, ex post efficiency of the strategy profile s in (F,w, p) implies that i∗ = (w ◦ s)(v | r). So

ui∗(vi∗)(s(v | r)) = vi∗ − (p ◦ s)(v | r) ≥ vi∗ − r (2)

where the inequality follows from the result that r ≥ (p ◦ s)(v | r).

Combination of the inequalities (1) and (2) yields vi∗ −(p◦s)(v) ≥ vi∗ −r. Hence, (p◦s)(v) ≤ r.

II. Secondly we will show that (p ◦ s)(v) ≥ vsec. To this end, take an r ∈ I with r < vsec. We

show that (p ◦ s)(v) ≥ r.

Suppose bidder i∗ happens to have valuation r. Since the strategy profile s is ex post efficient

in (F,w, p) and r < vsec, we know that i∗ 6= (w ◦ s)(v | r). Hence

ui∗(r)(s(v | r)) = 0. (3)

However, since s(v | r) is a Nash equilibrium in (F,w, p, (v | r)), we also know that

ui∗(r)(s(v | r)) ≥ ui∗(r)((s(v)) = r − (p ◦ s)(v). (4)

Combining equality (3) and inequality (4) yields that (p ◦ s)(v) ≥ r.

7.2 Appendix 2. Proofs for Section 4

We say that a node from D2
j is in MD2

j if none of the predecessors of this node is in D2
j . We

analyze what happens in such a node when a player uses his bluff strategy.

Lemma 7.1 Suppose player j has valuation vj and follows the plan of action bj(vj). If a node

a is an element of MD2
j and if player j is active in this node, then bj(vj)(a) = yes.

Proof. Let r be the round to which a belongs. If r = 1, then P (a) = α, thus vj ≥ P (a) and j

says yes. If r > 1, by definition of MD2
j there was an active predecessor in the previous round

who said yes. Since j is still active, j also said yes. Hence vj ≥ Q(a(r − 1)) = P (a).
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As a consequence after round r player j either is the winner (in case no other player who

is active in round r and has ranking greater than j says yes) or he is active in round r + 1

(otherwise). In any case all players with ranking less than j are nonactive from then on.

Lemma 7.2 Suppose player j follows his bluff strategy, and a is a decision node of player j in

round r. Suppose that player j is active in a and says no for the first time. Then as long as

player j will stay active, his actions will be no.

Proof. If a ∈ D1
j , then player j is not active in any future round. Suppose then a ∈ D2

j , then

vj < P (a) < Q(a). This relation remains valid in any successor node of a.

The previous lemma states that, if player j follows his bluff strategy and says yes in node a

where he is active, then all previous actions of him were yes as well.

Given the realization of valuations (vi)i∈N suppose that player j follows his plan of action

bj(vj) while all other players follow s−j(v−j) –the profile of plans of action corresponding

to an arbitrary profile of strategies s−j . Let h be the realization of the game if the profile

(bj(vj), s−j(v−j)) is played.

Lemma 7.3 Suppose that in a regular bisection auction player j follows his bluff strategy and

j = W (h). Then T (h) < ∞.

Proof. Suppose that T (h) = ∞. It implies that |A(h)| > 1 and, by definition of W (h), for

all i ∈ A(h) it holds that i ≤ j. First we argue that no player in A(h) can say yes indefinitely.

If a player in A(h) would say yes indefinitely, then, because j = W (h), player j must do so as

well. However, since player j follows his bluff strategy, this implies that β = P ∗ ≤ vj by the

regularity of the auction. This contradicts the assumption that vj is drawn from [α, β).

Consider the round in history h where for the first time a player i from A(h) says no. Let a be

the decision node that player j reaches in this round. If any other player from Aj(a) says yes

in this round then i is not active in the next round, which contradicts the fact that i ∈ A(h).

If all players from Aj(a) say no in this round then, according to Lemma 7.1, player j says yes

and, again, i is not active anymore after this round. Since T (h) = ∞, this means that any

player from A(h) says yes indefinitely. Contradiction. Hence, we conclude that T (h) < ∞.
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