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1 Introduction

A central issue in auction design is to set the rules of the auction so that some economic goals are achieved
despite the fact that agents act based on self-interest. The economic goals are often expressed as functions

of agents’ preferences. Therefore auction design needs to elicit information on agent’s preferences.

However requiring elicitation of full and exact preference information is undesirable for several reasons.
First, agents may prefer not to reveal information on their valuations for reasons of privacy or long-term
competitiveness [13]. Second, determining one’s valuation with a precision up to the last digit can be
computationally demanding [9, 12, 14]. Finally, the full revelation of agents’ preferences may require a

prohibitive amount of communication [5, 11].

Such considerations lead to an interest in auctions where agents need not reveal their information entirely
but only partially. It has been recognized that multi-round mechanisms can reduce revelation and
associated with it computation and communication, compared to single-round mechanisms advocated
by the revelation principle [1, 3]. One class of multi-round mechanisms are query auctions. In a query
auction the auctioneer sequentially queries the agents about specific aspects of their preferences. As an
answer to the query an agent can chose one of a finite set of actions. Through incremental querying,
the auctioneer gradually collects the information on agents’ valuations. By using a query strategy in
which previously revealed information guides the selection of subsequent queries, elicitation is focused
on pertinent information. Incremental querying has been applied in different settings ([7, 2]) and it has
been shown that only a small fraction of agents’ valuation information needs to be revealed before the

(approximately) optimal allocation can be determined [5, 8].

When evaluating the effectiveness of elicitation we may generally care about the running time expressed
in the number of queries required to determine an optimal (according to the specific objective of the
designer) allocation [15]. Since information about agents’ valuation becomes more refined with each
query, a higher number of queries leads to a better allocation. This has prompted researchers to examine
the trade-off between the running time of query auctions and the level of allocation optimality. For
example, in [4] the issue is considered for English auctions when restricting queries to discrete levels.
The authors analyze how the choice of query levels in the English auction affects the expected revenue
and the expected duration (measured in terms of the number of levels that the query price has been

raised through).

The motivation for the topic of research in this paper is as follows. In [6] we study the uses and limitations

of query auctions regarding the objective of economic efficiency maximization. In particular, we prove
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that in a setting with valuations distributed according to a continuous density function any ex-post
equilibrium in an ex-post individual rational query auction that ends with positive probability after a
finite number of queries, can not be fully efficient. This result implies that in the setting of continuous
valuations full efficiency can only be achieved at the expense of an infinite running time of a query
auction for almost all realizations of valuations. So the question that arises is: what price (in terms of

running time) has to be paid for getting a desired level of approximate efficiency.

Thus, in this paper we are concerned with the issue of the trade-off between running time and allocation
efficiency in the recently proposed c-bisection auction [6]. The proposed auction is a query mechanism in
which players submit their bids in sequence with full knowledge of all previous bids of other players. The
auction is characterized by a parameter ¢ which, together with the distribution from which valuations
of players are drawn, determines a sequence of query prices. In [6] equilibrium properties of this auction
are analyzed. It is shown that the auction has an ex-post equilibrium, called the bluff equilibrium, and
under this equilibrium the auction ends in finite time, regardless of the realization of players’ valuation.
Due to the result mentioned above we know that inefficiency of the bluff equilibrium for some realizations

of valuations is inevitable.

In this paper we discuss in detail the performance of the c-bisection auction under the bluff equilibrium.
In particular, we study how the choice of parameter ¢ and the number of participating players affect the

running time of the auction and its (in)efficiency.

First, we investigate the running time of the auction according to two measures, namely the expected
number of rounds and the expected number of queries performed in the auction.® For both measures we
derive first a recursive formula and give then an upper bound for the function defined by this formula.
We prove that for a fixed ¢ the expected number of rounds is bounded by a function that is logarithmic
in the number of players while the expected number of queries is bounded by a function that is linear in

the number of players.

Second, we analyze the level of inefficiency of the auction. As measures of inefficiency we employ the
probability of inefficient allocation and the expected loss of welfare. For the probability of inefficient
allocation we derive a recursive formula and prove that it’s not more than ¢ for any number of players. We
show that when valuations are uniformly drawn from [0, 1) the expected loss of welfare is bounded from
above by ¢? for any number of players. It means that by choosing the appropriate ¢, the minimum level

of efficiency can be determined by the auctioneer before it is known how many players will participate

5As a query we consider each separate question of the auctioneer to an active player. As a round we consider a sequence
of queries in which each active player is asked to act exactly once.
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in the auction. We also give a (more) precise estimate of the expected loss of welfare by using computer

simulation.

Furthermore we show that for a fixed number of players there is a trade-off between efficiency and running
time: for the increasing efficiency of the auction we have to pay by an increasing number of rounds and
an increasing number of queries. By simulation it turns out that the trade-off curves, which show the
relation between the expected number of rounds and the expected loss of inefficiency, constructed for
different numbers of players coincide with each other. Thus, in expectation the number of rounds of the

auction that obtains a desired level of efficiency is independent of the number of players.

The paper is organized as follows. Section 2 introduces the rules of the c-bisection auction. In Section
3 the running time of the auction is analyzed. Section 4 is devoted to the analysis of the efficiency of
the auction. Concluding remarks about the trade-off are reported in Section 5. The Appendix contains

proofs of some statements and tables with computational results.

2 The c-bisection auction

Suppose a single indivisible object is auctioned to a set N = {1,...,n} of players. The players have
independent private valuations, v;, drawn from a common continuous probability distribution with cu-
mulative density F'(v), within the range [, 3). We assume quasi-linear utilities. Valuations of players are
private information, i.e. each player knows only his own valuation but not the valuations of the others.
Before the start of the auction there is a lottery that determines the order of the players. W.l.o.g. we
assume that this ordering is 1 <2 <3 < --- <n—1 < n. A player with a lower ranking is called a

predecessor. So e.g. player 5 is a predecessor of player 7.

The auction runs for an a priori indefinite number of rounds. Each round is characterized by payment
pr, query price g,, upper bound u, and a set of active players A,.. The payment specifies the price to be
payed if a player wins in this round. The query price is used by the auctioneer to ask an active player
whether his valuation is larger than or equal to the query price. Players are queried openly in increasing
order, so that a player can observe the bids of his predecessors. In each round the query price g, is

chosen from the open interval (p,., u,).

The initial set of active players is A; = N. The auction starts with p; = @ and u; = 8 and ¢; is a point
in (o, ). Given the current set A,, the payment p,., the query price ¢, the upper bound w, and the
bids of players in round r the characteristics of the next round r + 1 are defined as follows. If all players
submit a no bid they all remain active, i.e. A,;1 = A,. The payment remains the same and the upper

bound is set to the previous query price, i.e. p,41 = p, and u,41 = q,. If at least two players submit a
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yes bid, all players that said yes remain active. The upper bound remains the same and the payment is
set equal to the previous query price, i.e. u,4+1 = u, and p,4+1 = ¢.. The new bounds determine a new
query price ¢y4+1 in (pr41,ur+1). If only one player submits a yes bid the auction stops, this player wins
the auction and pays p,.. If such a moment doesn’t occur, i.e. at least two players remain always active,
the winner is determined according to the order of players: among those players who remain active the
player with the highest ranking wins. The price the winner pays is equal to the limit of the sequence of
the payments that occurred in the subsequent rounds in the auction. Since the sequence of payments is

increasing this limit is equal to the supremum of the payments.

The query price is defined as follows. For a given ¢ € (0,1) and any continuous probability distribution
with cumulative density F(v) from which valuations of players are drawn, in any round r, given the

payment p, and the upper bound w,, the query price ¢, is chosen such that

F(Qr) - F(pr) _

c7
F(uy) = F(pr)
i.e. interval [p,, ¢,) contains a fraction ¢ of the measure of [p,, u,). For example, for uninform distribution

the query price bisects the interval [p,,u,) in fractions ¢ and 1 — ¢ so that ¢, = p, + c(ur — pr).

The following strategy, called the bluff strategy, constitutes a symmetric ex-post equilibrium in the c-
bisection auction (this result is proven in [6]). An ex-post equilibrium is a strategy profile such that,
given any realization of valuations, the plan of actions prescribed by the strategy to a player is a best
response to the plans of actions prescribed by the strategies of the other players. Under the bluff strategy

an active player ¢ having valuation v; says yes in round r whenever:
L. v; > gy, or
2. pr <v; < g and no active predecessor of him said yes in this round.

The following example illustrates how the auction proceeds under the bluff equilibrium.

Example. Suppose five players with valuations uniformly distributed on [0,1) participate in the c¢-
bisection auction with ¢ equal to 0.5. Suppose that according to the lottery the ordering of players is
A < B <C <D < E. Players have the following private valuations respectively: 0.43, 0.71, 0.38, 0.79,

and 0.86. The auction proceeds as follows:

Round Payment Query price Set of active Player Player Player Player Player

r D qr players A, A B C D E

1 0 0.5 ABCDE yes yes no yes yes
2 0.5 0.75 ABDE no yes - yes yes
3 0.75 0.875 BDE - no - yes no
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In the first round player A, having no predecessor and valuation larger than p; says yes. Every other
player, having predecessor A with yes decision, says yes iff his valuation is larger than ¢; = 0.5. All
players except C say yes and therefore remain active. The payment and the query price increase to
0.5 and 0.75, respectively. Since vy < po player A says no in the second round. Now player B has
no predecessor with yes decision and since vg > py he says yes. Players D and E say yes since their
valuations are larger than go = 0.75. Again the payment and the query price increase. In the third
round player B says no, player D, having now no predecessors with yes decision, says yes and player E
says no. So there is only one yes decision meaning that the auction ends. Player D wins the auction

and pays 0.75.

Notice that the outcome in the example is not efficient - the winner is not the player with the highest
valuation. But as we have already pointed out inefficiency for some realizations of valuations is inevitable.
Later in the paper we investigate how inefficient this auction is by analyzing the probability of inefficient

allocation and the expected loss of welfare.

Probability distribution of player actions. In the remaining part of the paper we focus on auction
performance in expectation. In order to analyze the expected performance we need to know the proba-
bility of particular actions of players. Namely, we need to know the probability of saying yes and no by

an active player under the bluff strategy.

Recall that in any round r of the c-bisection auction the query price ¢, is determined in such a way
that, given that the valuation of a player is in [p,,u,), the probability that his valuation is in [p,, g,) is
equal to ¢. Write i, := min{i | i € A,} - among the active players in round r the one with the lowest
ranking; j, := min{i | ¢ € A,,i # i,} - among the active players in round r the one with the second

lowest ranking.

First let’s observe that when player i, says no for the first time, player j, says yes with certainty. Indeed,
in all previous rounds player i, said yes and since j, is active in round r also he said yes in those rounds.
Both the payment and the query price increased so that p, = ¢.—1. Since player j,. follows the bluff
strategy his previous yes decision implies that v; > ¢.—1 = p,. If in round r player i, says no, player
Jr is in the situation where he doesn’t have any active predecessor with yes decision and therefore says
yes whenever his valuation is not smaller than p,, that is with certainty. It follows that after round r
player 4, drops out so that 4,11 = j,. Notice that in the equilibrium in every round r either player i,
or player j. (or both) say yes. It means that in the equilibrium only players with yes decision remain
active. This in turn implies that the upper bound always remains the same so that u, = g for any r,

and the payment and the query price increase, so that p, = ¢, for any r > 1.
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Second, we need to know the probability that player i, says yes in round r. Having no active predecessor
player i, says yes iff v;, > p,. Since p1 = « player ¢; in round 1 says yes with certainty. Now let’s
show that for any r > 1 the probability that player i, says yes in round r equals 1 — ¢. Regarding the
identity of player 4, there are two possibilities - either i, = i,_; (happens if decision of i,._; was yes)
or i, = j.—1 (happens if decision of i,_; was no and consequently decision of j,._; was yes). In both
cases the decision of player 4, in round r — 1 was yes implying that v; > p,._;. Thus, P(v;. > p, | v;, >
Pr—1) = P(vi, > qr—1 | vi, > pr—1) = 1 — ¢. The last equality holds because ¢,_; divides the interval
(pr—1, ) exactly in such a way that this conditional probability is equal to 1 — c.

Further, we need to know the probability of saying yes in round r for any player ¢ # i, i € A,.. We
can distinguish two cases. First, consider the case where player i says yes in round r. From the fact
that ¢ € A, follows that player i, said yes in round r — 1 and thus v; > ¢,_1. In round r he says yes iff
v; > qp. Thus, P(v; > ¢, | v; > ¢r—1) = P(v; > ¢ | v; > pr) = 1 — ¢. The last equality holds because
gr divides the interval (p,,3) exactly in such a way that this conditional probability is equal to 1 — ¢.
Secondly, consider the case where player i, says no in round r. As we described above player j,. says
yes with certainty. For any other player ¢ the situation is the same as in the previous case and thus also

here player i € N\{i,, j-} says yes with probability 1 — c.

Now notice that the analysis above was done without specifying the distribution function from which
valuations of players are drawn. Due to the price setting rule of the c-fraction auction the obtained
probability results hold regardless of the distribution function of valuations. Thus, in the remaining
part of the paper, namely in Section 4, for simplicity of argumentation we focus on the setting where
valuations of players are independently drawn from the uniform distribution in [0, 1). Moreover, it could
be seen from the analysis above that the probability of saying yes or no by an active player doesn’t
depend on the round. It enables us to derive recursive formulas (in the number of active players) for the

expected number of rounds and the expected number of queries performed in the auction.

3 Running time of the auction

In this section we investigate the expected running time of the c-bisection auction if the bluff strategies
are played. We analyze two measures, namely the expected number of rounds and the expected number
of queries performed in the auction before the winner is found. As a query we consider each separate
question of the auctioneer to an active player. As a round we consider a sequence of queries in which
each active player is asked to act exactly once. For both measures we derive first a recursive formula

and give then an upper bound for the function defined by this formula.
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3.1 The expected number of rounds

Let e.(k) be the expected number of rounds of the auction with k active players, given that the decision
of the active player with the lowest ranking is yes in the current round; and eX(k) be the expected
number of rounds given that this decision is no. Consider round r with n active players and suppose
that the decision of player i, in the current round is yes. The current round contributes 1 to e.(n). Now
let’s compute the expected number of remaining rounds. If all active players apart from player i, say
no, the auction stops after this round. If k (for some 1 < k < n — 1) active players apart from player i,
say yes, then the auction continues with k& + 1 active players. The probability of this situation given the

yes decision of player i, is ("") (1 — ¢)kFen 1k (

since when player i, says yes all other players say yes
and no with probabilities 1 — ¢ and ¢ respectively). In the next round player i,,1 = 4, says yes or no
with probabilities 1 — ¢ and ¢ respectively. Thus if k active players apart from player i, say yes in the
round r, the expected number of remaining rounds is equal to (1 — ¢)e.(k + 1) + ce’(k + 1). Hence, for

any n > 2

n—1

ec(n) =1+ Z (n ; 1) (1—c)ken—t=k [(1 —c)ec(k+1)+cei(k+1)]. (1)
k=1

Now recall that if player 7,41 says no player j,i1 says yes with certainty, which causes player 4,11 to
drop out of the auction. Thus, e%(2) = 1 and eX(k + 1) = e.(k) for any k > 1. These observations are

used in Appendix to rewrite the above recursive relation to

n—1
(1 — o\ _ _ _ an—1 n  Nkn—k
[1 (1-¢) ] cln)=1+(n-11-c)" '+ <k>(1 )*en ke, (k). (2)
This formula is valid for any n > 2.

Now notice that since in the first round player i; says yes with certainty, the expected number of rounds

of the auction of n players is equal to e.(n). Thus using formula 2 we can compute the expected number

14c(1—c)

o) All other values can

of rounds in the auction of n players. Plugging in n = 2 yields e.(2) =
be determined recursively. Table 1 in Appendix presents the computational results for different values
of ¢ in the auction with up to 100 players (data is within an accuracy of 0.001). Figure 1(a) shows how
for a fixed value of ¢ the expected number of rounds increases in the number of players who participate

in the auction. Furthermore, Figure 1(b) demonstrates how for a fixed number of players the expected

number of rounds decreases as ¢ increases.

Generally we show that the expected number of rounds of the auction is bounded from above by a
function that is logarithmic in the number of players. To prove this, first we introduce several notations

and lemmas.
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Figure 1: The expected number of rounds (a) for different fixed values of ¢; (b) for different fixed numbers
of players.

Define D, =[]} _, ﬁ for any n > 2.

Also define Ey = % and for any n > 2

n—1
En =1 + (TL — 1)(1 — C)Cn—l + Z (Z) (1 _ C)kcn_kEk.
Lemma 3.1 For anyn > 2, e(n) < E, - D,.

Proof. The proof is by induction on n. The basis of the induction is trivial since e.(2) = E5 and Dy > 1.
Suppose that e.(k) < E} - Dy, is true for any 2 < k < n — 1. Notice that D,, > D,,_; > ... > Dy > 1.

Thus, using the recursive formula for e.(n) and the induction hypothesis,
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THE FAMILY OF ¢-BISECTION AUCTIONS: EFFICIENCY AND RUNNING TIME 9

Now we find bounds on D,, and E,,.
Lemma 3.2 For anyn >2, D, < e

Proof. It’s enough to show that In D,, < % Let’s define A = 1%0 Notice that since 0 < ¢ < 1 it
holds that A > 1.

We have
n )\k. n . . n ’ n 1
mD, = In (H Ak_1> > [ma* —m(a 71)}§Z(1nx)‘$:”_1: i
k=1 k=1 k=1 k=1
- 1 I 1 1 &1 A l-c
= z::xc AIH_A—1:Akfl—/\—1kzzoﬁ_(x—1)2_ 2

Lemma 3.3 For anyn > 2 and any ¢ < %, E, <1+log,n, with base a = L

l1—c

Proof. The proof is by induction on n. The basis of induction holds since % <log, 2+ 1 for any

c< i 5. Suppose Ey <1+ log, k for any 2 < k <n — 1. Using the induction hypothesis,

n—1
E, = 1+(n-1D1-c)c" '+ (n) (1—c)* e E,
k=2 k
n—1
< 1+(m-11 -+ (”)(1 — o)k (log, k + 1)
k=2 k
< 1+7§<n) ek Flog k:—l—nzl<) —c)fenk
k=2 k ’ k=1
n—1
< 2+ (n) (1—c)kc"*log, k.
k=2 k
Since the logarithm with base a = %_C is concave, we know that if Ay > 0 and ZZ:O Ar = 1 then

Z Ak loga(mk) <log, (Z )\kxk> .
k=0 k=0

So let’s take A\, = (")(1 —c)kcF for all k and take xg =z, = 1, 2, = k for any 1 < k <n — 1. Then

R
(-

- 2+Z(k

k e klogak

3
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N
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N~
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) 5 (" —o)* "k +n(l )"

< 2+1gag(k)<1 Pk 4 (1 >]

= 2+log, - (" (l—c)kc”_kkl
<[5

= 2410, [(1— o)

= 1+4log,n.

The last inequality holds since for any ¢ < 1 and any n > 2 it holds that ¢" + (1 —¢)" < 2(1 —¢)" <

n(l —c)". |
A final immediate consequence of Lemmas 3.1 — 3.3 is the following theorem.

1—c

Theorem 3.4 For any ¢ < % and any n > 2, e.(n) < e (logllj n+ 1).

Remark: Since e.(n) > ez(n) when ¢ < ¢, the upper bound for ¢ = 1 is also valid for any ¢ > 1.

We showed that the expected number of rounds of the c-bisection auction is bounded from above by a
function that is logarithmic in the number of players. A comparison of the bound with the computed
results suggests that this bound is not tight. It can be easily checked that for a fixed value of ¢ the ratio
between the bound and the computed result is approximately constant (as a function of n), implying

that the bound is likely to have the correct order of magnitude.

3.2 The expected number of queries

Let b.(k) be the expected number of queries of the auction with k active players, given that the decision
of the active player with the lowest ranking is yes in the current round; b} (k) be the expected number
of queries given that this decision is mo. Notice that in a round with k£ active players k queries are
performed. Following the same argumentation as we used for determining the formula for the expected
number of rounds we find that for any n > 2

n—1

e =n+ 3 (" ) a— e[ -ao+ +ager n) 3)
k=1

Again, notice that when player 4,11 = i, says no player j,.,1 says yes with certainty, which causes player
ir+1 to drop out of the auction. Thus, b%(2) = 2 and for all k¥ > 1 it holds that b%(k + 1) = 1 + b.(k).

This is used in Appendix to derive the following recursive relation. For any n > 2

[1 —(1- c)"} be(n) =n+ (n—1)(1—c)c" L e—c + nf <Z) (1 — o)k b, (k). (4)
k=2
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Figure 2: The expected number of queries (a) for different fixed values of ¢; (b) for different fixed numbers
of players.

Now notice that since in the first round player i; says yes with certainty, the expected number of queries

in the auction of n players is equal to b.(n). Thus using formula 4 we can compute the expected number

2+2¢(1—c) Al

of queries performed in the auction of n players. Plugging in n = 2 yields b.(2) = =0

other values can be determined recursively. Table 2 in Appendix presents the computational results for
different values of ¢ in the auction with up to 100 players (data is within an accuracy of 0.001). Figure
2(a) demonstrates that for a fixed value of ¢ the expected number of queries increases in the number of
players participating in the auction. Figure 2(b) shows that for a fixed number of players the expected

number of queries decreases as ¢ becomes larger.

Generally we show that the expected number of queries is bounded from above by a function that is

linear in the number of players. To prove this we introduce several notations and lemmas.

Define By = 242¢(l=¢) 44

c(2—c)
n—1 n
Byo=n+n-1D1-c)c" P +c—c"+ kz_2 (k) (1—c)kc" "By,

for any n > 2.
Recall that D,, = [];_, ﬁ

Lemma 3.5 For anyn > 2, b.(n) < By, - D,,.

Proof. The proof is identical to the proof of Lemma 3.1 if we replace e.(k) by b.(k) and Ey by By, for
all 2 <k <n. [ ]
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From Lemma 3.2 we know that for any n > 2, D,, < e%. Now we find a bound on B,,.
Lemma 3.6 For anyn >2, B, < (2+ 1) (n+1).

Proof. The proof is by induction on n. The basis of the induction holds since it can be easily shown

that By < 3 (2 + 1). Now suppose that By < (2 4 3) (k+1) for any 2 < k < n—1. Using the induction

hypothesis,
n—1
B, = n+(n—1)(1—0)0"_1+6—0"+z(;D(l—c)kc"_k’Bk
k=2
n—1 n = n k n—k 2 1
< nt-DI-gt o=ty (A=t (S5 ) (B4 D)
k=2
2 1\ = /n & nek 2 1\ < /n .
< - P - — - —
< 2n+c+<c+2>2(k>(1 c)fe k+<c+2>z<k)(1 o)ke
k=0 k=0
2 1 2 1
= anrer (Zag)a-ans (243)
2 1 n
- (eR)eenee-g
<0+2>(n+ Jrell-3
2 1
< (=+5 1).
< <C+2>(n+)
The last inequality holds since n > 2. -

A final immediate consequence of Lemmas 3.2, 3.5 and 3.6 is the following theorem.

1

Theorem 3.7 For any integer n > 2, bo(n) < e (2+3)(n+1).

We showed that the expected number of queries is bounded from above by a function that is linear in
the number of players. Again, a comparison of the bound with the computed results suggests that this
bound is not tight. It can be easily checked that for a fixed value of ¢ the ratio between the bound and
the computed result is approximately constant (as a function of n), implying that the bound is likely to

have the correct order of magnitude.

4 Efficiency of the auction

In this section we investigate the efficiency of the c-bisection auction when the bluff equilibrium is played.
In particular we compute the probability of inefficient allocation and the expected loss of welfare. Here
for simplicity of argumentation we focus on the setting where valuations of players are independently

drawn from the uniform distribution in [0, 1).



THE FAMILY OF ¢-BISECTION AUCTIONS: EFFICIENCY AND RUNNING TIME 13

In order to compute these measures of inefficiency it is convenient to consider the direct revelation
mechanism associated with the bluff equilibrium. We construct a direct auction that mimics the bluff

strategies of the c-bisection auction.

4.1 The direct c-bisection auction

Consider the following direct auction (wg, pq), called the direct c-bisection auction. For r € N, write
I, := [1 -1-ct1-01- c)T>. 6 Note that the intervals Iy, I, ... partition the unit interval [0, 1)
from which valuations are drawn. Now let v = (v;);en be a profile of valuations. Write I,.(v) := L. N {v; |
i € N} - the set of valuations that belong to the interval I,.. Let r(v) be the highest natural number r
for which I,.(v) is not empty. Among players whose valuations belong to the interval I, the one with

the lowest ranking is declared to be the winner. So the winner wy is defined by
wq(v) ;= min{i € N | v; € I ()}

Let s(v) be the highest natural number r for which I, N {v; | i € N\{wq(v)}} is not empty. The price
the winner pays is equal to the lower bound of interval I, if all players whose valuations belong to
this interval have a ranking higher than the winner. Otherwise the price equals the upper bound of this

interval. So the payment pg is defined by

1— (1=~ if > wy(v) for all i € Iy (v
pd@)::{ (1—¢) a(v) ©)

1—(1-¢)® else.
Notice that the first condition always holds if |I,,)| > 1, i.e. if s(v) = r(v). If I,(,) contains only one

valuation, the payment depends on the ranking of the players with valuations in I,).

Example. Consider the same example as in Section 2 with players A < B < C < D < FE whose
valuations are 0.43, 0.71, 0.38, 0.79 and 0.86, respectively. Suppose that in the direct ¢-bisection auction
with ¢ = 1/2 the players truthfully report their valuations. Then r(v) = s(v) = 3. Players with valuation
in I3 are players D and E. Player D has ranking lower than player E so he is the winner. The price he
pays for the object is equal to the lower bound of I35, namely 0.75. So we get the same outcome as the

one we found in Section 2.

Generally, it is shown in [6] that for any realization of valuations v = (v;);en the outcome (wd(v), pd(v)>
equals the outcome of the c-bisection auction when players, having these valuations, follow the bluff
strategies. Consequently, by the revelation principle [10] truth telling is a dominant strategy in the

direct c-bisection auction. Due to this result the efficiency performance of both the c-bisection query

8In case of a general density function F(v) in [a, 3) intervals I, are defined recursively as follows. Write I = [ar, Br)

where a1 = «, a = Br—1 and (3 is chosen such that % =c.
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Figure 3: The probability of inefficient allocation.

auction under the bluff equilibrium and the direct c-bisection auction under the truth telling equilibrium
are the same. Thus it suffices to compute the probability of inefficient allocation and the expected loss

of welfare for the direct c-bisection auction under the truth telling equilibrium.

4.2 The probability of inefficient allocation

We derive a recursive formula for the probability of inefficient allocation and give an upper bound for
the function defined by this formula. First notice that the direct c-bisection auction restricted to the
interval [c, 1) with k players having valuations uniformly drawn from this interval has identical form and

structure as the original direct auction with k players having valuations uniformly drawn from [0, 1).

Let’s denote by P,, the probability that the auction with n players terminates in an inefficient allocation.
First, consider the case where the valuations of all players are smaller than ¢. The probability of this
event is ¢”. In this case the auction is only efficient if the player with the lowest ranking has the highest
valuation. By symmetry this happens with probability % Thus this case contributes %c” to P,.
Next consider the case where k players have valuations larger than or equal to ¢ and n — k players have
valuations smaller than c. It happens with probability (})c"*(1—c)*. For k = 1 the auction is efficient,
so this case adds zero to P,,. For k£ > 1 the auction can be inefficient and due to the structural similarity,

inefficiency takes place with probability P.. Hence,

P, =

-1 n
n - "+ ];2 <Z) A"F(1 - o)k Py

(6]

5 and for n > 2:

This can be rewritten to the following recursive relation, P, = % .

[1 —(1- c)n} P, = "T_lcn + nf <Z) k(1 — )k P, (5)
k=2
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Direct computation of this expression for different combinations of n and ¢ gives the values that are

plotted in Figure 3. In general, we show the following upper bound on P,.

Theorem 4.1 For alln > 2, P, <c.

Proof. The proof is by induction on n. The basis of induction holds since P, = % . ZCC < ¢. Suppose

that P, < cfor all2 <k <n-—1. Then

P, = 1(110)n[ c"+§(> o)ken=F. P,

k=2
1 " n -
< m c’+ Z <k‘) k k C]
= A an (117 7 [c" + c(l —c"—n(l—-c)c" - (1- c)”)}
_ -1 =g") - "t —n(l —c)c?
1—(1—-¢) 1-(1-¢o)
B c"(1—¢)(1—n)
I G T
< c

The first inequality holds by the induction assumption and the fact that "T_l < 1. The last inequality

holds since n > 2. ]

Moreover, in the same way for ¢ < % it can be shown that P, < %c for all n > 2. This theorem shows
in particular that by choosing an appropriate fraction ¢ in the auction we can make the probability of

inefficiency as small as we like, independent of the number of players!

4.3 The expected loss of welfare

The welfare of an auction is equal to the valuation of the winner. Thus given a realization of valuations
v = (vi)ien, the welfare achieved by the auction is the valuation of wg(v) := min{i | v; € I,(,)}. The

maximum welfare, given v, is max{v; | i € N} = max{v; | v; € I,(,,)}. Thus, the loss L(v) of welfare is
L(’U) = max{vi ‘ v; € Ir(v)} — Vwy(v)-

The expected loss of welfare, denoted by L,,, is the expected value of this difference. To estimate the value
of L, we simulated the direct c-bisection auction and ran it for valuations uniformly and independently
drawn from the interval [0,1). For each combination of value ¢ and number of players n we ran 10000
trials. Figure 4 shows the 99% confidence interval for the expected loss of welfare. It is interesting to

notice that the maximum expected loss doesn’t arrive at the minimum number of players.



THE FAMILY OF ¢-BISECTION AUCTIONS: EFFICIENCY AND RUNNING TIME 16

0,18 c=7/8
— — — c=3/4

—+—c=1/2

0,16

Q,14 4

c=1/4

012
0,10

L
0,08 { i\

loss of efficiency

0,06 \

0,041 N

S
g AL
Sl

0,00 : 9 ¢ —————

number of players

Figure 4: The expected loss of welfare, 99% confidence interval.

In general, we show the following statement. 7
Theorem 4.2 For alln > 2, L, < 2.

Proof. Let v = (v;);en be a realization of valuations for which the allocation in the direct c-bisection
auction is not efficient. In other words, max{v; | v; € L)} > Uy, (v)- Since the valuation of wq(v) is an
element of I,,) we get that

L(v) < length (I,(,)) <ec.

Hence, L,, < c¢P,. Applying the result of Theorem 4.1 completes the proof. [

As for probability of inefficient allocation, by choosing an appropriate fraction ¢ in the auction we can

limit the expected loss of welfare to an arbitrary chosen level, independent of the number of players.

5 Concluding remarks: trade-off between efficiency and run-
ning time

From the analysis above we derive the following relation between the value of ¢, the level of efficiency
and the running time. For a fixed number of players, a smaller fraction ¢ leads to a lower expected
loss of welfare and lower probability of inefficient allocation. But at the same time it leads to a higher
expected number of rounds and queries. Thus, increasing running time is a price that we have to pay
for increasing efficiency. Depending on the priorities of the auctioneer he may trade off efficiency against
running time. Figure 5 shows, for some fixed n, the relation between the expected running time and the
probability of inefficient allocation. These relations are built on computational results based on recursive

formulas 2, 4 and 5. Figure 6 shows, for some fixed n, the relation between the expected running time

"This result can not be generalized to an arbitrary density function F(v) since it’s based on the lengths of intervals I.
which entirely depend on distribution of valuations.



THE

FAMILY OF c-BISECTION AUCTIONS: EFFICIENCY AND RUNNING TIME

number of rounds

5 players 5 players
.g 064 oL, 10 players P 10 players
] 05 | ——20 players -% ——20 players
% s N 30 players g 0,5 ———&— 230 players
- =
4 [} '

g 04 = 04
5 o \
= 2
T 031 £ 03
£ 1]
% o2 :

12 w 0,2
£ >
= =
ﬁ 0,1+ 3 0,1
g 2
2 0 . . T ‘ ) g 0 . . : ; ; ‘

50 100 150 200 250 300

number of queries

a)

b)

Figure 5: The trade-off between (a) the probability of inefficient allocation and the number of rounds;
(b) the probability of inefficient allocation and the number of queries.

and the expected loss of inefficiency. Because we don’t have exact values for the expected loss of welfare
we estimated the values by taking the middle point of the 99% confidence interval from the simulation
results reported above. Notice that in Figure 6(a) the trade-off curves drawn for different numbers of
players almost coincide with each other. It means that in order to get the desired level of efficiency we
need to run the auction that in expectation takes the same number of rounds for any number of players
participating in the auction (of course, the choice of ¢ to be used in this auction will depend on the
number of players). This explains why for the same level of efficiency more players require more queries

to be asked, which is demonstrated in Figure 6(b).
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Appendix

Derivation of formula 2

Let’s denote by Py = (7)(1—c)*¢"*. Using the facts that €}(2) = 1 and e} (k+1) = ec(k) for all k > 2

we can rewrite formula 1 as follows:

n—1
ec(n) = 1+ Z ppt [(1 —c)ec(k+ 1)+ cel(k + 1)}
k=1
n—2 n—1
= 1+(1-¢) Z P lec(k+1)+ (1 — )P lec(n) + CZ P ler(k+1) + P ter(2)
k=1 k=2
= (1-c¢) ZP” Yee(k +1) 4+ (1 —c) +CZP” ! +(n—=1)(1—¢)c"

= 14+(1=0c)(n)+(n—-1)1=c)c" ' +(1—¢) Z PP lec(k) + ci Pl e (k)
k=2 k=2

= 14+(1-c)€(n)+ (n—1)(1—c) "1+Z[ )PPl 4 cPr™ 1}60(1@)

= 14+ —-¢)"(n)+(n—1)(1—-c)" +ZP£GC

This can be rewritten to
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Derivation of formula 4

Recall that P = (7)(1 — c¢)*¢"~* Using the facts that b*(2) = 2 and b*(k + 1) = b(k) + 1 for all k > 2,

we get from formula 3 that

n—1
be(n) = n+ > Pt [(1 — O)bo(k + 1) + cb (k + 1)}
k=1
n—2 n—1
= n+(1=0)> P be(k+1)+ (1= )Pr 7 be(n) +¢ > PPk +1) + cPl'b5(2)
k=1 k=2
n—2 n—1
= (1= Y PP (k4 1)+ (1 - &) b(n) + e > B [bc(k) + 1] +2(n — 1)1 - ¢)c™?
k=1 k=2

n—1 n—1 n—1
= n+(1=0)"b(n)+2(n—1)(1—c)c" '+ (1 -¢) Z PP tbe(k) + CZ Pl b (k) + CZ ppt
k=2 k=2 k=2

+ (1 =¢)"be(n) +2(n—1)(1—=c)c" T 4e—c"—(n—1)(1—c)c" ! +
1
(1= o Pp=! + P be(k)

=2

|
3

3
|

o

= n+1=0)"n)+n—-1)1—-c)" T 4ec—c"+ ”i Pb.(k).
k=2

Rewriting yields, for any n > 2,

n—1

[1 —(1- c)"} be(m)=n+m—D)(1-)" +e—c"+ 3 (’;) (1= )" Fb, (k).

k=2
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