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Summary. In this paper we analyze the performance of a recently proposed sequential auction, called

the c-bisection auction, that can be used for a sale of a single indivisible object. We discuss the running

time and the efficiency in the ex-post equilibrium of the auction. We show that by changing the parameter

c of the auction we can trade off efficiency against running time. Moreover, we show that the auction

that gives the desired level of efficiency in expectation takes the same number of rounds for any number

of players.
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1 Introduction

A central issue in auction design is to set the rules of the auction so that some economic goals are achieved

despite the fact that agents act based on self-interest. The economic goals are often expressed as functions

of agents’ preferences. Therefore auction design needs to elicit information on agent’s preferences.

However requiring elicitation of full and exact preference information is undesirable for several reasons.

First, agents may prefer not to reveal information on their valuations for reasons of privacy or long-term

competitiveness [13]. Second, determining one’s valuation with a precision up to the last digit can be

computationally demanding [9, 12, 14]. Finally, the full revelation of agents’ preferences may require a

prohibitive amount of communication [5, 11].

Such considerations lead to an interest in auctions where agents need not reveal their information entirely

but only partially. It has been recognized that multi-round mechanisms can reduce revelation and

associated with it computation and communication, compared to single-round mechanisms advocated

by the revelation principle [1, 3]. One class of multi-round mechanisms are query auctions. In a query

auction the auctioneer sequentially queries the agents about specific aspects of their preferences. As an

answer to the query an agent can chose one of a finite set of actions. Through incremental querying,

the auctioneer gradually collects the information on agents’ valuations. By using a query strategy in

which previously revealed information guides the selection of subsequent queries, elicitation is focused

on pertinent information. Incremental querying has been applied in different settings ([7, 2]) and it has

been shown that only a small fraction of agents’ valuation information needs to be revealed before the

(approximately) optimal allocation can be determined [5, 8].

When evaluating the effectiveness of elicitation we may generally care about the running time expressed

in the number of queries required to determine an optimal (according to the specific objective of the

designer) allocation [15]. Since information about agents’ valuation becomes more refined with each

query, a higher number of queries leads to a better allocation. This has prompted researchers to examine

the trade-off between the running time of query auctions and the level of allocation optimality. For

example, in [4] the issue is considered for English auctions when restricting queries to discrete levels.

The authors analyze how the choice of query levels in the English auction affects the expected revenue

and the expected duration (measured in terms of the number of levels that the query price has been

raised through).

The motivation for the topic of research in this paper is as follows. In [6] we study the uses and limitations

of query auctions regarding the objective of economic efficiency maximization. In particular, we prove
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that in a setting with valuations distributed according to a continuous density function any ex-post

equilibrium in an ex-post individual rational query auction that ends with positive probability after a

finite number of queries, can not be fully efficient. This result implies that in the setting of continuous

valuations full efficiency can only be achieved at the expense of an infinite running time of a query

auction for almost all realizations of valuations. So the question that arises is: what price (in terms of

running time) has to be paid for getting a desired level of approximate efficiency.

Thus, in this paper we are concerned with the issue of the trade-off between running time and allocation

efficiency in the recently proposed c-bisection auction [6]. The proposed auction is a query mechanism in

which players submit their bids in sequence with full knowledge of all previous bids of other players. The

auction is characterized by a parameter c which, together with the distribution from which valuations

of players are drawn, determines a sequence of query prices. In [6] equilibrium properties of this auction

are analyzed. It is shown that the auction has an ex-post equilibrium, called the bluff equilibrium, and

under this equilibrium the auction ends in finite time, regardless of the realization of players’ valuation.

Due to the result mentioned above we know that inefficiency of the bluff equilibrium for some realizations

of valuations is inevitable.

In this paper we discuss in detail the performance of the c-bisection auction under the bluff equilibrium.

In particular, we study how the choice of parameter c and the number of participating players affect the

running time of the auction and its (in)efficiency.

First, we investigate the running time of the auction according to two measures, namely the expected

number of rounds and the expected number of queries performed in the auction.5 For both measures we

derive first a recursive formula and give then an upper bound for the function defined by this formula.

We prove that for a fixed c the expected number of rounds is bounded by a function that is logarithmic

in the number of players while the expected number of queries is bounded by a function that is linear in

the number of players.

Second, we analyze the level of inefficiency of the auction. As measures of inefficiency we employ the

probability of inefficient allocation and the expected loss of welfare. For the probability of inefficient

allocation we derive a recursive formula and prove that it’s not more than c for any number of players. We

show that when valuations are uniformly drawn from [0, 1) the expected loss of welfare is bounded from

above by c2 for any number of players. It means that by choosing the appropriate c, the minimum level

of efficiency can be determined by the auctioneer before it is known how many players will participate
5As a query we consider each separate question of the auctioneer to an active player. As a round we consider a sequence

of queries in which each active player is asked to act exactly once.
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in the auction. We also give a (more) precise estimate of the expected loss of welfare by using computer

simulation.

Furthermore we show that for a fixed number of players there is a trade-off between efficiency and running

time: for the increasing efficiency of the auction we have to pay by an increasing number of rounds and

an increasing number of queries. By simulation it turns out that the trade-off curves, which show the

relation between the expected number of rounds and the expected loss of inefficiency, constructed for

different numbers of players coincide with each other. Thus, in expectation the number of rounds of the

auction that obtains a desired level of efficiency is independent of the number of players.

The paper is organized as follows. Section 2 introduces the rules of the c-bisection auction. In Section

3 the running time of the auction is analyzed. Section 4 is devoted to the analysis of the efficiency of

the auction. Concluding remarks about the trade-off are reported in Section 5. The Appendix contains

proofs of some statements and tables with computational results.

2 The c-bisection auction

Suppose a single indivisible object is auctioned to a set N = {1, . . . , n} of players. The players have

independent private valuations, vi, drawn from a common continuous probability distribution with cu-

mulative density F (v), within the range [α, β). We assume quasi-linear utilities. Valuations of players are

private information, i.e. each player knows only his own valuation but not the valuations of the others.

Before the start of the auction there is a lottery that determines the order of the players. W.l.o.g. we

assume that this ordering is 1 ≺ 2 ≺ 3 ≺ · · · ≺ n − 1 ≺ n. A player with a lower ranking is called a

predecessor. So e.g. player 5 is a predecessor of player 7.

The auction runs for an a priori indefinite number of rounds. Each round is characterized by payment

pr, query price qr, upper bound ur and a set of active players Ar. The payment specifies the price to be

payed if a player wins in this round. The query price is used by the auctioneer to ask an active player

whether his valuation is larger than or equal to the query price. Players are queried openly in increasing

order, so that a player can observe the bids of his predecessors. In each round the query price qr is

chosen from the open interval (pr, ur).

The initial set of active players is A1 = N . The auction starts with p1 = α and u1 = β and q1 is a point

in (α, β). Given the current set Ar, the payment pr, the query price qr, the upper bound ur and the

bids of players in round r the characteristics of the next round r + 1 are defined as follows. If all players

submit a no bid they all remain active, i.e. Ar+1 = Ar. The payment remains the same and the upper

bound is set to the previous query price, i.e. pr+1 = pr and ur+1 = qr. If at least two players submit a
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yes bid, all players that said yes remain active. The upper bound remains the same and the payment is

set equal to the previous query price, i.e. ur+1 = ur and pr+1 = qr. The new bounds determine a new

query price qr+1 in (pr+1, ur+1). If only one player submits a yes bid the auction stops, this player wins

the auction and pays pr. If such a moment doesn’t occur, i.e. at least two players remain always active,

the winner is determined according to the order of players: among those players who remain active the

player with the highest ranking wins. The price the winner pays is equal to the limit of the sequence of

the payments that occurred in the subsequent rounds in the auction. Since the sequence of payments is

increasing this limit is equal to the supremum of the payments.

The query price is defined as follows. For a given c ∈ (0, 1) and any continuous probability distribution

with cumulative density F (v) from which valuations of players are drawn, in any round r, given the

payment pr and the upper bound ur, the query price qr is chosen such that

F (qr)− F (pr)
F (ur)− F (pr)

= c,

i.e. interval [pr, qr) contains a fraction c of the measure of [pr, ur). For example, for uninform distribution

the query price bisects the interval [pr, ur) in fractions c and 1− c so that qr = pr + c(ur − pr).

The following strategy, called the bluff strategy, constitutes a symmetric ex-post equilibrium in the c-

bisection auction (this result is proven in [6]). An ex-post equilibrium is a strategy profile such that,

given any realization of valuations, the plan of actions prescribed by the strategy to a player is a best

response to the plans of actions prescribed by the strategies of the other players. Under the bluff strategy

an active player i having valuation vi says yes in round r whenever:

1. vi ≥ qr, or

2. pr ≤ vi < qr and no active predecessor of him said yes in this round.

The following example illustrates how the auction proceeds under the bluff equilibrium.

Example. Suppose five players with valuations uniformly distributed on [0, 1) participate in the c-

bisection auction with c equal to 0.5. Suppose that according to the lottery the ordering of players is

A ≺ B ≺ C ≺ D ≺ E. Players have the following private valuations respectively: 0.43, 0.71, 0.38, 0.79,

and 0.86. The auction proceeds as follows:

Round Payment Query price Set of active Player Player Player Player Player
r pr qr players Ar A B C D E
1 0 0.5 ABCDE yes yes no yes yes
2 0.5 0.75 ABDE no yes - yes yes
3 0.75 0.875 BDE - no - yes no
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In the first round player A, having no predecessor and valuation larger than p1 says yes. Every other

player, having predecessor A with yes decision, says yes iff his valuation is larger than q1 = 0.5. All

players except C say yes and therefore remain active. The payment and the query price increase to

0.5 and 0.75, respectively. Since vA < p2 player A says no in the second round. Now player B has

no predecessor with yes decision and since vB > p2 he says yes. Players D and E say yes since their

valuations are larger than q2 = 0.75. Again the payment and the query price increase. In the third

round player B says no, player D, having now no predecessors with yes decision, says yes and player E

says no. So there is only one yes decision meaning that the auction ends. Player D wins the auction

and pays 0.75.

Notice that the outcome in the example is not efficient - the winner is not the player with the highest

valuation. But as we have already pointed out inefficiency for some realizations of valuations is inevitable.

Later in the paper we investigate how inefficient this auction is by analyzing the probability of inefficient

allocation and the expected loss of welfare.

Probability distribution of player actions. In the remaining part of the paper we focus on auction

performance in expectation. In order to analyze the expected performance we need to know the proba-

bility of particular actions of players. Namely, we need to know the probability of saying yes and no by

an active player under the bluff strategy.

Recall that in any round r of the c-bisection auction the query price qr is determined in such a way

that, given that the valuation of a player is in [pr, ur), the probability that his valuation is in [pr, qr) is

equal to c. Write ir := min{i | i ∈ Ar} - among the active players in round r the one with the lowest

ranking; jr := min{i | i ∈ Ar, i 6= ir} - among the active players in round r the one with the second

lowest ranking.

First let’s observe that when player ir says no for the first time, player jr says yes with certainty. Indeed,

in all previous rounds player ir said yes and since jr is active in round r also he said yes in those rounds.

Both the payment and the query price increased so that pr = qr−1. Since player jr follows the bluff

strategy his previous yes decision implies that vjr ≥ qr−1 = pr. If in round r player ir says no, player

jr is in the situation where he doesn’t have any active predecessor with yes decision and therefore says

yes whenever his valuation is not smaller than pr, that is with certainty. It follows that after round r

player ir drops out so that ir+1 = jr. Notice that in the equilibrium in every round r either player ir

or player jr (or both) say yes. It means that in the equilibrium only players with yes decision remain

active. This in turn implies that the upper bound always remains the same so that ur = β for any r,

and the payment and the query price increase, so that pr = qr−1 for any r > 1.
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Second, we need to know the probability that player ir says yes in round r. Having no active predecessor

player ir says yes iff vir
≥ pr. Since p1 = α player i1 in round 1 says yes with certainty. Now let’s

show that for any r > 1 the probability that player ir says yes in round r equals 1 − c. Regarding the

identity of player ir there are two possibilities - either ir = ir−1 (happens if decision of ir−1 was yes)

or ir = jr−1 (happens if decision of ir−1 was no and consequently decision of jr−1 was yes). In both

cases the decision of player ir in round r− 1 was yes implying that vir
≥ pr−1. Thus, P (vir

≥ pr | vir
≥

pr−1) = P (vir
≥ qr−1 | vir

≥ pr−1) = 1 − c. The last equality holds because qr−1 divides the interval

(pr−1, β) exactly in such a way that this conditional probability is equal to 1− c.

Further, we need to know the probability of saying yes in round r for any player i 6= ir, i ∈ Ar. We

can distinguish two cases. First, consider the case where player i says yes in round r. From the fact

that i ∈ Ar follows that player ir said yes in round r − 1 and thus vi ≥ qr−1. In round r he says yes iff

vi ≥ qr. Thus, P (vi ≥ qr | vi ≥ qr−1) = P (vi ≥ qr | vi ≥ pr) = 1 − c. The last equality holds because

qr divides the interval (pr, β) exactly in such a way that this conditional probability is equal to 1 − c.

Secondly, consider the case where player ir says no in round r. As we described above player jr says

yes with certainty. For any other player i the situation is the same as in the previous case and thus also

here player i ∈ N\{ir, jr} says yes with probability 1− c.

Now notice that the analysis above was done without specifying the distribution function from which

valuations of players are drawn. Due to the price setting rule of the c-fraction auction the obtained

probability results hold regardless of the distribution function of valuations. Thus, in the remaining

part of the paper, namely in Section 4, for simplicity of argumentation we focus on the setting where

valuations of players are independently drawn from the uniform distribution in [0, 1). Moreover, it could

be seen from the analysis above that the probability of saying yes or no by an active player doesn’t

depend on the round. It enables us to derive recursive formulas (in the number of active players) for the

expected number of rounds and the expected number of queries performed in the auction.

3 Running time of the auction

In this section we investigate the expected running time of the c-bisection auction if the bluff strategies

are played. We analyze two measures, namely the expected number of rounds and the expected number

of queries performed in the auction before the winner is found. As a query we consider each separate

question of the auctioneer to an active player. As a round we consider a sequence of queries in which

each active player is asked to act exactly once. For both measures we derive first a recursive formula

and give then an upper bound for the function defined by this formula.
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3.1 The expected number of rounds

Let ec(k) be the expected number of rounds of the auction with k active players, given that the decision

of the active player with the lowest ranking is yes in the current round; and e∗c(k) be the expected

number of rounds given that this decision is no. Consider round r with n active players and suppose

that the decision of player ir in the current round is yes. The current round contributes 1 to ec(n). Now

let’s compute the expected number of remaining rounds. If all active players apart from player ir say

no, the auction stops after this round. If k (for some 1 ≤ k ≤ n− 1) active players apart from player ir

say yes, then the auction continues with k + 1 active players. The probability of this situation given the

yes decision of player ir is
(
n−1

k

)
(1− c)kcn−1−k (since when player ir says yes all other players say yes

and no with probabilities 1 − c and c respectively). In the next round player ir+1 = ir says yes or no

with probabilities 1 − c and c respectively. Thus if k active players apart from player ir say yes in the

round r, the expected number of remaining rounds is equal to (1− c)ec(k + 1) + ce∗c(k + 1). Hence, for

any n ≥ 2

ec(n) = 1 +
n−1∑

k=1

(
n− 1

k

)
(1− c)kcn−1−k

[
(1− c)ec(k + 1) + ce∗c(k + 1)

]
. (1)

Now recall that if player ir+1 says no player jr+1 says yes with certainty, which causes player ir+1 to

drop out of the auction. Thus, e∗c(2) = 1 and e∗c(k + 1) = ec(k) for any k > 1. These observations are

used in Appendix to rewrite the above recursive relation to

[
1− (1− c)n

]
ec(n) = 1 + (n− 1)(1− c)cn−1 +

n−1∑

k=2

(
n

k

)
(1− c)kcn−kec(k). (2)

This formula is valid for any n ≥ 2.

Now notice that since in the first round player i1 says yes with certainty, the expected number of rounds

of the auction of n players is equal to ec(n). Thus using formula 2 we can compute the expected number

of rounds in the auction of n players. Plugging in n = 2 yields ec(2) = 1+c(1−c)
c(2−c) . All other values can

be determined recursively. Table 1 in Appendix presents the computational results for different values

of c in the auction with up to 100 players (data is within an accuracy of 0.001). Figure 1(a) shows how

for a fixed value of c the expected number of rounds increases in the number of players who participate

in the auction. Furthermore, Figure 1(b) demonstrates how for a fixed number of players the expected

number of rounds decreases as c increases.

Generally we show that the expected number of rounds of the auction is bounded from above by a

function that is logarithmic in the number of players. To prove this, first we introduce several notations

and lemmas.
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Figure 1: The expected number of rounds (a) for different fixed values of c; (b) for different fixed numbers
of players.

Define Dn =
∏n

k=1
1

1−(1−c)k for any n ≥ 2.

Also define E2 = 1+c(1−c)
c(2−c) and for any n > 2

En = 1 + (n− 1)(1− c)cn−1 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−kEk.

Lemma 3.1 For any n ≥ 2, e(n) ≤ En ·Dn.

Proof. The proof is by induction on n. The basis of the induction is trivial since ec(2) = E2 and D2 > 1.

Suppose that ec(k) ≤ Ek ·Dk is true for any 2 ≤ k ≤ n − 1. Notice that Dn ≥ Dn−1 ≥ . . . ≥ D2 > 1.

Thus, using the recursive formula for ec(n) and the induction hypothesis,

[
1− (1− c)n

]
ec(n) = 1 + (n− 1)(1− c)cn−1 +

n−1∑

k=2

(
n

k

)
(1− c)kcn−kec(k)

≤ 1 + (n− 1)(1− c)cn−1 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−kEkDk

≤ 1 + (n− 1)(1− c)cn−1 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−kEkDn−1

≤ Dn−1

[
1 + (n− 1)(1− c)cn−1 +

n−1∑

k=2

(
n

k

)
(1− c)kcn−kEk

]

= En ·Dn−1,

which completes the proof.
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Now we find bounds on Dn and En.

Lemma 3.2 For any n ≥ 2, Dn ≤ e
1−c

c2 .

Proof. It’s enough to show that ln Dn ≤ 1−c
c2 . Let’s define λ = 1

1−c . Notice that since 0 < c < 1 it

holds that λ > 1.

We have

ln Dn = ln

(
n∏

k=1

λk

λk − 1

)
=

n∑

k=1

[
ln λk − ln(λk − 1)

]
≤

n∑

k=1

(
ln x

)′
|x=λk−1

=
n∑

k=1

1
λk − 1

≤
n∑

k=1

1
λk − λk−1

=
1

λ− 1

n∑

k=1

1
λk−1

≤ 1
λ− 1

∞∑

k=0

1
λk

=
λ

(λ− 1)2
=

1− c

c2
.

Lemma 3.3 For any n ≥ 2 and any c ≤ 1
2 , En ≤ 1 + loga n, with base a = 1

1−c .

Proof. The proof is by induction on n. The basis of induction holds since 1+c(1−c)
c(2−c) ≤ loga 2 + 1 for any

c ≤ 1
2 . Suppose Ek ≤ 1 + loga k for any 2 ≤ k ≤ n− 1. Using the induction hypothesis,

En = 1 + (n− 1)(1− c)cn−1 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−kEk

≤ 1 + (n− 1)(1− c)cn−1 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−k(loga k + 1)

≤ 1 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−k loga k +

n−1∑

k=1

(
n

k

)
(1− c)kcn−k

≤ 2 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−k loga k.

Since the logarithm with base a = 1
1−c is concave, we know that if λk ≥ 0 and

∑n
k=0 λk = 1 then

n∑

k=0

λk loga(xk) ≤ loga

( n∑

k=0

λkxk

)
.

So let’s take λk =
(
n
k

)
(1− c)kcn−k for all k and take x0 = xn = 1, xk = k for any 1 ≤ k ≤ n− 1. Then

En ≤ 2 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−k loga k

= 2 +
n∑

k=0

(
n

k

)
(1− c)kcn−k loga(xk)

≤ 2 + loga

[
n∑

k=0

(
n

k

)
(1− c)kcn−kxk

]

= 2 + loga

[
n−1∑

k=1

(
n

k

)
(1− c)kcn−kk + cn + (1− c)n

]
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≤ 2 + loga

[
n−1∑

k=1

(
n

k

)
(1− c)kcn−kk + n(1− c)n

]

= 2 + loga

[
n∑

k=0

(
n

k

)
(1− c)kcn−kk

]

= 2 + loga [(1− c)n]

= 1 + loga n.

The last inequality holds since for any c ≤ 1
2 and any n ≥ 2 it holds that cn + (1 − c)n ≤ 2(1 − c)n ≤

n(1− c)n.

A final immediate consequence of Lemmas 3.1 – 3.3 is the following theorem.

Theorem 3.4 For any c ≤ 1
2 and any n ≥ 2, ec(n) ≤ e

1−c

c2

(
log 1

1−c
n + 1

)
.

Remark: Since ec(n) > ec(n) when c < c, the upper bound for c = 1
2 is also valid for any c > 1

2 .

We showed that the expected number of rounds of the c-bisection auction is bounded from above by a

function that is logarithmic in the number of players. A comparison of the bound with the computed

results suggests that this bound is not tight. It can be easily checked that for a fixed value of c the ratio

between the bound and the computed result is approximately constant (as a function of n), implying

that the bound is likely to have the correct order of magnitude.

3.2 The expected number of queries

Let bc(k) be the expected number of queries of the auction with k active players, given that the decision

of the active player with the lowest ranking is yes in the current round; b∗c(k) be the expected number

of queries given that this decision is no. Notice that in a round with k active players k queries are

performed. Following the same argumentation as we used for determining the formula for the expected

number of rounds we find that for any n ≥ 2

bc(n) = n +
n−1∑

k=1

(
n− 1

k

)
(1− c)kcn−1−k

[
(1− c)bc(k + 1) + cb∗c(k + 1)

]
. (3)

Again, notice that when player ir+1 = ir says no player jr+1 says yes with certainty, which causes player

ir+1 to drop out of the auction. Thus, b∗c(2) = 2 and for all k > 1 it holds that b∗c(k + 1) = 1 + bc(k).

This is used in Appendix to derive the following recursive relation. For any n ≥ 2

[
1− (1− c)n

]
bc(n) = n + (n− 1)(1− c)cn−1 + c− cn +

n−1∑

k=2

(
n

k

)
(1− c)kcn−kbc(k). (4)
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Figure 2: The expected number of queries (a) for different fixed values of c; (b) for different fixed numbers
of players.

Now notice that since in the first round player i1 says yes with certainty, the expected number of queries

in the auction of n players is equal to bc(n). Thus using formula 4 we can compute the expected number

of queries performed in the auction of n players. Plugging in n = 2 yields bc(2) = 2+2c(1−c)
c(2−c) . All

other values can be determined recursively. Table 2 in Appendix presents the computational results for

different values of c in the auction with up to 100 players (data is within an accuracy of 0.001). Figure

2(a) demonstrates that for a fixed value of c the expected number of queries increases in the number of

players participating in the auction. Figure 2(b) shows that for a fixed number of players the expected

number of queries decreases as c becomes larger.

Generally we show that the expected number of queries is bounded from above by a function that is

linear in the number of players. To prove this we introduce several notations and lemmas.

Define B2 = 2+2c(1−c)
c(2−c) and

Bn = n + (n− 1)(1− c)cn−1 + c− cn +
n−1∑

k=2

(
n

k

)
(1− c)kcn−kBk

for any n > 2.

Recall that Dn =
∏n

k=1
1

1−(1−c)k .

Lemma 3.5 For any n ≥ 2, bc(n) ≤ Bn ·Dn.

Proof. The proof is identical to the proof of Lemma 3.1 if we replace ec(k) by bc(k) and Ek by Bk for

all 2 ≤ k ≤ n.



The family of c-bisection auctions: efficiency and running time 12

From Lemma 3.2 we know that for any n ≥ 2, Dn ≤ e
1−c

c2 . Now we find a bound on Bn.

Lemma 3.6 For any n ≥ 2, Bn ≤
(

2
c + 1

2

)
(n + 1).

Proof. The proof is by induction on n. The basis of the induction holds since it can be easily shown

that B2 < 3
(

2
c + 1

2

)
. Now suppose that Bk ≤

(
2
c + 1

2

)
(k+1) for any 2 ≤ k ≤ n−1. Using the induction

hypothesis,

Bn = n + (n− 1)(1− c)cn−1 + c− cn +
n−1∑

k=2

(
n

k

)
(1− c)kcn−kBk

≤ n + (n− 1)(1− c)cn−1 + c− cn +
n−1∑

k=2

(
n

k

)
(1− c)kcn−k

(
2
c

+
1
2

)
(k + 1)

≤ 2n + c +
(

2
c

+
1
2

) n∑

k=0

(
n

k

)
(1− c)kcn−kk +

(
2
c

+
1
2

) n∑

k=0

(
n

k

)
(1− c)kcn−k

= 2n + c +
(

2
c

+
1
2

)
(1− c)n +

(
2
c

+
1
2

)

=
(

2
c

+
1
2

)
(n + 1) + c

(
1− n

2

)

≤
(

2
c

+
1
2

)
(n + 1).

The last inequality holds since n ≥ 2.

A final immediate consequence of Lemmas 3.2, 3.5 and 3.6 is the following theorem.

Theorem 3.7 For any integer n ≥ 2, bc(n) ≤ e
1−c

c2
(

2
c + 1

2

)
(n + 1).

We showed that the expected number of queries is bounded from above by a function that is linear in

the number of players. Again, a comparison of the bound with the computed results suggests that this

bound is not tight. It can be easily checked that for a fixed value of c the ratio between the bound and

the computed result is approximately constant (as a function of n), implying that the bound is likely to

have the correct order of magnitude.

4 Efficiency of the auction

In this section we investigate the efficiency of the c-bisection auction when the bluff equilibrium is played.

In particular we compute the probability of inefficient allocation and the expected loss of welfare. Here

for simplicity of argumentation we focus on the setting where valuations of players are independently

drawn from the uniform distribution in [0, 1).
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In order to compute these measures of inefficiency it is convenient to consider the direct revelation

mechanism associated with the bluff equilibrium. We construct a direct auction that mimics the bluff

strategies of the c-bisection auction.

4.1 The direct c-bisection auction

Consider the following direct auction (wd, pd), called the direct c-bisection auction. For r ∈ N, write

Ir :=
[
1− (1− c)r−1, 1− (1− c)r

)
. 6 Note that the intervals I1, I2, . . . partition the unit interval [0, 1)

from which valuations are drawn. Now let v = (vi)i∈N be a profile of valuations. Write Ir(v) := Ir∩{vi |
i ∈ N} - the set of valuations that belong to the interval Ir. Let r(v) be the highest natural number r

for which Ir(v) is not empty. Among players whose valuations belong to the interval Ir(v) the one with

the lowest ranking is declared to be the winner. So the winner wd is defined by

wd(v) := min{i ∈ N | vi ∈ Ir(v)}.

Let s(v) be the highest natural number r for which Ir ∩ {vi | i ∈ N\{wd(v)}} is not empty. The price

the winner pays is equal to the lower bound of interval Is(v) if all players whose valuations belong to

this interval have a ranking higher than the winner. Otherwise the price equals the upper bound of this

interval. So the payment pd is defined by

pd(v) :=
{

1− (1− c)s(v)−1 if i > wd(v) for all i ∈ Is(v)(v)
1− (1− c)s(v) else.

Notice that the first condition always holds if |Ir(v)| > 1, i.e. if s(v) = r(v). If Ir(v) contains only one

valuation, the payment depends on the ranking of the players with valuations in Is(v).

Example. Consider the same example as in Section 2 with players A ≺ B ≺ C ≺ D ≺ E whose

valuations are 0.43, 0.71, 0.38, 0.79 and 0.86, respectively. Suppose that in the direct c-bisection auction

with c = 1/2 the players truthfully report their valuations. Then r(v) = s(v) = 3. Players with valuation

in I3 are players D and E. Player D has ranking lower than player E so he is the winner. The price he

pays for the object is equal to the lower bound of I3, namely 0.75. So we get the same outcome as the

one we found in Section 2.

Generally, it is shown in [6] that for any realization of valuations v = (vi)i∈N the outcome
(
wd(v), pd(v)

)

equals the outcome of the c-bisection auction when players, having these valuations, follow the bluff

strategies. Consequently, by the revelation principle [10] truth telling is a dominant strategy in the

direct c-bisection auction. Due to this result the efficiency performance of both the c-bisection query
6In case of a general density function F (v) in [α, β) intervals Ir are defined recursively as follows. Write Ir = [αr, βr)

where α1 = α, αr = βr−1 and βr is chosen such that
F (βr)−F (αr)
F (β)−F (αr)

= c.
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Figure 3: The probability of inefficient allocation.

auction under the bluff equilibrium and the direct c-bisection auction under the truth telling equilibrium

are the same. Thus it suffices to compute the probability of inefficient allocation and the expected loss

of welfare for the direct c-bisection auction under the truth telling equilibrium.

4.2 The probability of inefficient allocation

We derive a recursive formula for the probability of inefficient allocation and give an upper bound for

the function defined by this formula. First notice that the direct c-bisection auction restricted to the

interval [c, 1) with k players having valuations uniformly drawn from this interval has identical form and

structure as the original direct auction with k players having valuations uniformly drawn from [0, 1).

Let’s denote by Pn the probability that the auction with n players terminates in an inefficient allocation.

First, consider the case where the valuations of all players are smaller than c. The probability of this

event is cn. In this case the auction is only efficient if the player with the lowest ranking has the highest

valuation. By symmetry this happens with probability 1
n . Thus this case contributes n−1

n cn to Pn.

Next consider the case where k players have valuations larger than or equal to c and n− k players have

valuations smaller than c. It happens with probability
(
n
k

)
cn−k(1−c)k. For k = 1 the auction is efficient,

so this case adds zero to Pn. For k > 1 the auction can be inefficient and due to the structural similarity,

inefficiency takes place with probability Pk. Hence,

Pn =
n− 1

n
cn +

n∑

k=2

(
n

k

)
cn−k(1− c)kPk.

This can be rewritten to the following recursive relation, P2 = 1
2 · c

2−c and for n > 2:

[
1− (1− c)n

]
Pn =

n− 1
n

cn +
n−1∑

k=2

(
n

k

)
cn−k(1− c)kPk. (5)
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Direct computation of this expression for different combinations of n and c gives the values that are

plotted in Figure 3. In general, we show the following upper bound on Pn.

Theorem 4.1 For all n ≥ 2, Pn ≤ c.

Proof. The proof is by induction on n. The basis of induction holds since P2 = 1
2 · c

2−c ≤ c. Suppose

that Pk ≤ c for all 2 ≤ k ≤ n− 1. Then

Pn =
1

1− (1− c)n

[
n− 1

n
· cn +

n−1∑

k=2

(
n

k

)
(1− c)kcn−k · Pk

]

≤ 1
1− (1− c)n

[
cn +

n−1∑

k=2

(
n

k

)
(1− c)kcn−k · c

]

=
1

1− (1− c)n

[
cn + c

(
1− cn − n(1− c)cn−1 − (1− c)n

)]

=
c(1− (1− c)n)
1− (1− c)n

+
cn − cn+1 − n(1− c)cn

1− (1− c)n

= c +
cn(1− c)(1− n)

1− (1− c)n

≤ c.

The first inequality holds by the induction assumption and the fact that n−1
n < 1. The last inequality

holds since n ≥ 2.

Moreover, in the same way for c ≤ 1
2 it can be shown that Pn ≤ 1

2c for all n ≥ 2. This theorem shows

in particular that by choosing an appropriate fraction c in the auction we can make the probability of

inefficiency as small as we like, independent of the number of players!

4.3 The expected loss of welfare

The welfare of an auction is equal to the valuation of the winner. Thus given a realization of valuations

v = (vi)i∈N , the welfare achieved by the auction is the valuation of wd(v) := min{i | vi ∈ Ir(v)}. The

maximum welfare, given v, is max{vi | i ∈ N} = max{vi | vi ∈ Ir(v)}. Thus, the loss L(v) of welfare is

L(v) = max{vi | vi ∈ Ir(v)} − vwd(v).

The expected loss of welfare, denoted by Ln, is the expected value of this difference. To estimate the value

of Ln we simulated the direct c-bisection auction and ran it for valuations uniformly and independently

drawn from the interval [0, 1). For each combination of value c and number of players n we ran 10000

trials. Figure 4 shows the 99% confidence interval for the expected loss of welfare. It is interesting to

notice that the maximum expected loss doesn’t arrive at the minimum number of players.
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Figure 4: The expected loss of welfare, 99% confidence interval.

In general, we show the following statement. 7

Theorem 4.2 For all n ≥ 2, Ln ≤ c2.

Proof. Let v = (vi)i∈N be a realization of valuations for which the allocation in the direct c-bisection

auction is not efficient. In other words, max{vi | vi ∈ Ir(v)} > vwd(v). Since the valuation of wd(v) is an

element of Ir(v) we get that

L(v) ≤ length (Ir(v)) ≤ c.

Hence, Ln ≤ cPn. Applying the result of Theorem 4.1 completes the proof.

As for probability of inefficient allocation, by choosing an appropriate fraction c in the auction we can

limit the expected loss of welfare to an arbitrary chosen level, independent of the number of players.

5 Concluding remarks: trade-off between efficiency and run-
ning time

From the analysis above we derive the following relation between the value of c, the level of efficiency

and the running time. For a fixed number of players, a smaller fraction c leads to a lower expected

loss of welfare and lower probability of inefficient allocation. But at the same time it leads to a higher

expected number of rounds and queries. Thus, increasing running time is a price that we have to pay

for increasing efficiency. Depending on the priorities of the auctioneer he may trade off efficiency against

running time. Figure 5 shows, for some fixed n, the relation between the expected running time and the

probability of inefficient allocation. These relations are built on computational results based on recursive

formulas 2, 4 and 5. Figure 6 shows, for some fixed n, the relation between the expected running time
7This result can not be generalized to an arbitrary density function F (v) since it’s based on the lengths of intervals Ir

which entirely depend on distribution of valuations.
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Figure 5: The trade-off between (a) the probability of inefficient allocation and the number of rounds;
(b) the probability of inefficient allocation and the number of queries.

and the expected loss of inefficiency. Because we don’t have exact values for the expected loss of welfare

we estimated the values by taking the middle point of the 99% confidence interval from the simulation

results reported above. Notice that in Figure 6(a) the trade-off curves drawn for different numbers of

players almost coincide with each other. It means that in order to get the desired level of efficiency we

need to run the auction that in expectation takes the same number of rounds for any number of players

participating in the auction (of course, the choice of c to be used in this auction will depend on the

number of players). This explains why for the same level of efficiency more players require more queries

to be asked, which is demonstrated in Figure 6(b).
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Appendix

Derivation of formula 2

Let’s denote by Pn
k =

(
n
k

)
(1− c)kcn−k. Using the facts that e∗c(2) = 1 and e∗c(k +1) = ec(k) for all k ≥ 2

we can rewrite formula 1 as follows:

ec(n) = 1 +
n−1∑

k=1

Pn−1
k

[
(1− c)ec(k + 1) + ce∗c(k + 1)

]

= 1 + (1− c)
n−2∑

k=1

Pn−1
k ec(k + 1) + (1− c)Pn−1

n−1 ec(n) + c

n−1∑

k=2

Pn−1
k e∗c(k + 1) + cPn−1

1 e∗c(2)

= 1 + (1− c)
n−2∑

k=1

Pn−1
k ec(k + 1) + (1− c)nec(n) + c

n−1∑

k=2

Pn−1
k ec(k) + (n− 1)(1− c)cn−1

= 1 + (1− c)nec(n) + (n− 1)(1− c)cn−1 + (1− c)
n−1∑

k=2

Pn−1
k−1 ec(k) + c

n−1∑

k=2

Pn−1
k ec(k)

= 1 + (1− c)nec(n) + (n− 1)(1− c)cn−1 +
n−1∑

k=2

[
(1− c)Pn−1

k−1 + cPn−1
k

]
ec(k)

= 1 + (1− c)nec(n) + (n− 1)(1− c)cn−1 +
n−1∑

k=2

Pn
k ec(k).

This can be rewritten to

[
1− (1− c)n

]
ec(n) = 1 + (n− 1)(1− c)cn−1 +

n−1∑

k=2

(
n

k

)
(1− c)kcn−kec(k).
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Derivation of formula 4

Recall that Pn
k =

(
n
k

)
(1− c)kcn−k Using the facts that b∗(2) = 2 and b∗(k + 1) = b(k) + 1 for all k ≥ 2,

we get from formula 3 that

bc(n) = n +
n−1∑

k=1

Pn−1
k

[
(1− c)bc(k + 1) + cb∗c(k + 1)

]

= n + (1− c)
n−2∑

k=1

Pn−1
k bc(k + 1) + (1− c)Pn−1

n−1 bc(n) + c

n−1∑

k=2

Pn−1
k b∗c(k + 1) + cPn−1

1 b∗c(2)

= n + (1− c)
n−2∑

k=1

Pn−1
k bc(k + 1) + (1− c)nbc(n) + c

n−1∑

k=2

Pn−1
k

[
bc(k) + 1

]
+ 2(n− 1)(1− c)cn−1

= n + (1− c)nbc(n) + 2(n− 1)(1− c)cn−1 + (1− c)
n−1∑

k=2

Pn−1
k−1 bc(k) + c

n−1∑

k=2

Pn−1
k bc(k) + c

n−1∑

k=2

Pn−1
k

= n + (1− c)nbc(n) + 2(n− 1)(1− c)cn−1 + c− cn − (n− 1)(1− c)cn−1 +
n−1∑

k=2

[
(1− c)Pn−1

k−1 + cPn−1
k

]
bc(k)

= n + (1− c)nbc(n) + (n− 1)(1− c)cn−1 + c− cn +
n−1∑

k=2

Pn
k bc(k).

Rewriting yields, for any n ≥ 2,

[
1− (1− c)n

]
bc(n) = n + (n− 1)(1− c)cn−1 + c− cn +

n−1∑

k=2

(
n

k

)
(1− c)kcn−kbc(k).
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