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inefficiently in equilibrium. In this paper we propose a new sequential auction, called the c-fraction
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1 Introduction

The English auction remains the predominant auction format used in practice, though we know since

Vickrey [24] that it is strategically equivalent to the second-price, sealed bid auction. Rothkopf et

al. [20] argued that third parties being able to “capture fractions of the economic rent revealed by the

second price procedure” is one of the reasons why we hardly observe any Vickrey auctions in practice.

Engelbrecht-Wiggans and Kahn [10] support this argument in their analysis. They study a model of

a procurement auction where the winner of the auction might have to undergo a negotiation with a

third party after the auction. In this negotiation, information of the third party about the winner’s cost

revealed in the auction can have a negative influence on the winner’s surplus and the auctioneers revenue.

Also for combinatorial auctions—settings with multiple, heterogenous goods and bidder valuations for

bundles of items—ascending auctions have been the most popular approach: first in form of simultaneous

ascending auctions (Cramton [7]), later in form of clock and clock-proxy auctions [1].

From a theoretical point of view an ascending auction should be implemented by a continuous, increasing

price clock, where bidders drop out whenever the price exceeds what they are willing to pay. However,

in practice we see almost exclusively implementations of the following two variants: (1) a discrete clock

is increased by increments chosen by the auctioneer; (2) bidders submit increasing bids which exceed

the current high bid plus some minimum increment, usually in terms of a percentage of the standing

high bid. Cramton [7] reports that “bid increments in the 5 to 10 percent range are required to get the

auction to conclude in a manageable number of rounds”. If the auction decides on the sales of radio

spectrum, such increments are in the order of hundreds of millions of dollars, and can cause bidders to

drop out because the next bid would exceed their valuation.

Thus, when the auctioneer sets bid increments he has to deal with a tradeoff between efficiency and

running time of the auction. As bid increments define a decomposition of the continuum of valuations

into intervals, a large bid increment might lead to an inefficient allocation of the item because it prohibits

to distinguish between bidders whose valuations are in the same interval. Small increments decrease the

chance of allocation inefficiency, but increase substantially the running time of the auction and thereby

participation costs [9]. Despite its practical relevance, the tradeoff between these two goals has found

very little attention in the academic literature. The furthest reaching theoretical evaluation of discrete

bid levels has been given in David et al. [9], following up on [8]. They provide a recipe on how to set a

finite number of discrete bid levels in order to maximize expected revenue of the auctioneer. T hereby

they extend the analysis of Rothkopf and Harstad [21], which was limited to either 2 bidders or 2 bid

levels. However, only in a few cases the recipe of David et al. can be solved analytically. In other cases,
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the auctioneer has to rely on numerical calculations. The key qualitative insight of these articles is that

decreasing increments are preferable to constant or increasing bid levels—the common practice.

In this article we introduce a discrete query auction, called c-fraction auction, for the sale of a single item.
5 The auction gives the auction designer full control of the tradeoff between inefficiency and running time.

Based on a prior of bidders’ valuations the auctioneer can choose a single parameter, called c throughout,

to regulate both running time and expected inefficiency. The practical implementation requires as only

numerical tool the computation of values of the quasi-inverse of cumulative distribution functions. The

auction is detail-free from bidders’ perspectives by offering them an ex-post Nash equilibrium that

differs only slightly from truth-telling. In other words, the equilibrium analysis does not have to make

assumptions about bidders’ beliefs of other bidders’ valuations. Last but not least, c-fraction auctions

can be applied for any single item setting with bidder’s valuation being i.i.d.

Our main contribution is to discuss in detail the performance of the c-fraction auction under the bluff

equilibrium. First, we investigate the running time of the auction according to two measures, namely

the expected number of rounds and the expected number of queries performed in the auction.6 For

both measures we derive first an exact recursive formula and give then an upper bound for the function

defined by this formula. We prove that for a fixed c the expected number of rounds is bounded by a

function that is logarithmic in the number of players while the expected number of queries is bounded by

a function that is linear in the number of players. We also give a (more) precise estimate of the number

of rounds and number of queries by using computer simulation.

Second, we analyze the level of inefficiency of the auction. As measures of inefficiency we employ the

probability of inefficient allocation and the expected loss of welfare. For the probability of inefficient

allocation we prove that it is no more than c for any number of players, again after deriving an exact

recursive formula. This is remarkable because for any choice of constant or increasing bid increments,

and, say, uniform i.i.d. valuations, the probability of inefficient allocation is increasing in the number of

bidders and converging to 1. Indeed, the number nmax of bidders with a value in the largest interval is

increasing, and as the auction cannot distinguish between them, the probability of inefficient allocation

is nmax−1
nmax

. With respect to expected loss of welfare, we derive for each distribution a constant γ(c) which

is such that the expected loss of welfare is bounded from above by γ(c)c for any number of players. When

valuations are uniformly drawn from [0, 1) it holds that γ(c) = c and for the exponential distribution

with parameter λ we have that γ(c) = −(ln(1−c))/λ. Our results imply that by choosing the appropriate

5We prefer to use the term query auction rather than clock auction because our design allows query prices to decrease
and increase.

6As a query we consider each separate question of the auctioneer to an active player. As a round we consider a sequence
of queries in which each active player is asked to act exactly once.
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c, the minimum level of efficiency can be determined by the auctioneer before it is known how many

players will participate in the auction. We also give a (more) precise estimate of the expected loss of

welfare by using computer simulation. Furthermore we show that for a fixed number of players there is

a trade-off between efficiency and running time: for increasing efficiency of the auction we have to pay

by an increasing number of rounds and an increasing number of queries.

In Grigorieva et al. [13] we study the limitations of query auctions regarding the objective of economic

efficiency maximization. In particular, we prove that in a setting with valuations distributed according

to a continuous density function any ex-post equilibrium in an ex-post individual rational query auction

that ends with positive probability after a finite number of queries, can not be fully efficient. This result

implies that in the setting of continuous valuations full efficiency can only be achieved at the expense of

an infinite running time of a query auction for almost all realizations of valuations. Our results on the

c-fraction auction prove a counter part of this negative result: for any c > 0, the probability of inefficient

allocation can be limited by c using an individually rational query auction with an ex-post equilibrium

that ends after a finite number of rounds for all realizations of valuations. Furthermore, the number of

rounds is logarithmic in the number of bidders, and independent of the range of valuations.

Our paper is closely related to David et al. [9]. They focus on revenue maximization and touch loss of

efficiency only on the side by showing that revenue optimal discrete bid levels achieve better economic

efficiency than equi-distant levels. Though the paper is more ambitious by trying to solve the optimization

problem, a practical implementation requires complex numerical calculations and at least a prior on the

number of bidders. Later, Rogers et al. [19] have provided a Bayesian machine learning model to

compute, based on closing prices of previous auctions, revenue maximizing discrete bid levels when no

ex-ante information on the number of bidders and their valuations distribution is available.

The earliest paper on discrete bid levels in continuous settings that we could trace is by Chwe [4]. Chwe

studied the impact on revenue when discrete bids rather than continuous bids are used in sealed-bid,

first price auctions. He analyzes equilibrium bidding strategies and shows that revenue with discrete bids

is always lower than with continuous bids. Later Yu [25] extended his equilibrium analysis to English,

Vickrey and Dutch auctions.

Another stream of literature studies iterative auctions from the viewpoint of preference elicitation. De-

termining one’s valuation with a precision up to the last digit can be computationally demanding, see for

example Larson and Sandholm [15], Parkes [18], and Sandholm [22]. In combinatorial auctions, the full

revelation of agents’ preferences may require a prohibitive amount of communication, see for example

Nisan and Segal [17]. Such considerations lead to an interest in auctions where agents need not reveal
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their information entirely but only partially. One approach is to limit communication in a sealed bid

auction to a finite number of possible bits, see Blumrosen et al. [2]. Another approach is incremental

elicitation of valuations in multiple rounds. It has been recognized that multi-round mechanisms can

reduce revelation and associated with it computation and communication, compared to single-round

mechanisms advocated by the revelation principle. See Blumrosen et al. [3] and Conitzer and Sandholm

[6]. Incremental elicitation of bidder valuations has been modeled by query auctions (see e.g., Conen and

Sandholm [5]). In a query auction the auctioneer sequentially queries the agents about specific aspects

of their preferences. As an answer to the query an agent can chose one of a finite set of actions. Through

incremental querying, the auctioneer gradually collects the information on agents’ valuations. By using

a query strategy in which previously revealed information guides the selection of subsequent queries,

elicitation is focused on pertinent information. Incremental querying has been applied in different set-

tings (see e.g. Conen and Sandholm [5] and Grigorieva et al. [12]) and it has been shown that only a

small fraction of agents’ valuation information needs to be revealed before the (approximately) optimal

allocation can be determined Grigorieva et al. [11], Hudson and Sandholm [14].

When evaluating the effectiveness of elicitation we may generally care about the running time expressed

in the number of queries required to determine an optimal (according to the specific objective of the

designer) allocation (Sandholm and Boutilier [23]). Since information about agents’ valuation becomes

more refined with each query, a higher number of queries leads to a better allocation. Our proposed

c-fraction auction provides a framework that lets the auctioneer explicitly tradeoff the two goals.

The paper is organized as follows. Section 2 introduces the rules of the c-fraction auction and Section 3

derives what we call the bluff equilibrium. Section 4 addresses the probabilities by which bidders make

yes and no responses. In Section 5 the running time of the auction is analyzed. Section 6 is devoted to

the analysis of the efficiency of the auction and remarks about the trade-off between running time and

efficiency. Section 6 provides some concluding remarks.

2 The c-fraction auction

Suppose a single indivisible object is auctioned to a set N = {1, . . . , n} of players. The players have quasi-

linear utilities. We assume independent private valuations drawn from a common continuous probability

distribution with density f and cumulative density F. The support of f belongs to R+. The minimum of

this support is denoted by α and the supremum by β, where we allow β to be infinite and assume that

β strictly exceeds every possible valuation. Since F may not be strictly increasing, it may not have an

inverse. By F−1 : [0, 1) → R we denote the function such that F−1(y) = max{x ∈ R+ | F (x) = y}.
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Before the start of the auction there is a lottery that determines an ordering of the players. Without

loss of generality we assume that this ordering is 1 ≺ 2 ≺ · · · ≺ n− 1 ≺ n. A player with a lower ranking

is called a predecessor.

The auction runs for a number of rounds. A round r is characterized by a payment pr, a query price

qr, an upper bound ur, and a set of active players Ar. The payment specifies the price to be paid if

an active player wins in this round. The query price is used by the auctioneer to ask the active players

whether their valuation is larger than or equal to the query price. Active players are queried publicly

in increasing order—player i before player i + 1, such that an active player can observe the bids of his

predecessors. In each round the query price qr is chosen from the open interval (pr, ur), where ur is

allowed to be infinite.

The initial set of active players is A1 = N . The auction starts with p1 = α, u1 = β, and some q1 in

(p1, u1). Given the current set Ar, the payment pr, the query price qr, the upper bound ur, and the

bids of players in round r, the characteristics of the next round r + 1 are defined as follows. If all active

players submit a no bid they all remain active, i.e. Ar+1 = Ar, the payment remains the same, and the

upper bound is set to the previous query price, i.e. pr+1 = pr and ur+1 = qr. If at least two active

players submit a yes bid, all players that said yes remain active, the upper bound remains the same,

and the payment is set equal to the previous query price, i.e. ur+1 = ur and pr+1 = qr. In both cases, as

a function of the bounds, a new query price qr+1 in (pr+1, ur+1) is determined in a way specified below.

If only one active player submits a yes bid, the auction stops, this player wins the auction, and pays pr.

If such a moment doesn’t occur, i.e. at least two players remain active forever, the winner is determined

according to the order of players: among those players who remain active the player with the highest

ranking wins. The price the winner pays is equal to the limit of the sequence of the payments (pr)r∈N

that occurred in the subsequent rounds in the auction. Since the sequence of payments is increasing,

this limit is equal to the supremum of the payments, and is denoted by p∞.

For the c-fraction auction, where c ∈ (0, 1), the query price qr is chosen as the maximal q for which

F (q)− F (pr)
F (ur)− F (pr)

= c,

i.e. c is equal to the probability that a valuation belongs to the interval (pr, qr] conditional on this

valuation being in the interval (pr, ur]. For the uniform distribution for example it holds that qr =

pr + c(ur − pr). Equivalently, we can define

qr = F−1((1− c)F (pr) + cF (ur)).

Consider the following strategy for player i having valuation vi. This player says yes in round r whenever
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1. vi ≥ qr, or

2. pr ≤ vi < qr and no active predecessor of i said yes in round r.

In the second part of the definition, we mean by an active predecessor of i in round r a player in Ar that

is a predecessor of i. Because this part of the definition involves a certain amount of bluff, we call this

strategy the bluff strategy. Formally, the auction is given by an extensive form game, the bluff strategy

of player i is a function from the set of decision nodes of player i to {yes, no}, and is denoted by bi. The

following example illustrates how the auction proceeds when all players follow the bluff strategy.

Example. Suppose five players with valuations uniformly distributed on [0, 1) participate in the c-

fraction auction with c equal to 0.5. Players have the following private valuations: 0.43, 0.71, 0.38, 0.79,

and 0.86. The auction proceeds as follows.

Round Payment Query price Set of active Player Player Player Player Player
r pr qr players Ar 1 2 3 4 5
1 0 0.5 {1,2,3,4,5} yes yes no yes yes
2 0.5 0.75 {1,2,4,5} no yes - yes yes
3 0.75 0.875 {2,4,5} - no - yes no

In the first round player 1, having no predecessor and valuation larger than p1, says yes. Every other

player, having now an active predecessor who said yes, says yes if and only if his valuation is greater

than or equal to q1 = 0.5. All players except player 3 say yes and therefore remain active. The payment

and the query price increase to 0.5 and 0.75, respectively. Since v1 < p2 player 1 says no in the second

round. Now player 2 has no active predecessor who said yes and since v2 ≥ p2 he says yes. Players 4

and 5 say yes since their valuations are larger than q2 = 0.75. Again the payment and the query price

increase. In the third round player 2 says no, player 4, having now no active predecessors who said yes,

says yes and player 5 says no. In this round there is only one yes decision meaning that the auction

ends. Player 4 wins the auction and pays 0.75.

Notice that the outcome in the example is not efficient - the winner is not the player with the highest

valuation. Later in the paper we investigate how inefficient this auction is by analyzing the probability

of an inefficient allocation and the expected loss of welfare.

3 Bluff equilibria

In this section we show that the profile of bluff strategies constitutes an ex-post individually rational

ex-post equilibrium called the bluff equilibrium. An ex-post equilibrium is a strategy profile such that,

given any realization of valuations, the plan of action prescribed to a bidder in the auction by his strategy
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is a best response to the plans of action prescribed by the strategies of the other bidders given their

valuations. A strategy is ex-post individually rational if for every realization of valuations and for any

profile of actions of the player’s opponents, the strategy leads to non-negative utility.

Proposition 3.1 The bluff strategy is ex-post individually rational.

Proof. Consider an arbitrary strategy profile where player i follows his bluff strategy. If i is not the

winner, then he has utility 0. When i is the winner, we have two cases. Case 1: The auction terminates

after finitely many rounds, say in round r. Then all players in Ar said no, while player i said yes.

Therefore, vi ≥ pr, and since pr is the price to be paid by i, he has a non-negative payoff. Case 2: The

auction does not terminate after finitely many rounds. Suppose that vi < p∞. Since i is the winner, he

belongs to Ar for every value of r, and there is a player i′ with the same property and such that i′ ≺ i.

Since player i follows the bluff strategy and vi < p∞, there are rounds in which player i said no. Let r

be the first such round. Notice that all players in Ar say no, since otherwise player i would have ceased

to be active. Since p1 is equal to the minimum of the support of F and player i uses the bluff strategy,

r > 1. Player i said yes in round r − 1, and so did player i′, since otherwise player i′ would have ceased

to be active in round r. Since player i uses the bluff strategy and i′ ≺ i, vi ≥ qr−1. Since at least two

players said yes in round r− 1, pr = qr−1 ≤ vi. Since all players say no in round r, and player i uses the

bluff strategy, it follows that vi < pr, a contradiction to vi ≥ qr−1 = pr. We conclude that vi ≥ p∞, so

player i has a non-negative utility.

Theorem 3.2 The bluff strategy profile is an ex-post Nash equilibrium.

Proof. Let v be a realization of valuations and fi be a strategy for player i, i.e. a function from the set

of decision nodes for player i to {yes, no}. We show that fi is not a profitable deviation from bi against

b−i. Let h be the first decision node at which player i following fi deviates from the bluff strategy, and

let r denote the corresponding round. (Obviously, if fi coincides with bi at all decision nodes, fi is not

a profitable deviation.) Notice that since we treat v as given and apart from v there is no imperfect

information, the node h is well-defined. We consider two cases.

Case 1. Let h be such that at least one predecessor of i in Ar has said yes. If fi(h) = no and bi(h) = yes,

the payoff of playing fi is 0, while according to Proposition 3.1 the payoff of playing the bluff strategy is

at least 0. Consider the case where fi(h) = yes and bi(h) = no. When player i says yes in h, there are

at least two players who say yes in round r. The winning payment will be at least qr. Further, vi < qr

because bi(h) = no. Hence, the payoff of playing fi is non-positive while the payoff of playing bi is 0.

Case 2. Let h be such that none of the predecessors of i in Ar has said yes. If fi(h) = yes and bi(h) = no,

we know that vi < pr. Since the payment of the winner is at least pr, playing fi has non-positive payoff,
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while playing according to bi guarantees non-negative payoff. Consider the case where fi(h) = no and

bi(h) = yes, so vi ≥ pr. Suppose that v is such that all successors of i say no if i says yes. Then, following

bi, player i wins at a price pr while following fi he might win at a price at least pr. Now suppose that

v is such that there is a successor j of i that says yes if player i says yes. Since player j uses the bluff

strategy, he will also say yes when player i switches to no. But then the payoff of playing fi would be 0

while the payoff of playing bi is non-negative.

Theorem 3.3 The allocation under the bluff equilibrium is not ex-post efficient.

Proof. Consider the set V of valuations for which p1 ≤ vi < q1 for all i ∈ N. For each v ∈ V, bidder 1

says yes in round 1 and all other bidders say no. Thus the auction ends after round 1 and bidder 1 wins

the item for a price of p1. For v ∈ V such that for some i, v1 < vi, the allocation is not ex-post efficient.

We argue next that c-fraction auctions have a finite running time under the bluff equilibrium for any

realization of valuations. Notice that this statement is stronger than just saying that we have a finite

running time almost surely. We also argue that when every bidder plays according to his bluff strategy,

in any round of the auction there is at least one player who says yes.

Theorem 3.4 The bluff equilibrium has a finite running time for every realization of valuations. More-

over, the query price increases from round to round up to the moment where the winner is found.

Proof. We first claim that the winner of the auction, say player j, says yes in every round of the

auction. Suppose not, then let r be the first round in which he says no. Now all players in Ar say

no in round r, since otherwise j cannot be the winner of the auction. Either r = 1 or in round r − 1

player j said yes and so did all players in Ar. If r = 1, then vj ≥ p1, so player j says yes, leading to a

contradiction. If in round r − 1 all players in Ar said yes, then so did a player i with a predecessor in

Ar, implying that vi ≥ qr−1 = pr. Observing a no from all his predecessors in round r, player i should

say yes in round r when following the bluff strategy, a contradiction. We have shown that the winner of

the auction says yes in every round of the auction. It then follows that the query price increases from

round to round up to the moment where the winner is found.

Suppose the valuation v is such that the running time of the auction is infinite. Since by the previous

paragraph the query price increases from round to round, we have p∞ = β. Since the winner of the

auction, say player j, says yes in every round r, we have for all r ∈ N, vj ≥ pr, so vj ≥ β, a contradiction.

As a corollary to Theorem 3.4 we find an easy characterization of the query price in round r.
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Corollary 3.5 In the bluff equilibrium it holds that qr = F−1(1− (1− c)r), r ∈ N.

4 Probability distribution of player actions

In this section we evaluate the probability of saying yes and no by an active player under the bluff

strategy. Knowing these probabilities enables us to derive recursive formulas for the expected number of

rounds and the expected number of queries performed in the auction. Throughout this section, as well

as in remaining sections, it is assumed that every player uses the bluff strategy.

Recall that in any round r of the c-fraction auction the query price qr is determined such that, conditional

on vi belonging to [pr, ur), the probability that vi is in [pr, qr) is equal to c. We define ir = min{i | i ∈ Ar}
- among the active players in round r the one with the lowest ranking - and jr = min{i | i ∈ Ar, i 6= ir}
- among the active players in round r the one with the second lowest ranking.

First let us observe that when player ir says no for the first time, player jr says yes with certainty.

Indeed, in all previous rounds player ir said yes and since jr is active in round r also he said yes in

those rounds. Both the payment and the query price increased so that pr = qr−1. Since player jr follows

the bluff strategy his previous yes decision implies that vjr ≥ qr−1 = pr. If in round r player ir says

no, player jr is in the situation where he doesn’t have any active predecessor with a yes decision and

therefore says yes whenever his valuation is not smaller than pr. It follows that after a round r where

player ir drops out, ir+1 = jr.

Second, we need to know the probability that player ir says yes in round r. Having no active predecessor,

player ir says yes if and only if vir ≥ pr. Since p1 = α player i1 says yes with certainty in round 1.

Now let us show that for any r > 1 the probability that player ir says yes in round r equals 1 − c.

Regarding the identity of player ir there are two possibilities - either ir = ir−1 if the decision of ir−1 was

yes, or ir = jr−1 if the decision of ir−1 was no and consequently the decision of jr−1 was yes. In both

cases the decision of player ir in round r − 1 was yes which happens if and only if vir ≥ pr−1. Thus,

P(vir ≥ pr | vir ≥ pr−1) = P(vir ≥ qr−1 | vir ≥ pr−1) = 1 − c. The last equality holds because qr−1

satisfies

F (qr−1)− F (pr−1)
F (ur−1)− F (pr−1)

= c,

and Theorem 3.4 implies that ur−1 = β.

Further, we need to know the probability of saying yes in round r for any player i ∈ Ar \ {ir}. We can

distinguish two cases.

First, consider the case where player ir says yes in round r. From the fact that i ∈ Ar, it follows that
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player i said yes in round r − 1 which is the case if and only if vi ≥ qr−1. In round r he says yes if and

only if vi ≥ qr. Thus, P(vi ≥ qr | vi ≥ qr−1) = P(vi ≥ qr | vi ≥ pr) = 1 − c. The last equality holds

because qr satisfies

F (qr)− F (pr)
F (ur)− F (pr)

= c,

and Theorem 3.4 implies that ur = β.

Secondly, consider the case where player ir says no in round r. As we described before player jr says yes

with certainty. For any player i ∈ Ar \{ir, jr}, the situation is the same as in the previous case and thus

such a player i says yes with probability 1− c. We summarize our findings in the following theorem.

Theorem 4.1 In the bluff equilibrium it holds that a player i ∈ Ar says yes in round r with probability

1− c, except when i = i1 or (i = jr and ir says no), in which case player i says yes with probability 1.

Due to the query price setting rule of the c-fraction auction, Theorem 4.1 holds regardless of the distribu-

tion from which valuations are drawn. Moreover, the probability of saying yes or no by an active player

does not depend on the round with the exception of round 1. This enables us to derive recursive formulas

for the expected number of rounds and the expected number of queries performed in the auction.

5 Running time of the auction

In this section we investigate the expected running time of the c-fraction auction if the bluff strategies

are played. We analyze two measures, namely the expected number of rounds and the expected number

of queries performed in the auction before the winner is found. As a query we consider each separate

question of the auctioneer to an active player. For both measures we derive first a recursive formula and

give then an upper bound for the function defined by this formula.

5.1 The expected number of rounds

Let ec(k) be the expected number of rounds of the auction with k active players, given that the decision

of the active player with the lowest ranking is yes in the current round; and let e∗c(k) be the expected

number of rounds given that this decision is no. Consider round r with n active players and suppose

that the decision of player ir in the current round is yes. The current round contributes 1 to ec(n). Now

let us compute the expected number of remaining rounds. If all active players apart from player ir say

no, the auction stops after this round. If k, where 1 ≤ k ≤ n − 1, active players apart from player ir

say yes, then the auction continues with k +1 active players. Using Theorem 4.1, the probability of this
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situation given the yes decision of player ir is
(
n−1

k

)
(1 − c)kcn−1−k. In the next round player ir+1 = ir

says yes or no with probability 1 − c and c respectively. Thus if k active players apart from player ir

say yes in round r, the expected number of remaining rounds is equal to (1− c)ec(k + 1) + ce∗c(k + 1).

Hence, for any n ≥ 2,

ec(n) = 1 +
n−1∑

k=1

(
n− 1

k

)
(1− c)kcn−1−k

[
(1− c)ec(k + 1) + ce∗c(k + 1)

]
. (1)

Theorem 4.1 states that if player ir+1 says no, player jr+1 says yes with certainty, which causes player

ir+1 to drop out of the auction. We find that e∗c(2) = 1 and e∗c(k + 1) = ec(k) for any k > 1.

We denote Pn
k =

(
n
k

)
(1− c)kcn−k and rewrite Equation (1) as follows:

ec(n) = 1 +
n−1∑

k=1

Pn−1
k

[
(1− c)ec(k + 1) + ce∗c(k + 1)

]

= 1 + (1− c)
n−2∑

k=1

Pn−1
k ec(k + 1) + (1− c)Pn−1

n−1 ec(n) + c

n−1∑

k=2

Pn−1
k e∗c(k + 1) + cPn−1

1 e∗c(2)

= 1 + (1− c)
n−2∑

k=1

Pn−1
k ec(k + 1) + (1− c)nec(n) + c

n−1∑

k=2

Pn−1
k ec(k) + (n− 1)(1− c)cn−1

= 1 + (1− c)nec(n) + (n− 1)(1− c)cn−1 + (1− c)
n−1∑

k=2

Pn−1
k−1 ec(k) + c

n−1∑

k=2

Pn−1
k ec(k)

= 1 + (1− c)nec(n) + (n− 1)(1− c)cn−1 +
n−1∑

k=2

[
(1− c)Pn−1

k−1 + cPn−1
k

]
ec(k)

= 1 + (1− c)nec(n) + (n− 1)(1− c)cn−1 +
n−1∑

k=2

Pn
k ec(k).

This can be rewritten to

[
1− (1− c)n

]
ec(n) = 1 + (n− 1)(1− c)cn−1 +

n−1∑

k=2

(
n

k

)
(1− c)kcn−kec(k). (2)

This formula is valid for any n ≥ 2.

Now notice that since in the first round player i1 says yes with certainty, the expected number of rounds

of the auction with n players is equal to ec(n). Thus using Formula 2 we can compute the expected

number of rounds in the auction of n players. Plugging in n = 2 yields ec(2) = 1+c(1−c)
c(2−c) . All other values

can be determined recursively. Table 1 presents the computational results for different values of c in

the auction with up to 100 players (the data is within an accuracy of 0.001). Notice that the bisection

character of the c-fraction auction guarantees a remarkably low number of rounds. For instance, with

100 bidders and c = 1/2, the auction terminates in less than 7 rounds on average.
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n�c 1/10 1/8 1/6 1/4 1/3 1/2 2/3 3/4 5/6 7/8 9/10
2 5.737 4.733 3.727 2.714 2.200 1.667 1.375 1.267 1.171 1.127 1.101
3 8.901 7.230 5.555 3.873 3.021 2.143 1.663 1.483 1.319 1.240 1.193
4 11.273 9.102 6.927 4.742 3.638 2.505 1.891 1.660 1.446 1.341 1.277
5 13.172 10.600 8.024 5.437 4.131 2.794 2.076 1.807 1.557 1.431 1.353
6 14.753 11.848 8.938 6.016 4.542 3.035 2.230 1.931 1.654 1.512 1.423
7 16.109 12.918 9.721 6.513 4.895 3.241 2.361 2.037 1.738 1.584 1.486
8 17.296 13.854 10.407 6.947 5.203 3.421 2.475 2.129 1.813 1.650 1.545
9 18.350 14.686 11.016 7.334 5.477 3.581 2.576 2.211 1.879 1.709 1.598

10 19.299 15.435 11.565 7.681 5.724 3.726 2.667 2.283 1.939 1.762 1.647
20 25.647 20.443 15.233 10.006 7.373 4.690 3.275 2.760 2.312 2.102 1.971
30 29.417 23.418 17.412 11.387 8.353 5.264 3.637 3.048 2.524 2.281 2.140
40 32.109 25.541 18.967 12.372 9.052 5.673 3.894 3.255 2.681 2.406 2.249
50 34.203 27.194 20.177 13.140 9.596 5.991 4.095 3.414 2.808 2.508 2.333
60 35.918 28.547 21.168 13.768 10.042 6.252 4.260 3.543 2.913 2.595 2.405
70 37.370 29.693 22.007 14.299 10.419 6.472 4.399 3.652 3.002 2.672 2.469
80 38.628 30.686 22.735 14.760 10.746 6.664 4.520 3.747 3.077 2.740 2.527
90 39.740 31.563 23.377 15.167 11.035 6.833 4.627 3.831 3.143 2.801 2.580

100 40.735 32.348 23.952 15.532 11.294 6.984 4.722 3.907 3.201 2.855 2.629

Table 1: The expected number of rounds ec(n) in the c-fraction auction.

Figure 1: The expected number of rounds (a) for different fixed values of c; (b) for different fixed numbers
of players.

Figure 1(a) shows how for a fixed value of c the expected number of rounds increases in the number of

players who participate in the auction. Furthermore, Figure 1(b) demonstrates how for a fixed number

of players the expected number of rounds decreases as c increases.

Generally we show that the expected number of rounds of the auction is bounded from above by a

function that is logarithmic in the number of players. To prove this, we introduce several notations and

lemmas first.

For any n ≥ 2, define Dn =
∏n

k=1
1

1−(1−c)k . Also, for any n > 2, define E2 = 1+c(1−c)
c(2−c) and

En = 1 + (n− 1)(1− c)cn−1 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−kEk.

Lemma 5.1 For any n ≥ 2, ec(n) < En ·Dn.

Proof. The proof is by induction on n. The basis of the induction is trivial since ec(2) = E2 and D2 > 1.

Suppose that ec(k) < Ek ·Dk is true for any 2 ≤ k ≤ n − 1. Notice that Dn > Dn−1 > . . . > D2 > 1.

Thus, using the recursive formula for ec(n) and the induction hypothesis,
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[
1− (1− c)n

]
ec(n) = 1 + (n− 1)(1− c)cn−1 +

n−1∑

k=2

(
n

k

)
(1− c)kcn−kec(k)

< 1 + (n− 1)(1− c)cn−1 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−kEkDk

< 1 + (n− 1)(1− c)cn−1 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−kEkDn−1

< Dn−1

[
1 + (n− 1)(1− c)cn−1 +

n−1∑

k=2

(
n

k

)
(1− c)kcn−kEk

]

= En ·Dn−1,

which completes the proof.

Now we find bounds on Dn and En.

Lemma 5.2 For any n ≥ 2, Dn < e
1−c

c2 .

Proof. We have to show that lnDn ≤ 1−c
c2 . Let us define λ = 1

1−c . Notice that since 0 < c < 1 it holds

that λ > 1.

We have

ln Dn = ln

(
n∏

k=1

λk

λk − 1

)
=

n∑

k=1

[
ln λk − ln(λk − 1)

]
≤

n∑

k=1

∂x ln x|x=λk−1 =
n∑

k=1

1
λk − 1

<

n∑

k=1

1
λk − λk−1

=
1

λ− 1

n∑

k=1

1
λk−1

<
1

λ− 1

∞∑

k=0

1
λk

=
λ

(λ− 1)2
=

1− c

c2
.

Lemma 5.3 For any n ≥ 2 and any c ≤ 1
2 , En < 1 + loga n, with base a = 1

1−c .

Proof. The proof is by induction on n. The basis of the induction holds since 1+c(1−c)
c(2−c) < 1 + loga 2 for

any c ≤ 1
2 . Suppose Ek < 1 + loga k for any 2 ≤ k ≤ n− 1. Using the induction hypothesis,

En = 1 + (n− 1)(1− c)cn−1 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−kEk

< 1 + (n− 1)(1− c)cn−1 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−k(loga k + 1)

= 1 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−k loga k +

n−1∑

k=1

(
n

k

)
(1− c)kcn−k

< 2 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−k loga k.
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Since the logarithm with base a = 1
1−c is concave, we know that if λk ≥ 0 and

∑n
k=0 λk = 1 then

n∑

k=0

λk loga(xk) ≤ loga

( n∑

k=0

λkxk

)
.

So let us take λk =
(
n
k

)
(1− c)kcn−k for k = 0, . . . , n and take x0 = xn = 1, xk = k for any 1 ≤ k ≤ n−1.

Then

En < 2 +
n−1∑

k=2

(
n

k

)
(1− c)kcn−k loga k

= 2 +
n∑

k=0

(
n

k

)
(1− c)kcn−k loga(xk)

≤ 2 + loga

[
n∑

k=0

(
n

k

)
(1− c)kcn−kxk

]

= 2 + loga

[
n−1∑

k=1

(
n

k

)
(1− c)kcn−kk + cn + (1− c)n

]

≤ 2 + loga

[
n−1∑

k=1

(
n

k

)
(1− c)kcn−kk + n(1− c)n

]

= 2 + loga

[
n∑

k=0

(
n

k

)
(1− c)kcn−kk

]

= 2 + loga [(1− c)n]

= 1 + loga n.

The last inequality holds since for any c ≤ 1
2 and any n ≥ 2 it holds that cn + (1 − c)n ≤ 2(1 − c)n ≤

n(1− c)n.

A final immediate consequence of Lemmas 5.1 – 5.3 is the following theorem.

Theorem 5.4 For any c ≤ 1
2 and any n ≥ 2, ec(n) ≤ e

1−c

c2

(
log 1

1−c
n + 1

)
.

Remark: Since ec(n) < ec(n) when c > c, the upper bound for c = 1
2 is also valid for any c > 1

2 .

We showed that the expected number of rounds of the c-fraction auction is bounded from above by a

function that is logarithmic in the number of players. A comparison of the bound with the computed

results suggests that this bound is not tight. It can easily be checked that for a fixed value of c the ratio

between the bound and the computed result is approximately constant as a function of n, implying that

the bound has approximately the correct order of magnitude.
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5.2 The expected number of queries

Let bc(k) be the expected number of queries of the auction with k active players, given that the decision

of the active player with the lowest ranking is yes in the current round; b∗c(k) be the expected number

of queries given that this decision is no. Notice that in a round with k active players k queries are

performed. Following the same argumentation as we used for determining the formula for the expected

number of rounds we find that for any n ≥ 2

bc(n) = n +
n−1∑

k=1

(
n− 1

k

)
(1− c)kcn−1−k

[
(1− c)bc(k + 1) + cb∗c(k + 1)

]
. (3)

Again, notice that when player ir+1 = ir says no player jr+1 says yes with certainty, which causes player

ir+1 to drop out of the auction. Thus, b∗c(2) = 2 and for all k ≥ 2 it holds that b∗c(k + 1) = 1 + bc(k).

Recall that Pn
k =

(
n
k

)
(1− c)kcn−k Using the facts that b∗(2) = 2 and b∗(k + 1) = b(k) + 1 for all k ≥ 2,

we get from (3) that

bc(n) = n +
n−1∑

k=1

Pn−1
k

[
(1− c)bc(k + 1) + cb∗c(k + 1)

]

= n + (1− c)
n−2∑

k=1

Pn−1
k bc(k + 1) + (1− c)Pn−1

n−1 bc(n) + c

n−1∑

k=2

Pn−1
k b∗c(k + 1) + cPn−1

1 b∗c(2)

= n + (1− c)
n−2∑

k=1

Pn−1
k bc(k + 1) + (1− c)nbc(n) + c

n−1∑

k=2

Pn−1
k

[
bc(k) + 1

]
+ 2(n− 1)(1− c)cn−1

= n + (1− c)nbc(n) + 2(n− 1)(1− c)cn−1 + (1− c)
n−1∑

k=2

Pn−1
k−1 bc(k) + c

n−1∑

k=2

Pn−1
k bc(k) + c

n−1∑

k=2

Pn−1
k

= n + (1− c)nbc(n) + 2(n− 1)(1− c)cn−1 + c− cn − (n− 1)(1− c)cn−1 +
n−1∑

k=2

[
(1− c)Pn−1

k−1 + cPn−1
k

]
bc(k)

= n + (1− c)nbc(n) + (n− 1)(1− c)cn−1 + c− cn +
n−1∑

k=2

Pn
k bc(k).

Rewriting yields, for any n ≥ 2,

[
1− (1− c)n

]
bc(n) = n + (n− 1)(1− c)cn−1 + c− cn +

n−1∑

k=2

(
n

k

)
(1− c)kcn−kbc(k). (4)

Now notice that since in the first round player i1 says yes with certainty, the expected number of queries

in the auction of n players is equal to bc(n). Thus using (4) we can compute the expected number of

queries performed in the auction with n players. Plugging in n = 2 yields bc(2) = 2+2c(1−c)
c(2−c) . All other

values can be determined recursively. Table 2 presents the computational results for different values of c

in the auction with up to 100 players (data is within an accuracy of 0.001). Again, the c-fraction auction



Efficiency versus running time 16

n�c 1/10 1/8 1/6 1/4 1/3 1/2 2/3 3/4 5/6 7/8 9/10
2 11.474 9.467 7.455 5.429 4.400 3.333 2.750 2.533 2.343 2.254 2.202
3 21.790 17.779 13.759 9.718 7.674 5.571 4.442 4.029 3.666 3.496 3.396
4 32.027 26.013 19.988 13.935 10.879 7.752 6.094 5.495 4.972 4.727 4.582
5 42.217 34.200 26.171 18.109 14.044 9.897 7.717 6.938 6.264 5.949 5.762
6 52.375 42.356 32.323 22.254 17.181 12.017 9.320 8.365 7.545 7.162 6.936
7 62.511 50.490 38.454 26.378 20.298 14.120 10.908 9.778 8.815 8.368 8.104
8 72.630 58.607 44.568 30.487 23.401 16.211 12.484 11.180 10.078 9.568 9.268
9 82.735 66.711 50.669 34.583 26.492 18.291 14.051 12.575 11.333 10.763 10.427

10 92.830 74.804 56.761 38.670 29.575 20.363 15.611 13.962 12.582 11.952 11.582
20 193.465 155.430 117.372 79.251 60.124 40.845 31.016 27.653 24.893 23.679 22.985
30 293.842 235.802 177.735 119.597 90.451 61.132 46.258 41.203 37.070 35.264 34.248
40 394.111 316.068 237.995 159.843 120.684 81.336 61.430 54.691 49.201 46.802 45.457
50 494.320 396.274 298.196 200.035 150.865 101.495 76.563 68.144 61.307 58.319 56.644
60 594.492 476.443 358.361 240.192 181.014 121.626 91.673 81.574 73.394 69.825 67.820
70 694.637 556.587 418.501 280.325 211.140 141.736 106.766 94.989 85.468 81.320 78.989
80 794.763 636.711 478.622 320.440 241.249 161.832 121.847 108.394 97.531 92.809 90.152
90 894.874 716.820 538.729 360.542 271.345 181.916 136.918 121.790 109.586 104.290 101.311

100 994.973 796.918 598.825 400.633 301.431 201.992 151.981 135.180 121.634 115.766 112.466

Table 2: The expected number of queries bc(n) in the c-fraction auction.

Figure 2: The expected number of queries (a) for different fixed values of c; (b) for different fixed numbers
of players.

needs only very few queries to allocate the object. For instance, with 100 bidders and c = 1/2, the

auction needs less than 202 queries on average, surprisingly little if one realizes that 100 is the absolute

minimum with 100 bidders.

Figure 2(a) demonstrates that for a fixed value of c the expected number of queries increases in the

number of players participating in the auction. Figure 2(b) shows that for a fixed number of players the

expected number of queries decreases as c becomes larger.

Generally we show that the expected number of queries is bounded from above by a function that is

linear in the number of players. To prove this we introduce several notations and lemmas.

Define B2 = 2+2c(1−c)
c(2−c) and

Bn = n + (n− 1)(1− c)cn−1 + c− cn +
n−1∑

k=2

(
n

k

)
(1− c)kcn−kBk

for any n > 2.

Recall that Dn =
∏n

k=1
1

1−(1−c)k .

Lemma 5.5 For any n ≥ 2, bc(n) ≤ Bn ·Dn.
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Proof. The proof is identical to the proof of Lemma 5.1 if we replace ec(k) by bc(k) and Ek by Bk for

all 2 ≤ k ≤ n.

From Lemma 5.2 we know that for any n ≥ 2, Dn ≤ e
1−c

c2 . Now we find a bound on Bn.

Lemma 5.6 For any n ≥ 2, Bn ≤
(

2
c + 1

2

)
(n + 1).

Proof. The proof is by induction on n. The basis of the induction holds since it can be easily shown

that B2 < 3
(

2
c + 1

2

)
. Now suppose that Bk ≤

(
2
c + 1

2

)
(k+1) for any 2 ≤ k ≤ n−1. Using the induction

hypothesis,

Bn = n + (n− 1)(1− c)cn−1 + c− cn +
n−1∑

k=2

(
n

k

)
(1− c)kcn−kBk

≤ n + (n− 1)(1− c)cn−1 + c− cn +
n−1∑

k=2

(
n

k

)
(1− c)kcn−k

(
2
c

+
1
2

)
(k + 1)

≤ 2n + c +
(

2
c

+
1
2

) n∑

k=0

(
n

k

)
(1− c)kcn−kk +

(
2
c

+
1
2

) n∑

k=0

(
n

k

)
(1− c)kcn−k

= 2n + c +
(

2
c

+
1
2

)
(1− c)n +

(
2
c

+
1
2

)

=
(

2
c

+
1
2

)
(n + 1) + c

(
1− n

2

)

≤
(

2
c

+
1
2

)
(n + 1).

The last inequality holds since n ≥ 2.

A final immediate consequence of Lemmas 5.2, 5.5 and 5.6 is the following theorem.

Theorem 5.7 For any integer n ≥ 2, bc(n) ≤ e
1−c

c2
(

2
c + 1

2

)
(n + 1).

We showed that the expected number of queries is bounded from above by a function that is linear in

the number of players. Again, a comparison of the bound with the computed results suggests that this

bound is not tight. It can be easily checked that for a fixed value of c the ratio between the bound and

the computed result is approximately constant (as a function of n), implying that the bound is likely to

have the correct order of magnitude.

6 Efficiency of the auction

In this section we investigate the efficiency of the c-fraction auction when the bluff equilibrium is played.

In particular, in the following two subsections, we compute the probability of inefficient allocation and

the expected loss of welfare.



Efficiency versus running time 18

Figure 3: The probability of inefficient allocation.

6.1 The probability of inefficient allocation

We derive a recursive formula for the probability of inefficient allocation and give an upper bound for

this probability using the recursive formula. We denote by Pc(n) the probability that the auction with

n players terminates in an inefficient allocation.

A first important observation is that the c-fraction auction with k players having valuations drawn from

F conditional on these valuations being greater than or equal to F−1(c) has exactly the same structure

as the original c-fraction auction with k players having valuations drawn from F. For both cases, the

probability of an inefficient allocation under the bluff equilibrium is the same.

Consider the case where the valuation of all players is smaller than F−1(c). The probability of this event

is cn. In this case player i1 is the only player saying yes, and therefore receives the object. The auction

is only efficient if the player with the lowest ranking has the highest valuation, which happens with

probability 1/n. Thus this case contributes (n − 1)/ncn to Pc(n). Next consider the case where k ≥ 1

players have valuations larger than or equal to F−1(c) and n − k players have valuations smaller than

F−1(c), which happens with probability
(
n
k

)
cn−k(1− c)k. For k = 1 the auction is efficient, so this case

adds zero to Pc(n). Consider the case where k > 1. Either player i1 has a value below F−1(c), responds

no in round 2, and inefficiency among the remaining k bidders takes place with probability Pc(k). Or

player i1 has a value greater than or equal to F−1(c), in which case the auction starts in round 2 with

k bidders having a value greater than or equal to F−1(c) and inefficiency takes place with probability

Pc(k). We find that

Pc(n) =
n− 1

n
cn +

n∑

k=2

(
n

k

)
cn−k(1− c)kPc(k).

A direct evaluation of the recursive formula yields that Pc(2) = 1
2 · c

2−c . For n > 2 rewriting leads to

[
1− (1− c)n

]
Pc(n) =

n− 1
n

cn +
n−1∑

k=2

(
n

k

)
cn−k(1− c)kPc(k). (5)

Direct computation of this expression for different combinations of n and c gives the values that are

plotted in Figure 3.

The recursive formula can also be used to derive the following upper bound on Pc(n).
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Theorem 6.1 For all n ∈ N, Pc(n) < c.

Proof. The proof is by induction on n. The basis of the induction holds since Pc(1) = 0 and Pc(2) =
1
2 · c

2−c < c. Suppose that n ≥ 3 and Pc(k) < c for all 1 ≤ k ≤ n− 1. Then

Pc(n) =
1

1− (1− c)n

[
n− 1

n
· cn +

n−1∑

k=2

(
n

k

)
cn−k(1− c)k · Pc(k)

]

<
1

1− (1− c)n

[
cn + c

n−1∑

k=2

(
n

k

)
cn−k(1− c)k

]

=
1

1− (1− c)n

[
cn + c

(
1− cn − n(1− c)cn−1 − (1− c)n

)]

=
c(1− (1− c)n)
1− (1− c)n

+
cn − cn+1 − n(1− c)cn

1− (1− c)n

= c +
cn(1− c)(1− n)

1− (1− c)n

< c.

The first inequality holds by the induction assumption and the fact that n−1
n < 1. The last inequality

holds since n ≥ 3.

This theorem shows in particular that by choosing an appropriate fraction c in the auction we can make

the probability of inefficiency as small as we like, independent of the number of players!. Also Figure 3

shows that the probability of inefficient allocation is quite independent from the number of players.

When we assume c < 1
2 it can be shown by the same chain of arguments that Pc(n) ≤ 1

2c for all n ∈ N.

6.2 The expected loss of welfare

The welfare of an auction is equal to the valuation of the winner of the auction. The maximum welfare,

given v, is max{vi | i ∈ N}. The expected loss of welfare, denoted by Lc(n), is the expected value of

the difference between the maximum welfare and the valuation of the winner. To estimate the value of

Lc(n) we simulate the c-fraction auction and ran it for valuations uniformly and independently drawn

from the interval [0, 1). For each combination of value c and number of players n we ran 10000 trials.

Figure 4 shows the 99% confidence interval for the expected loss of welfare. It is interesting to notice

that the maximum expected loss does not occur for the minimum number of players.

For a distribution function F, we define γ(c) ∈ R+ by

γ(c) = sup
r∈N

F−1(1− (1− c)r)− F−1(1− (1− c)r−1),
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Figure 4: The expected loss of welfare, 99% confidence interval.

so γ(c) measures the maximal difference between the query price qr and the payment pr that can occur in

an auction. We restrict ourselves to distributions for which γ(c) is finite, thereby excluding distributions

with fat tails. It is easily verified that for the uniform distribution γ(c) is equal to c and for the

exponential distribution with parameter λ we have γ(c) = −(ln(1− c))/λ.

Theorem 6.2 For all n ∈ N, Lc(n) < γ(c)c.

Proof. Let r be the round in which the winner of the auction is found. The winner said yes in round

r, so has a valuation at least equal to pr. Since all other players say no in round r or before, they have a

valuation strictly less than qr. The welfare loss is therefore bounded above by qr − pr, and therefore by

γ(c). Hence, Lc(n) ≤ γ(c) · Pc(n). Applying the result of Theorem 6.1 completes the proof.

Many distributions have the feature that limc↓0 γ(c) = 0, for instance the exponential distribution with

parameter λ, and any distribution with compact support like for instance the uniform distribution. For

such distribution, by choosing an appropriate fraction c in the auction we can limit the expected loss of

welfare to an arbitrary chosen level, independent of the number of players.

6.3 Trade-off between efficiency and running time

From the analysis in this and the previous section we derive the following relation between the value of

c, the level of efficiency and the running time. For a fixed number of players, a smaller fraction c leads

to a lower expected loss of welfare and lower probability of inefficient allocation. But at the same time it

leads to a higher expected number of rounds and queries. Thus, increasing running time is a price that

we have to pay for increasing the level of welfare. Depending on the priorities of the auctioneer he may

trade off welfare against running time.
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Figure 5: The trade-off between (a) the probability of inefficient allocation and the number of rounds;
(b) the probability of inefficient allocation and the number of queries.

Figure 5 shows, for several fixed n, the relation between the expected running time and the probability

of inefficient allocation. These relations are built on computational results based on recursive formulas

2, 4 and 5. Figure 5(a) shows for every n = 5, 10, 20 and 30 a part of the curve {(ec(n), Pc(n)|c ∈ [0, 1]}.
In accordance with our bounds it shows that for fixed probability of inefficiency (vertical axes), we need

a number of rounds (horizontal axis) that is logarithmic increasing in the number of bidders, using

each time roughly the same c. Figure 5(a) shows for every n = 5, 10, 20 and 30 a part of the curve

{(bc(n), Pc(n)|c ∈ [0, 1]}. For fixed probability of inefficiency, the number of rounds is now increasing

linearly in the number of bidders.

7 Concluding remarks

We have shown that c-fraction auctions provide an easy way of trading-off efficiency versus running time

of a single item auction. Bluff strategies form an ex-post equilibrium of these auctions. David et al. [9]

have proposed a slightly different ascending price query auction. Truthful reports to the queries form

an ex-post equilibrium in that auction. We expect that choosing increments in their auction in the

same way as they are chosen in the c-fraction auction provides similar bounds on the number of rounds,

number of queries, and efficiency losses. Setting increments dynamically according to the c-fraction rule

is thus an easy to implement method that leads to auctions that dominate rules-of-thumb approaches

like fixed increments or fixed-percentage increments, as for example described in McAfee et al. [16], in

all relevant dimensions.
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