135 research outputs found

    Smileys, Stars, Hearts, Buttons, Tiles or Grids: Influence of Response Format on Substantive Response, Questionnaire Experience and Response Time

    Get PDF
    Studies of the processes underlying question answering in surveys suggest that the choice of (layout for) response categories can have a significant effect on respondent answers. In recent years, the use of pictures, such as emojis or stars, is often used in online communication. It is unclear if pictorial answer categories can replace traditional verbal formats as measurement instruments in surveys. In this article we investigate different versions of a Likert-scale to see if they generate similar results and user experiences. Data comes from the non-probability based Flitspanel in the Netherlands. The hearts and stars designs received lower average scores compared to the other formats. Smileys produced average answer scores in line with traditional radio buttons. Respondents evaluated the smiley design most positively. Grid designs were evaluated more negatively. People wanting to compare survey outcomes should be awar

    Measurement of the magnetic moment of the one-neutron halo nucleus 11^{11}Be

    Get PDF
    The magnetic moment of 11^{11}Be was measured by detecting nuclear magnetic resonance signals in a beryllium crystal lattice. The experimental technique applied to a 11^{11}Be+^+ ion beam from a laser ion source includes in-beam optical polarization, implantation into a metallic single crystal and observation of rf resonances in the asymmetric angular distribution of the β\beta-decay (β\beta-NMR). The nuclear magnetic moment μ(11Be)=1.6816(8)μN\mu(^{11}{\rm Be}) = -1.6816(8)\,\mu_N provides a stringent test for theoretical models describing the structure of the 1/2+^+ neutron halo state

    Lagrangian multiforms on Lie groups and non-commuting flows

    Get PDF
    We describe a variational framework for non-commuting flows, extending the theories of Lagrangian multiforms and pluri-Lagrangian systems, which have gained prominence in recent years as a variational description of integrable systems in the sense of multidimensional consistency. In the context of non-commuting flows, the manifold of independent variables, often called multi-time, is a Lie group whose bracket structure corresponds to the commutation relations between the vector fields generating the flows. Natural examples are provided by superintegrable systems for the case of Lagrangian 1-form structures, and integrable hierarchies on loop groups in the case of Lagrangian 2-forms. As particular examples we discuss the Kepler problem, the rational Calogero-Moser system, and a generalisation of the Ablowitz-Kaup-Newell-Segur system with non-commuting flows. We view this endeavour as a first step towards a purely variational approach to Lie group actions on manifolds

    Study on the response of IFMIF fission chambers to mixed neutron-gamma fields: PH-2 experimental tests

    Full text link
    The engineering design of fissionchambers as on-line radiation detectors for IFMIF is being performed in the framework of the IFMIF-EVEDA works. In this paper the results of the experiments performed in the BR2 reactor during the phase-2 of the foreseen validation activities are addressed. Two detectors have been tested in a mixedneutron-gamma field with high neutron fluence and gamma absorbed dose rates, comparable with the expected values in the HFTM in IFMIF. Since the neutron spectra in all BR2 channels are dominated by the thermal neutron component, the detectors have been surrounded by a cylindrical gadolinium screen to cut the thermal neutron component, in order to get a more representative test for IFMIF conditions. The integrated gamma absorbed dose was about 4 × 1010 Gy and the fast neutron fluence (E > 0.1 MeV) 4 × 1020 n/cm2. The fissionchambers were calibrated in three BR2 channels with different neutron-to-gamma ratio, and the long-term evolution of the signals was studied and compared with theoretical calculation

    Qualification and characterization of electronics of the fast neutron Hodoscope detectors using neutrons from CABRI core

    Get PDF
    The study of Reactivity Initiated Accidents (RIA) is important to determine up to which limits nuclear fuels can withstand such accidents without clad failure. The CABRI International Program (CIP), conducted by IRSN under an OECD/NEA agreement, has been launched to perform representative RIA Integral Effect Tests (IET) on real irradiated fuel rods in prototypical Pressurized Water Reactors (PWR) conditions. For this purpose, the CABRI experimental pulse reactor, operated by CEA in Cadarache, France, has been strongly renovated, and equipped with a pressurized water loop. The behavior of the test rod, located in that loop in the center of the driver core, is followed in real time during the power transients thanks to the hodoscope, a unique online fuel motion monitoring system, and one of the major distinctive features of CABRI. The hodoscope measures the fast neutrons emitted by the tested rod during the power pulse with a complete set of 153 Fission Chambers and 153 Proton Recoil Counters. During the CABRI facility renovation, the electronic chain of these detectors has been upgraded. In this paper, the performance of the new system is presented describing gain calibration methodology in order to get maximal Signal/Noise ratio for amplification modules, threshold tuning methodology for the discrimination modules (old and new ones), and linear detectors response limit versus different reactor powers for the whole electronic chain

    The CABRI fast neutron Hodoscope: Renovation, qualification program and first results following the experimental reactor restart

    Get PDF
    The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA). For the purpose of the CABRI International Program (CIP), managed and funded by IRSN, in the framework of an OECD/NEA agreement, a huge renovation of the facility has been conducted since 2003. The Cabri Water Loop was then installed to ensure prototypical Pressurized Water Reactor (PWR) conditions for testing irradiated fuel rods. The hodoscope installed in the CABRI reactor is a unique online fuel motion monitoring system, operated by IRSN and dedicated to the measurement of the fast neutrons emitted by the tested rod during the power pulse. It is one of the distinctive features of the CABRI reactor facility, which is operated by CEA. The system is able to determine the fuel motion, if any, with a time resolution of 1 ms and a spatial resolution of 3 mm. The hodoscope equipment has been upgraded as well during the CABRI facility renovation. This paper presents the main outcomes achieved with the hodoscope since October 2015, date of the first criticality of the CABRI reactor in its new Cabri Water Loop configuration. Results obtained during reactor commissioning phase functioning, either in steady-state mode (at low and high power, up to 23 MW) or in transient mode (start-up, possibly beyond 20 GW), are discussed

    A multimodal regional intervention strategy framed as friendly competition to improve hand hygiene compliance

    Get PDF
    Objective: To investigate the effects of friendly competition on hand hygiene compliance as part of a multimodal intervention programDesign: Prospective observational study in which the primary outcome was hand hygiene compliance. Differences were analyzed using the Pearson χ2 test. Odds ratios (ORs) with 95% confidence interval were calculated using multilevel logistic regression. Setting: Observations were performed in 9 public hospitals and 1 rehabilitation center in Rotterdam, Netherlands. Participants: From 2014 to 2016, at 5 time points (at 6-month intervals) in 120 hospital wards, 20,286 hand hygiene opportunities were observed among physicians, nurses, and other healthcare workers (HCWs). Intervention: The multimodal, friendly competition intervention consisted of mandatory interventions: monitoring and feedback of hand hygiene compliance and optional interventions (ie, e-learning, kick-off workshop, observer training, and team training). Hand hygiene opportunities, as formulated by the World Health Organization (WHO), were unobtrusively observed at 5 time points by trained observers. Compliance data were presented to the healthcare organizations as a ranking. Results: The overall mean hand hygiene compliance at time point 1 was 42.9% (95% confidence interval [CI], 41.4–44.4), which increased to 51.4% (95% CI, 49.8–53.0) at time point 5 (P<.001). Nurses showed a significant improvement between time points 1 and 5 (P< .001), whereas the compliance of physicians and other HCWs remained unchanged. In the multilevel logistic regressions, time points, type of ward, and type of HCW showed a significant association with compliance. Conclusion: Between the start and the end of the multimodal intervention program in a friendly competition setting, overall hand hygiene compliance increased significantly

    Technologic (r)evolution leads to detection of more sentinel nodes in patients with melanoma in the head and neck region

    Get PDF
    Sentinel lymph node (SN) biopsy (SNB) has proven to be a valuable tool for staging melanoma patients. Since its introduction in the early 1990s, this procedure has undergone several technologic refinements, including the introduction of SPECT/CT, as well as radioguidance and fluorescence guidance. The purpose of the current study was to evaluate the effect of this technologic evolution on SNB in the head and neck region. The primary endpoint was the false-negative (FN) rate. Secondary endpoints were number of harvested SNs, overall operation time, operation time per harvested SN, and postoperative complications. Methods: A retrospective database was queried for cutaneous head and neck melanoma patients who underwent SNB at The Netherlands Cancer Institute between 1993 and 2016. The implementation of new detection techniques was divided into 4 groups: 1993-2005, with preoperative lymphoscintigraphy and intraoperative use of both a y-ray detection probe and patent blue (n = 30); 2006-2007, with addition of preoperative road maps based on SPECT/CT (n = 15); 2008-2009, with intraoperative use of a portable y-camera (n = 40); and 2010-2016, with addition of near-infrared fluorescence guidance (n = 192). Results: In total, 277 patients were included. At least 1 SN was identified in all patients. A tumor-positive SN was found in 59 patients (21.3%): 10 in group 1 (33.3%), 3 in group 2 (20.0%), 6 in group 3 (15.0%), and 40 in group 4 (20.8%). Regional recurrences in patients with tumor negative SNs resulted in an overall FN rate of 11.9% (group 1, 16.7%; group 2, 0%; group 3, 14.3%; group 4, 11.1%). The number of harvested nodes increased with advancing technologies (P = 0.003), whereas Breslow thickness and operation time per harvested SN decreased (P = 0.003 and P = 0.017, respectively). There was no significant difference in percentage of tumor-positive SNs, overall operation time, and complication rate between the different groups. Conclusion: The use of advanced detection technologies led to a higher number of identified SNs without an increase in overall operation time, possibly indicating an improved surgical efficiency. Operation time per harvested SN decreased; the average FN rate remained 11.9% and was unchanged over 23 y. There was no significant change in postoperative complication rate.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas
    corecore