313 research outputs found

    Examining the Variables Leading to Apparent Incongruity between Antimethanogenic Potential of Tannins and Their Observed Effects in Ruminants—A Review

    Get PDF
    In recent years, several secondary plant metabolites have been identified that possess antimethanogenic properties. Tannin-rich forages have the potential to reduce methane emissions in ruminants while also increasing their nutrient use efficiency and promoting overall animal health. However, results have been highly inconclusive to date, with their antimethanogenic potential and effects on both animal performance and nutrition being highly variable even within a plant species. This variability is attributed to the structural characteristics of the tannins, many of which have been linked to an increased antimethanogenic potential. However, these characteristics are seldom considered in ruminant nutrition studies—often because the analytical techniques are inadequate to identify tannin structure and the focus is mostly on total tannin concentrations. Hence, in this article, we (i) review previous research that illustrate the variability of the antimethanogenic potential of forages; (ii) identify the source of inconsistencies behind these results; and (iii) discuss how these could be optimized to generate comparable and repeatable results. By adhering to this roadmap, we propose that there are clear links between plant metabolome and physiology and their antimethanogenic potential that can be established with the ultimate goal of improving the sustainable intensification of livestock

    THE STUDY OF ANTIOXIDANTS TO EVALUATE THE HEALING EFFECTS OF PUNICA GRANATUM PEEL ON ACETIC ACID-INDUCED COLITIS IN CHARLES-FOSTER ALBINO RATS

    Get PDF
    Objective: The study aims to analyze the effect of 50% ethanolic extract of the dried Punica granatum peel (PGE) on the healing of acetic- acid-induced colitis in rats. Methods: Colitis was induced in rats using 50% acetic acid and then PGE extract was administered by oral route daily for 14 days to those rats. Optimal healing was observed by the administration of a 100 mg/kg dose of PGE extract. Effectiveness of the above-mentioned dosage of PGE, biochemical parameters namely- antioxidants-superoxide dismutase and reduced glutathione were studied on 18 h fasting rats on the 15th day of the experiment. Results: The results were suggestive of the healing properties of PGE extract by reduction of the inflammation and mucosal damage in the colon of those rats. The effect was established by the levels of antioxidants that indicate healing of the mucosal damage. The safety of extract was established by the effective administration of 10 times the therapeutic dose, that is, 1000 mg/kg dosage of the PGE extract with no noticeable adverse effects or side effects related to autonomic nervous system or central nervous system. Conclusion: PGE extract was found to be effective in healing mucosal damage due to colitis by controlling the infection and reducing the inflammation

    Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests

    Get PDF
    An in vitro Hohenheim gas test was conducted to analyze the fermentation end-products from 17 cultivars of eight polyphenol containing forage species. The polyphenol composition and proanthocyanidin (PA) structural features of all the cultivars were analyzed with UPLC-MS/MS in leaves of vegetative or generative plants. The samples were incubated with and without polyethylene glycol (PEG, a tannin-binding agent) to separate the tannin-effect on methane (CH4, ml/200 mg DM) production from that of forage quality. Sulla and big trefoil, two particularly PA rich species, were found to have the highest CH4 reduction potential of up to 47% when compared to the samples without PEG. However, concomitant reduction in gas production (GP, ml/200 mg DM) of up to 44% was also observed. An increase in both GP and CH4 production under PEG treatments, confirms the role of tannins in CH4 reduction. Moreover, PA structural features and concentration were found to be an important source of variation for CH4 production from PA containing species. Despite having low polyphenol concentrations, chicory and plantain were found to reduce CH4 production without reducing GP. Additionally, interspecies variability was found to be higher than intraspecies variability, and these results were consistent across growth stages, indicating the findings' representativeness

    Studies on Combined Toxicity of Pendimethalin and Cadmium Chloride with Ameliorative Effect of Vitamin E-Selenium and Turmeric in Male Albino Rats

    Get PDF
    The present investigation was undertaken to study the pathology of pendimethalin and cadmium chloride and to evaluate the different concentration were used as ameliorative agents to reduce theoxidative damage caused by free redicals genreted by toxic pollutants at molecular levels. A total of 5 groups each of 12 rats were formed apart from control group. 2 groups of heavy metal and pesticide and 3 group of ameliorative oxidant in varying concentrations were formed Group T2 was given standard ration along with combination of cadmium chloride at 500 ppm with pendimethalin (38.7%) at 1000 ppm/kg feed, Group T3 was given cadmium chloride at 100ppm/kg feed and P pendimethalin (38.7%) at 1000 ppm/kg feed with standard ration, Group T4 was fed with the combination of cadmium chloride at 50 ppm/kg of feed with pendimethalin at 1000 ppm/kg of feed and alpha tocopherol-selenium at 18 ppm/kg of feed. Lastly group T5 and T6 were given turmeric at 0.5%and 1% concentrations respectively along with the combination of cadmium chloride at 50 ppm with pendimethalin (38.7%) at 1000ppm and alpha tocopherol-selenium at18ppm/kg of feed.  During the toxicity studies observation like effect on CNS, effect on locomotors system recorded on the days 0, 7, 14, 21 and 28 of experiment

    Assessing the Potential of Diverse Forage Mixtures to Reduce Enteric Methane Emissions In Vitro

    Get PDF
    Methane emissions from ruminants are a major contributor to agricultural greenhouse gas emissions. Thus, eight different forage species were combined in binary mixtures with Lolium perenne in increasing proportions, in vitro, to determine their methane reduction potential in ruminants. Species were sampled in two consecutive years where possible. The aims were: a) to determine if mixtures with specific forages, particularly those rich in plant specialized metabolites (PSM), can reduce methane emissions compared to ryegrass monocultures, b) to identify whether there is a linear-dose effect relationship in methane emissions from the legume or herb addition, and c) whether these effects are maintained across sampling years. Results showed that all dicot species studied, including the non-tannin-containing species, reduced methane production. The tannin-rich species, Sanguisorba minor and Lotus pedunculatus, showed the greatest methane reduction potential of up to 33%. Due to concomitant reductions in the forage digestibility, Cichorium intybus yielded the lowest methane emissions per digestible forage unit. Contrary to total gas production, methane production was less predictable, with a tendency for the lowest methane production being obtained with a 67.5% share of the legume or herb partner species. Thus, linear increments in the partner species share did not result in linear changes in methane concentration. The methane reduction potential differed across sampling years, but the species ranking in methane concentration was stable

    Rhizosphere pH and cation‐anion balance determine the exudation of nitrification inhibitor 3‐epi‐brachialactone suggesting release via secondary transport

    Get PDF
    Biological nitrification inhibition (BNI) of Brachiaria humidicola has been attributed to nitrification-inhibiting fusicoccanes, most prominently 3-epi-brachialactone. However, its release mechanism from B. humidicola roots remains elusive. Two hydroponic experiments were performed to investigate the role of rhizosphere pH and nutritional N form in regulating 3-epi-brachialactone release by B. humidicola and verify the underlying release pathway. Low rhizosphere pH and NH4 + nutrition promoted 3-epi-brachialactone exudation. However, the substitution of NH4 + by K+ revealed that the NH4 + effect was not founded in a direct physiological response to the N form but was related to the cation-anion balance during nutrient uptake. Release of 3-epi-brachialactone correlated with the transmembrane proton gradient ΔpH and NH4 + uptake (R2 = 0.92 for high ~6.8 and R2 = 0.84 for low ~4.2 trap solution pH). This corroborated the release of 3-epi-brachialactone through secondary transport, with the proton motive force (ΔP) defining transport rates across the plasma membrane. It was concluded that 3-epi-brachialactone release cannot be conceptualized as a regulated response to soil pH or NH4 + availability, but merely as the result of associated changes in ΔP

    Interim modelling analysis to validate reported increases in condom use and assess HIV infections averted among female sex workers and clients in southern India following a targeted HIV prevention programme.

    Get PDF
    OBJECTIVES: This study assesses whether the observed declines in HIV prevalence since the beginning of the 'Avahan' India HIV/AIDS prevention initiative are consistent with self-reported increases in condom use by female sex workers (FSWs) in two districts of southern India, and provides estimates of the fraction of new infections averted among FSWs and clients due to increases in condom use in commercial sex after 2004. METHODS: A deterministic compartmental model of HIV/sexually transmitted infection (STI) transmission incorporating heterogeneous sexual behaviour was developed, parameterised and fitted using data from two districts in Karnataka, India. Three hypotheses of condom use among FSWs were tested: (H(0)), that condom use increased in line with reported FSW survey data prior to the Avahan initiative but remained constant afterwards; (H(1)) that condom use increased following the Avahan initiative, in accordance with survey data; (H(2)) that condom use increased according to estimates derived from condom distribution data. The proportion of fits to HIV/STI prevalence data was examined to determine which hypothesis was most consistent. RESULTS: For Mysore 0/36/82.7 fits were identified per million parameter sets explored under hypothesis H(0)/H(1)/H(2), respectively, while for Belgaum 9.7/8.3/0 fits were identified. The HIV epidemics in Belgaum and Mysore are both declining. In Mysore, increases in condom use during commercial sex between 2004 and 2009 may have averted 31.2% to 47.4% of new HIV infections in FSWs, while in Belgaum it may have averted 24.8% to 43.2%, if there was an increase in condom use. DISCUSSION: Increased condom use following the Avahan intervention is likely to have played a role in curbing the HIV epidemic in Mysore. In Belgaum, given the limitations in available data, this method cannot be used alone to decide if there has been an increase in condom use

    Assessing nitrous oxide emissions and productivity of cropping systems for biogas production using digestate and mineral fertilisation in a coastal marsh site

    Get PDF
    Significant greenhouse gas emissions during substrate cultivation reduces the potential environmental benefits of biogas production. This study investigates the productivity of different cropping systems and their environmental impact in terms of nitrous oxide (N2O) emissions under the environmental conditions of the coastal marsh regions (Northern Germany) with heavy clay soils, in a 2-year field trial (April 2009-March 2011). Treatments included four cropping systems (perennial ryegrass (Lolium perenne, PR) ley, continuous maize (Zea mays), a rotation (CR1) of spring wheat (Triticum aestivum), Italian ryegrass (Lolium multiflorum, IR) and maize, and a rotation (CR2) of maize, winter wheat and IR; two sources of N (nitrogen) fertilizers (calcium ammonium nitrate, and biogas residue (BR)), and three levels of N fertilizer applications (control, moderate, high). Nitrous oxide emissions were determined for the unfertilized and highly fertilized cropping systems comprising PR ley, CR1 and CR2. Cumulative annual N2O emissions varied across the treatments, ranging from 0.82 to 3.4 kg N2O-N ha−1 year−1. Under high N fertilizer applications, PR ley incurred higher N2O-N losses compared to other tested cropping systems, and IR cover crop caused relatively high N2O-N emissions in a short vegetation period. The study observed wide range of yield-scaled emissions (0.00–5.60 kg N2O-N (Mg DM)−1) for different crops, emphasizing the variability in N2O emissions linked to cropping systems. The N2O-N emission factors for the three cropping systems were found to be low to moderate for all treatments, ranging from 0.03% to 0.53% compared to IPCC default Tier 1 N2O-N EFs. The lower emissions in the study were associated with prolonged high soil moisture conditions (water filled pore space >70%.), indicated by its negative correlation with N2O-N fluxes. Low dry matter and N yield of PR and of the wheat-IR sequence after BR application compared to other crops indicated a low N use efficiency. The estimation of N2O-N emissions based on N surplus was not promising specifically for the coastal study site where high groundwater level and organic matter in the soils were the predominant drivers for N2O-N emissions

    Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests

    Get PDF
    An in vitro Hohenheim gas test was conducted to analyze the fermentation end-products from 17 cultivars of eight polyphenol containing forage species. The polyphenol composition and proanthocyanidin (PA) structural features of all the cultivars were analyzed with UPLC-MS/MS in leaves of vegetative or generative plants. The samples were incubated with and without polyethylene glycol (PEG, a tannin-binding agent) to separate the tannin-effect on methane (CH4, ml/200 mg DM) production from that of forage quality. Sulla and big trefoil, two particularly PA rich species, were found to have the highest CH4 reduction potential of up to 47% when compared to the samples without PEG. However, concomitant reduction in gas production (GP, ml/200 mg DM) of up to 44% was also observed. An increase in both GP and CH4 production under PEG treatments, confirms the role of tannins in CH4 reduction. Moreover, PA structural features and concentration were found to be an important source of variation for CH4 production from PA containing species. Despite having low polyphenol concentrations, chicory and plantain were found to reduce CH4 production without reducing GP. Additionally, interspecies variability was found to be higher than intraspecies variability, and these results were consistent across growth stages, indicating the findings' representativeness
    corecore