37 research outputs found

    Performance of Chilli (Capsicum annuum L.) hybrids for yield and quality traits

    Get PDF
    Twenty-eight F1 combinations of chilli (Capsicum annuum L.) obtained from half-diallel cross along with eight diverse parents were evaluated in a field study to elucidate the information on the extent of mean performance of various horticultural traits. The analysis revealed that all the genotypes possessed wide spectrum of variability and showed significant differences for parents and hybrids for the traits studied. For parents UHF CHI 13 (216.20), UHF CHI 15 (193.80), UHF CHI 5 (139.00) and for hybrids H1 (182.60), H9 (181.40) and H7 (172.80) hold highest fruit count per plant. The parents UHF CHI 5 (1047.13 g), UHF CHI 15 (949.62 g) and UHF CHI 7 (912.61 g) and cross combinations H17 (1535.10 g), H8 (1320.00), H6 (1229.76) and H18 (967.60) recorded the high ripe fruit yield per plant. As for earliness, parents UHF CHI 5 (43.33), UHF CHI 11 (45.00), UHF CHI 7 (45.33) and hybrids H27 (42.67), H26 (43.00) and UH28 (43.00) took minimum days for flowering. For pungency UHF CHI 12 (0.28 %), UHF CHI 13 (0.26 %), DKC-8 (0.24 %) and H23 (0.33 %), H5 (0.31 %), H26 (0.26 %) recorded high capsaicin content

    Identification of sources of resistance to scald (Rhynchosporium commune) and of related genomic regions using genome-wide association in a mapping panel of spring barley

    Get PDF
    Barley is an important crop worldwide known for its adaptation to harsh environments and used in multiple forms as feed, food and beverages. Its productivity is affected by major abiotic and biotic stresses. Scald caused by hemibiotrophic fungus Rhynchosporium commune is a major foliar disease in many parts of the world. Host plant resistance is targeted by breeders to efficiently control this disease. An association mapping panel of 316 spring barley genotypes (AM2017) was screened for seedling resistance in greenhouse against three R. commune isolates and for adult plant resistance in three field locations in Morocco. The phenotyping results showed different numbers of entries with resistant and moderately resistant reactions at both seedling and adult plant stages. The reactions differed between the isolates with the highest percentage of resistant genotypes observed for isolate SC-S611 (49.4%) and highest percentage of susceptible genotypes (73.8%) for isolate SC-1122. At adult plant stage, the highest percentage of scald resistant genotypes (64.5%) was observed at Rommani site compared to 56% at Guich site and only 28.8% at Marchouch site. Seven genotypes were resistant at the seedling and adult plant stages. Genome wide association study (GWAS) revealed 102 MTA (15 QTL) at the seedling stage, and 25 MTA (12 QTL) associated with scald resistance at the adult plant stage. In addition, the sequences of 92 out of 102 at SRT, and 24 out of 25 significant SNP markers at APR were located in genomic regions enriched with functional proteins involved in diverse cellular processes including disease resistance. These markers span over all chromosomes with the majority of SNPs located on 3H and 7H. This study has verified 18 QTL reported in previous studies. In addition, it was successful in identifying new sources of resistance and novel genomic regions which could help in enhancing scald resistance in barley breeding programs

    CGIAR Barley Breeding Toolbox: A diversity panel to facilitate breeding and genomic research in the developing world

    Get PDF
    Breeding programs in developing countries still cannot afford the new genotyping technologies, hindering their research. We aimed to assemble an Association Mapping panel to serve as CGIAR Barley Breeding Toolbox (CBBT), especially for the Developing World. The germplasm had to be representative of the one grown in the Developing World; with high genetic variability and be of public domain. For it, we genotyped with the Infinium iSelect 50K chip, a Global Barley Panel (GBP) of 530 genotypes representing a wide range of row-types, end-uses, growth habits, geographical origins and environments. 40,342 markers were polymorphic with an average polymorphism information content of 0.35 and 66% of them exceeding 0.25. The analysis of the population structure identified 8 subpopulations mostly linked to geographical origin, four of them with significant ICARDA origin. The 16 allele combinations at 4 major flowering genes (HvVRN-H3, HvPPD-H1, HvVRN-H1 and HvCEN) explained 11.07% genetic variation and were linked to the geographic origins of the lines. ICARDA material showed the widest diversity as revealed by the highest number of polymorphic loci (99.76% of all polymorphic SNPs in GBP), number of private alleles and the fact that ICARDA lines were present in all 8 subpopulations and carried all 16 allelic combinations. Due to their genetic diversity and their representativity of the germplasm adapted to the Developing World, ICARDA-derived lines and cultivated landraces were pre-selected to form the CBBT. Using the Mean of Transformed Kinships method, we assembled a panel capturing most of the allelic diversity in the GBP. The CBBT (N=250) preserves good balance between row-types and good representation of both phenology allelic combinations and subpopulations of the GBP. The CBBT and its genotypic data is available to researchers worldwide as a collaborative tool to underpin the genetic mechanisms of traits of interest for barley cultivation

    CHSI costing study-Challenges and solutions for cost data collection in private hospitals in India

    Get PDF
    INTRODUCTION: Ayushman Bharat Pradhan Mantri Jan Aarogya Yojana (AB PM-JAY) has enabled the Government of India to become a strategic purchaser of health care services from private providers. To generate base cost evidence for evidence-based policymaking the Costing of Health Services in India (CHSI) study was commissioned in 2018 for the price setting of health benefit packages. This paper reports the findings of a process evaluation of the cost data collection in the private hospitals. METHODS: The process evaluation of health system costing in private hospitals was an exploratory survey with mixed methods (quantitative and qualitative). We used three approaches-an online survey using a semi-structured questionnaire, in-depth interviews, and a review of monitoring data. The process of data collection was assessed in terms of time taken for different aspects, resources used, level and nature of difficulty encountered, challenges and solutions. RESULTS: The mean time taken for data collection in a private hospital was 9.31 (± 1.0) person months including time for obtaining permissions, actual data collection and entry, and addressing queries for data completeness and quality. The longest time was taken to collect data on human resources (30%), while it took the least time for collecting information on building and space (5%). On a scale of 1 (lowest) to 10 (highest) difficulty levels, the data on human resources was the most difficult to collect. This included data on salaries (8), time allocation (5.5) and leaves (5). DISCUSSION: Cost data from private hospitals is crucial for mixed health systems. Developing formal mechanisms of cost accounting data and data sharing as pre-requisites for empanelment under a national insurance scheme can significantly ease the process of cost data collection

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019

    Get PDF
    Background Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030. To understand current rates, recent trends, and potential trajectories of child mortality for the next decade, we present the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 findings for all-cause mortality and cause-specific mortality in children younger than 5 years of age, with multiple scenarios for child mortality in 2030 that include the consideration of potential effects of COVID-19, and a novel framework for quantifying optimal child survival. Methods We completed all-cause mortality and cause-specific mortality analyses from 204 countries and territories for detailed age groups separately, with aggregated mortality probabilities per 1000 livebirths computed for neonatal mortality rate (NMR) and under-5 mortality rate (USMR). Scenarios for 2030 represent different potential trajectories, notably including potential effects of the COVID-19 pandemic and the potential impact of improvements preferentially targeting neonatal survival. Optimal child survival metrics were developed by age, sex, and cause of death across all GBD location-years. The first metric is a global optimum and is based on the lowest observed mortality, and the second is a survival potential frontier that is based on stochastic frontier analysis of observed mortality and Healthcare Access and Quality Index. Findings Global U5MR decreased from 71.2 deaths per 1000 livebirths (95% uncertainty interval WI] 68.3-74-0) in 2000 to 37.1 (33.2-41.7) in 2019 while global NMR correspondingly declined more slowly from 28.0 deaths per 1000 live births (26.8-29-5) in 2000 to 17.9 (16.3-19-8) in 2019. In 2019,136 (67%) of 204 countries had a USMR at or below the SDG 3.2 threshold and 133 (65%) had an NMR at or below the SDG 3.2 threshold, and the reference scenario suggests that by 2030,154 (75%) of all countries could meet the U5MR targets, and 139 (68%) could meet the NMR targets. Deaths of children younger than 5 years totalled 9.65 million (95% UI 9.05-10.30) in 2000 and 5.05 million (4.27-6.02) in 2019, with the neonatal fraction of these deaths increasing from 39% (3.76 million 95% UI 3.53-4.021) in 2000 to 48% (2.42 million; 2.06-2.86) in 2019. NMR and U5MR were generally higher in males than in females, although there was no statistically significant difference at the global level. Neonatal disorders remained the leading cause of death in children younger than 5 years in 2019, followed by lower respiratory infections, diarrhoeal diseases, congenital birth defects, and malaria. The global optimum analysis suggests NMR could be reduced to as low as 0.80 (95% UI 0.71-0.86) deaths per 1000 livebirths and U5MR to 1.44 (95% UI 1-27-1.58) deaths per 1000 livebirths, and in 2019, there were as many as 1.87 million (95% UI 1-35-2.58; 37% 95% UI 32-43]) of 5.05 million more deaths of children younger than 5 years than the survival potential frontier. Interpretation Global child mortality declined by almost half between 2000 and 2019, but progress remains slower in neonates and 65 (32%) of 204 countries, mostly in sub-Saharan Africa and south Asia, are not on track to meet either SDG 3.2 target by 2030. Focused improvements in perinatal and newborn care, continued and expanded delivery of essential interventions such as vaccination and infection prevention, an enhanced focus on equity, continued focus on poverty reduction and education, and investment in strengthening health systems across the development spectrum have the potential to substantially improve USMR. Given the widespread effects of COVID-19, considerable effort will be required to maintain and accelerate progress. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd

    Utilization of Grain Physical and Biochemical Traits to Predict Malting Quality of Barley (Hordeum vulgare L.) under Sub-Tropical Climate

    No full text
    Barley is the most popular raw material for malting, and recently, the demand for malt-based products has increased several folds in India and other South Asian countries. The barley growing season is peculiar in the sub-tropical plains region compared to European or Northern American conditions, characterized by a total crop duration of 130–145 days with a maximum grain filling duration of around only 35–40 days. A total of 19 barley genotypes were grown for three years to assess the comparative performance in relation to different quality traits, including grain physical traits and biochemical and malt quality parameters. Analysis of variance, Pearson correlation, and principal component analysis were performed to determine the correlation among different traits. The results showed significant genotypic variation among genotypes for individual grain and malt traits. Despite the shorter window for grain filling, several good malting genotypes have been developed for the sub-tropical climates. The genotypes DWRUB52, DWRB101, RD2849, DWRUB64, and DWRB91 were found suitable for malting. Based on correlation studies, a few grain parameters have been identified which can be used to predict the malting potential of a barley genotype. The hot water extract was found to be positively correlated with the grain test weight, thousand-grain weight, and malt friability but was negatively correlated with the husk content. Beta-glucan content varied from 3.4 to 6.1% (dwb); reducing the grain beta-glucan content and increasing the amylase could be priorities to address in future malt barley improvement programs under sub-tropical climatic conditions

    Seedling and adult stage resistance to net form of net blotch (NFNB) in spring barley and stability of adult stage resistance to NFNB in Morocco

    No full text
    International audienceThis study was conducted to identify stable resistance to net form of net blotch (NFNB) in spring barley in Moroccan environments. Seedling resistance to NFNB was evaluated by inoculating 336 barley genotypes with two NFNB isolates LDNH04Ptt-19 and TD-10 in the greenhouse. These genotypes were evaluated for adult plant resistance to NFNB under seven environments in Morocco in 2015 and 2016. The disease severity was estimated at GS 77-87 on barley leaves using a double-digit scale. To investigate stability of resistance, 149 barley genotypes were subjected to AMMI analysis. At the seedling stage, differential responses of barley genotypes to different NFNB isolates were identified, whereas genotypes had variable stability to NFNB resistance at the adult stages. Five genotypes, AM-68, AM-95, AM-250, AM-267 and AM-322, were resistant to both NFNB isolates at the seedling stage. There were significant (p < .001) effects of genotype (G) and G x E interaction on NFNB severity for barley genotypes at the adult stage. The principal components, IPCA1 and IPCA2, accounted for 48.4% and 18.7% variation for NFNB severity, respectively. The AMMI stability values (ASVs) ranged from 0.01 to 15.5, and fifty-nine barley genotypes had stable responses (ASV <= 0.05) across all seven environments. Specifically, two stable genotypes, AM-187 and AM-244, had lower mean NFNB severities across all environments, suggesting a quantitative resistance in these genotypes. Divergent environmental responses of NFNB severity were measured in Sidi El Ayedi 2015 and Sidi Allal Tazi 2016, suggesting that these environments may be suitable to capture resistance to diverse pathotypes. These stable genotypes are valuable resources for introgression of both qualitative resistance and quantitative resistance to NFNB in future
    corecore