1,689 research outputs found

    Dermatophytes’ identification by Matrix-assisted laser desorption ionization-time of flight mass spectrometry. (MALDI-TOF MS) - the experience of a clinical laboratory

    Get PDF
    Objectives: Dermatophytes are a challenging group of fungi that infect the keratinized tissues. The taxonomy of these fungi has changed recently with the reclassification of some species and description of new ones. However, many clinical laboratories still base the identification of dermatophytes on their phenotype. Since dermatophytes are very pleomorphic, macro and micromorphology are often insufficient to reach a correct classification and may lead to misidentifications. The identification based on MALDI-TOF relies on the protein profile of the microorganism. Thus, this study aims to summarize our current laboratorial experience of dermatophyte identification using MALDI-TOF MS. Methods: From january to april 2018, 95 dermatophytes isolates, collected from human keratinized samples and also from quality control programs were characterized by phenotypic analysis, and by VITEK MS V3.2 bioMerieux. Before identification procedure, isolates were inoculated on Sabouraud Dextrose agar plates and incubated at 27°C during 5 to 10 days. Species were identified taking into account clinical features, as well as cultural, microscopic and physiological characteristics. Prior to MALDI-TOF MS analysis, the samples were pre-treated according to the manufacturer’s protocol for filamentous fungi. Molecular identification by sequencing of the internal transcribed spacer 1 (ITS1) was performed in 34 of those isolates Results: Through phenotypic analysis eight different species were identified (54 Trichophyton rubrum; 4 T.soudanense; 22 T.interdigitale; 1 T.mentagrophytes; 3 T.tonsurans; 7 Microsporum canis; 3 M.audouinii; 1 Microsporum spp.- (non canis or audouinii). MALDI-TOF analysis showed an identification agreement in 80 cases (84,2%) with a confidence level of 99,9%. Eight isolates showed divergent identification results: three T.rubrum were identified as T.violaceum, three T.soudanense were identified as T.rubrum, one T.mentagrophytes was identified as T.interdigitale and one T.tonsurans was identified as T.rubrum. In four cases MALDI-TOF analysis did not get a profile. The ITS sequencing analysis of discrepant results corroborated the MALDI-TOF identification in five of them. On the other hand, T.soudanense was only identified by phenotypic analysis since MALDI-TOF and ITS sequencing result was T.rubrum. MALDITOF identification of T.violaceum was not confirmed by ITS sequencing that identified T. rubrum instead, in accordance with the phenotypic identification. Conclusion: Correct identification of dermatophytes to species level requires sequencing of the ITS, LSU, and/or betatubulin regions. The implementation of this methodology in a clinical laboratory is expensive and time consuming. MALDI-TOF identification is a good option for dermatophytes’ identification performed in laboratory routine, since costs of consumables as well as time of sample preparation are lower than for PCR analysis and doesn’t require long training period as phenotypic identification does. In this study, however, both methods failed to identify some species variants like Trichophyton soudanense or T. violaceum. The combined use of both MALDI-TOF and phenotypic methods seems to be the better approach for dermatophytes’ identification since some species show significant phenotypic and clinical differences.info:eu-repo/semantics/publishedVersio

    Chemical Characterization and Source Apportionment of Household Fine Particulate Matter in Rural, Peri-urban, and Urban West Africa

    Get PDF
    Household air pollution in sub-Saharan Africa and other developing regions is an important cause of disease burden. Little is known about the chemical composition and sources of household air pollution in sub-Saharan Africa, and how they differ between rural and urban homes. We analyzed the chemical composition and sources of fine particles (PM2.5) in household cooking areas of multiple neighborhoods in Accra, Ghana, and in peri-urban (Banjul) and rural (Basse) areas in The Gambia. In Accra, biomass burning accounted for 39–62% of total PM2.5 mass in the cooking area in different neighborhoods; the absolute contributions were 10–45 μg/m3. Road dust and vehicle emissions comprised 12–33% of PM2.5 mass. Solid waste burning was also a significant contributor to household PM2.5 in a low-income neighborhood but not for those living in better-off areas. In Banjul and Basse, biomass burning was the single dominant source of cooking-area PM2.5, accounting for 74–87% of its total mass; the relative and absolute contributions of biomass smoke to PM2.5 mass were larger in households that used firewood than in those using charcoal, reaching as high as 463 μg/m3 in Basse homes that used firewood for cooking. Our findings demonstrate the need for policies that enhance access to cleaner fuels in both rural and urban areas, and for controlling traffic emissions in cities in sub-Saharan Africa

    Understanding Urban Demand for Wild Meat in Vietnam: Implications for Conservation Actions

    Get PDF
    Vietnam is a significant consumer of wildlife, particularly wild meat, in urban restaurant settings. To meet this demand, poaching of wildlife is widespread, threatening regional and international biodiversity. Previous interventions to tackle illegal and potentially unsustainable consumption of wild meat in Vietnam have generally focused on limiting supply. While critical, they have been impeded by a lack of resources, the presence of increasingly organised criminal networks and corruption. Attention is, therefore, turning to the consumer, but a paucity of research investigating consumer demand for wild meat will impede the creation of effective consumer-centred interventions. Here we used a mixed-methods research approach comprising a hypothetical choice modelling survey and qualitative interviews to explore the drivers of wild meat consumption and consumer preferences among residents of Ho Chi Minh City, Vietnam. Our findings indicate that demand for wild meat is heterogeneous and highly context specific. Wild-sourced, rare, and expensive wild meat-types are eaten by those situated towards the top of the societal hierarchy to convey wealth and status and are commonly consumed in lucrative business contexts. Cheaper, legal and farmed substitutes for wild-sourced meats are also consumed, but typically in more casual consumption or social drinking settings. We explore the implications of our results for current conservation interventions in Vietnam that attempt to tackle illegal and potentially unsustainable trade in and consumption of wild meat and detail how our research informs future consumer-centric conservation actions
    corecore