22 research outputs found

    CeO2 Nanocrystals from Supercritical Alcohols: New Opportunities for Versatile Functionalizations?

    No full text
    The fast and controlled synthesis of surface-modified cerium oxide nanoparticles was carried out in supercritical {ethanol + alcohol derivative} mixtures. The newly found ability of supercritical alcohols to graft onto cerium oxide nanocrystals (CeO2 NCs) during their synthesis was exploited to control their surface chemistry via the addition of three aminoalcohols: ethanolamine, 3-amino-1-propanol and 6-amino-1-hexanol. Although the ethanol to aminoalcohol ratio was consistent (285:1), the successful grafting of these alcohol derivatives onto CeO2 NCs was identified based on Fourier transform infrared (FTIR) and thermogravimetric analysis-mass spectrometry (TGA-MS) measurements. Smaller crystallite size of CeO2 NCs synthesized in the presence of aminoalcohols, compared to those synthesized in supercritical ethanol alone, were also noticed and attributed to a possible intervention of amine groups helping the grafting of the alcohols, allowing one to stop the growth of the CeO2 NCs faster. The use of supercritical alcohol mixture-ethanol with hexanol, dodecanol, or octadecanol, with a 285:1 ratio-was also investigated. Such mixtures allow accessing a finer control in CeO2 NCs crystallite size compared to pure alcohols, according to calculation made from X-ray diffraction measurements. Finally, fluorescent molecules (fluorescein isothiocyanate) were grafted onto amine-modified CeO2 NCs. The powders displayed a fluorescent behavior under UV light, confirming the suitability and interest of CeO2 NCs surface modification by such technique

    Reacting flow simulations of supercritical water oxidation of PCB-contaminated transformer oil in a pilot plant reactor

    No full text
    The scale-up of a supercritical water oxidation process, based on recent advancements in kinetic aspects, reactor configuration and optimal operational conditions, depends on the research and development of simulation tools, which allow the designer not only to understand the complex multiphysics phenomena that describe the system, but also to optimize the operational parameters to attain the best profit for the process and guarantee its safe operation. Accordingly, this paper reports a multiphysics simulation with the CFD software Comsol Multiphysics 3.3 of a pilot plant reactor for the supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil. The proposed model was based on available information for the kinetic aspects of the complex mixture and the optimal operational conditions obtained in a lab-scale continuous supercritical water oxidation unit. The pilot plant simulation results indicate that it is not feasible to scale-up directly the optimal operational conditions obtained in the isothermal lab-scale experiments, due to the excess heat released by the exothermic oxidation reactions that result in outlet temperatures higher than 600°C, even at reactor inlet temperatures as low as 400°C. Consequently, different alternatives such as decreasing organic flowrates or a new reactor set-up with multiple oxidant injections should be considered to guarantee a safe operation

    Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production

    No full text
    Like ester type biodiesel fuel, green diesel is a next generation transportation fuel emerging due to the need for a renewable replacement of internal combustion engine fuel, which is also fully compatible with existing automotive powertrain systems. Besides other limitations, the main obstacle for wider application of such renewable fuels is their relatively high production cost, depending mainly on the raw material cost and the application of more efficient processing technology. Green diesel and ester type biodiesel can be produced from waste vegetable oil by catalytic hydrogenation, homogeneous alkali catalysed transesterification and supercritical non-catalytic transesterification. Techno-economic analysis and the sensitivity analysis reveal that economics of these production technologies strongly depend on the process unit capacity and the cost of feedstock. Green diesel production by catalytic hydroprocessing located in a petroleum refinery appears to be the most cost effective option for unit capacity close to and above 200,000 tonnes/year. Conventional ester biodiesel process and non-catalytic ester biodiesel process under supercritical conditions are less profitable at specified capacity. Unit capacities of the investigated processes which are below 100,000 tonnes/year are likely to result in negative net present values after 10 years of project lifetime

    Simulation of Real Wastewater Supercritical Water Oxidation at High Concentration on a Pilot Plant Scale

    No full text
    La oxidación en agua supercrítica (GASC) se ha estudiado durante las últimas tres décadas y ahora es un proceso bien conocido. Sin embargo, el desarrollo comercial de esta técnica se encuentra actualmente retrasado debido a varios inconvenientes como la corrosión, la precipitación de sales y los altos costos. En un esfuerzo por superar estas limitaciones, varios autores han estudiado y diseñado nuevos conceptos de reactores GASC, pero estas soluciones técnicas implican el uso de materiales especiales y diseños complejos que aumentan los costes del proceso. Sin embargo, la GASC convencional podría comercializarse para ciertas aguas residuales que cumplan ciertos requisitos, por ejemplo, contenidos muy bajos de sal y cloruro, y es necesario continuar estudiando el proceso de GASC en altas concentraciones y a escala de planta piloto. En la actualidad, las simulaciones basadas en GASC de aguas residuales reales en altas concentraciones a escala de planta piloto son escasas en la literatura. La simulación de procesos es una poderosa herramienta para estudiar procesos en profundidad y avanzar en el proceso de escalado. Sin embargo, el uso de software específico de ingeniería química, como Prosim Plus o Aspen Plus, no es aplicable para simular un agua residual compleja. Además, el uso de los datos cinéticos disponibles en la literatura no es sencillo porque estos parámetros cinéticos se obtuvieron de experimentos realizados en condiciones muy diferentes (isotermas, baja concentración, etc.). En el trabajo aquí descrito se ha realizado satisfactoriamente la simulación del fluido de corte Biocut 35 SCWO a escala de planta piloto. El modelo se desarrolló utilizando una hoja de cálculo de Microsoft Excel y un modelo cinético obtenido a escala de laboratorio. Se realizaron quince experimentos para validar el simulador. Estos experimentos se realizaron a escala de planta piloto a una presión constante de 250 bar y temperaturas iniciales que oscilaron entre 388 y 428 ºC. La concentración del fluido de corte utilizada en estos experimentos se varió de 19 a 95 g de O2/L. Finalmente, se utilizó el simulador para comprobar el efecto de las variables operativas como la concentración de las aguas residuales, temperatura inicial, caudal de aguas residuales y aislamiento térmico.Ministerio de Educació
    corecore