22 research outputs found

    Cigarette smoke extract induces a phenotypic shift in epithelial cells: involvement of HIF1α in mesenchymal transition

    Get PDF
    In COPD, matrix remodeling contributes to airflow limitation. Recent evidence suggests that next to fibroblasts, the process of epithelial-mesenchymal transition can contribute to matrix remodeling. CSE has been shown to induce EMT in lung epithelial cells, but the signaling mechanisms involved are largely unknown and subject of this study. EMT was assessed in A549 and BEAS2B cells stimulated with CSE by qPCR, Western blotting and immunofluorescence for epithelial and mesenchymal markers, as were collagen production, cell adhesion and barrier integrity as functional endpoints. Involvement of TGF-beta and HIF1 alpha signaling pathways were investigated. In addition, mouse models were used to examine the effects of CS on hypoxia signaling and of hypoxia per se on mesenchymal expression. CSE induced EMT characteristics in A549 and BEAS2B cells, evidenced by decreased expression of epithelial markers and a concomitant increase in mesenchymal marker expression after CSE exposure. Furthermore cells that underwent EMT showed increased production of collagen, decreased adhesion and disrupted barrier integrity. The induction of EMT was found to be independent of TGF-beta signaling. On the contrary, CS was able to induce hypoxic signaling in A549 and BEAS2B cells as well as in mice lung tissue. Importantly, HIF1 alpha knock-down prevented induction of mesenchymal markers, increased collagen production and decreased adhesion after CSE exposure, data that are in line with the observed induction of mesenchymal marker expression by hypoxia in vitro and in vivo. Together these data provide evidence that both bronchial and alveolar epithelial cells undergo a functional phenotypic shift in response to CSE exposure which can contribute to increased collagen deposition in COPD lungs. Moreover, HIF1 alpha signaling appears to play an important role in this process

    GDF-15 in Pulmonary and Critical Care Medicine

    No full text

    Bone morphogenetic protein 6 (BMP-6) modulates lung function, pulmonary iron levels and cigarette smoke-induced inflammation

    No full text
    Chronic obstructive pulmonary disease (COPD) is associated with abnormal inflammatory responses and airway wall remodeling, leading to reduced lung function. An association between the bone morphogenetic protein (BMP-6) locus and forced vital capacity has been found in a genome-wide association study. However, the role of BMP-6 in the pathogenesis of COPD remains unknown. The pulmonary expression of BMP-6 was analyzed in patients with COPD and in cigarette smoke (CS)-exposed mice. We evaluated lung function and histology in BMP-6 KO mice at baseline. We exposed BMP-6 KO mice to CS for 4 weeks and measured pulmonary inflammation and iron levels. Pulmonary mRNA levels of BMP-6 were decreased in smokers with and without COPD and in CS-exposed mice. Importantly, BMP-6 expression was lowest in severe COPD. Accordingly, protein levels of BMP-6 were decreased in patients with COPD. Lung function measurements demonstrated a decreased compliance and total lung capacity in BMP-6 KO mice, whereas lung histology was normal. Furthermore, BMP-6 KO mice displayed elevated iron levels and an aggravated CS-induced inflammatory response. These results suggest that BMP-6 is important for normal lung function and that downregulation of BMP-6-as observed in patients with COPD-contributes to pulmonary inflammation after CS exposure.status: publishe

    Elevated GDF-15 contributes to pulmonary inflammation upon cigarette smoke exposure

    No full text
    The molecular mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD) are still unclear, however signaling pathways associated with lung development, such as the transforming growth factor (TGF)-β superfamily, could be implicated in COPD. Growth differentiation factor (GDF)-15, a member of the TGF-β superfamily, is involved in inflammation, mucus secretion, and cachexia. We analyzed the pulmonary expression of GDF-15 in smokers and patients with COPD, in cigarette smoke (CS)-exposed cultures of primary human bronchial epithelial cells (pHBECs), and in CS-exposed mice. Next, we exposed GDF-15 KO and control mice to air or CS and evaluated pulmonary inflammation. GDF-15 levels were higher in sputum supernatant and lung tissue of patients with COPD and smokers without COPD compared with never smokers. Immunohistochemistry revealed GDF-15 staining in the airway epithelium. Increased expression and secretion of GDF-15 was confirmed in vitro in CS-exposed pHBECs compared with air-exposed pHBECs. Similarly, GDF-15 levels were increased in lungs of CS-exposed mice. Importantly, GDF-15 deficiency attenuated the CS-induced pulmonary inflammation. These results suggest that increased GDF-15-as observed in lungs of smokers and patients with COPD-contributes to CS-induced pulmonary inflammation.Mucosal Immunology advance online publication 1 February 2017; doi:10.1038/mi.2017.3.status: publishe

    Heritability and genome-wide association study of diffusing capacity of the lung

    No full text
    Although several genome-wide association studies (GWAS) have investigated the genetics of pulmonary ventilatory function, little is known about the genetic factors that influence gas exchange. The aim of the study was to investigate the heritability of, and genetic variants associated with the diffusing capacity of the lung. GWAS was performed on diffusing capacity of the lung measured by carbon monoxide uptake (DLCO) and per alveolar volume (VA) using the single-breath technique, in 8372 individuals from two population-based cohort studies, the Rotterdam Study and the Framingham Heart Study. Heritability was estimated in related (n=6246) and unrelated (n=3286) individuals. Heritability of DLCO and DLCO/VA ranged between 23% and 28% in unrelated individuals and between 45% and 49% in related individuals. Meta-analysis identified a genetic variant in ADGRG6 that is significantly associated with DLCO/VA. Gene expression analysis of ADGRG6 in human lung tissue revealed a decreased expression in patients with chronic obstructive pulmonary disease (COPD) and subjects with decreased DLCO/VA. DLCO and DLCO/VA are heritable traits, with a considerable proportion of variance explained by genetics. A functional variant in ADGRG6 gene region was significantly associated with DLCO/VA. Pulmonary ADGRG6 expression was decreased in patients with COPD

    The role of miR-155 in cigarette smoke-induced pulmonary inflammation and COPD

    No full text
    Chronic obstructive pulmonary disease (COPD) is a highly prevalent respiratory disease characterized by airflow limitation and chronic inflammation. MiR-155 is described as an ancient regulator of the immune system. Our objective was to establish a role for miR-155 in cigarette smoke (CS)-induced inflammation and COPD. We demonstrate increased miR-155 expression by RT-qPCR in lung tissue of smokers without airflow limitation and patients with COPD compared to never smokers and in lung tissue and alveolar macrophages of CS-exposed mice compared to air-exposed mice. In addition, we exposed wild type and miR-155 deficient mice to CS and show an attenuated inflammatory profile in the latter. Alveolar macrophages were sorted by FACS from the different experimental groups and their gene expression profile was analyzed by RNA sequencing. This analysis revealed increased expression of miR-155 targets and an attenuation of the CS-induced increase in inflammation-related genes in miR-155 deficient mice. Moreover, intranasal instillation of a specific miR-155 inhibitor attenuated the CS-induced pulmonary inflammation in mice. Finally, elastase-induced emphysema and lung functional changes were significantly attenuated in miR-155 deficient mice. In conclusion, we highlight a role for miR-155 in CS-induced inflammation and the pathogenesis of COPD, implicating miR-155 as a new therapeutic target in COPD.status: publishe

    MicroRNA profiling reveals a role for MicroRNA-218-5p in the pathogenesis of chronic obstructive pulmonary disease

    Full text link
    Rationale: Aberrant expression of microRNAs (miRNAs) can have a detrimental role in disease pathogenesis. Objectives: To identify dysregulated miRNAs in lung tissue of patients with chronic obstructive pulmonary disease (COPD). Methods: We performed miRNA and mRNA profiling using high throughput stem-loop reverse-transcriptase quantitative polymerase chain reaction and mRNA microarray, respectively, on lung tissue of 30 patients (screening cohort) encompassing 8 never-smokers, 10 smokers without airflow limitation, and 12 smokers with COPD. Differential expression of miRNA-218-5p (miR-218-5p) was validated by reverse-transcriptase quantitative polymerase chain reaction in an independent cohort of 71 patients, an in vivo murine model of COPD, and primary human bronchial epithelial cells. Localization of miR-218-5p was assessed by in situ hybridization. In vitro and in vivo perturbation of miR-218-5p combined with RNA sequencing and gene set enrichment analysis was used to elucidate its functional role in COPD pathogenesis. Measurements and Main Results: Several miRNAs were differentially expressed among the different patient groups. Interestingly, miR-218-5p was significantly down-regulated in smokers without airflow limitation and in patients with COPD compared with never-smokers. Decreased pulmonary expression of miR-218-5p was validated in an independent validation cohort, in cigarette smoke-exposed mice, and in human bronchial epithelial cells. Importantly, expression of miR-218-5p strongly correlated with airway obstruction. Furthermore, cellular localization of miR-218-5p in human and murine lung revealed highest expression of miR-218-5p in the bronchial airway epithelium. Perturbation experiments with a miR-218-5p mimic or inhibitor demonstrated a protective role of miR-218-5p in cigarette smoke-induced inflammation and COPD. Conclusions: We highlight a role for miR-218-5p in the pathogenesis of COPD

    RIPK1 kinase-dependent inflammation and cell death contribute to the pathogenesis of COPD.

    Full text link
    RATIONALE: Receptor-interacting protein kinase 1 (RIPK1) is a key mediator of regulated cell death (including apoptosis and necroptosis) and inflammation, both drivers of chronic obstructive pulmonary disease (COPD) pathogenesis. OBJECTIVE: We aimed to define the contribution of RIPK1 kinase-dependent cell death and inflammation in the pathogenesis of COPD. METHODS: We assessed RIPK1 expression in single-cell RNA-sequencing data from human and mouse lungs and validated RIPK1 levels in lung tissue of COPD patients via immunohistochemistry. Next, we assessed the consequences of genetic and pharmacological inhibition of RIPK1 kinase activity in experimental COPD, using Ripk1S25D /S25D kinase deficient mice and the RIPK1 kinase inhibitor GSK'547. MEASUREMENTS AND MAIN RESULTS: RIPK1 expression increased in alveolar type I (AT1), AT2, ciliated and neuroendocrine cells in human COPD. RIPK1 protein levels were significantly increased in airway epithelium of COPD patients, compared to never smokers and smokers without airflow limitation. In mice, exposure to cigarette smoke (CS) increased Ripk1 expression similarly in AT2 cells, and further in alveolar macrophages and T cells. Genetic and/or pharmacological inhibition of RIPK1 kinase activity significantly attenuated airway inflammation upon acute and subacute CS-exposure, as well as airway remodeling, emphysema and apoptotic and necroptotic cell death upon chronic CS-exposure. Similarly, pharmacological RIPK1 kinase inhibition significantly attenuated elastase-induced emphysema and lung function decline. Finally, RNA-sequencing on lung tissue of CS-exposed mice revealed downregulation of cell death and inflammatory pathways upon pharmacological RIPK1 kinase inhibition. CONCLUSIONS: RIPK1 kinase inhibition is protective in experimental models of COPD and may represent a novel promising therapeutic approach

    Therapeutic Monoclonal Antibodies for the Treatment of Chronic Obstructive Pulmonary Disease

    No full text
    Chronic obstructive pulmonary disease (COPD) is a disorder characterized by a complex chronic inflammatory response that is largely poorly responsive to treatment with corticosteroids. Consequently, there is a huge need to find effective anti-inflammatory agents for the treatment of patients with this disease. Inhibition of cytokines and chemokines or their receptors using monoclonal antibodies (mAbs) could be a potential strategy to treat the inflammatory component of COPD. In this article, we review the therapeutic potential of some of these mAbs; however, to date there has been little or no therapeutic effect of any mAb directed against cytokines or chemokines in patients with COPD. This may reflect the complexity of COPD in which there is no dominant role for any single cytokine or chemokine. It is also likely that since the umbrella term COPD covers many endotypes having different underlying mechanisms, mAbs directed towards specific cytokines or chemokines should be tested in restricted and focused populations
    corecore