122 research outputs found

    Biomarker-Drug and Liquid Biopsy Co-development for Disease Staging and Targeted Therapy: Cornerstones for Alzheimer's Precision Medicine and Pharmacology.

    Get PDF
    Systems biology studies have demonstrated that different (epi)genetic and pathophysiological alterations may be mapped onto a single tumor's clinical phenotype thereby revealing commonalities shared by cancers with divergent phenotypes. The success of this approach in cancer based on analyses of traditional and emerging body fluid-based biomarkers has given rise to the concept of liquid biopsy enabling a non-invasive and widely accessible precision medicine approach and a significant paradigm shift in the management of cancer. Serial liquid biopsies offer clues about the evolution of cancer in individual patients across disease stages enabling the application of individualized genetically and biologically guided therapies. Moreover, liquid biopsy is contributing to the transformation of drug research and development strategies as well as supporting clinical practice allowing identification of subsets of patients who may enter pathway-based targeted therapies not dictated by clinical phenotypes alone. A similar liquid biopsy concept is emerging for Alzheimer's disease, in which blood-based biomarkers adaptable to each patient and stage of disease, may be used for positive and negative patient selection to facilitate establishment of high-value drug targets and counter-measures for drug resistance. Going beyond the "one marker, one drug" model, integrated applications of genomics, transcriptomics, proteomics, receptor expression and receptor cell biology and conformational status assessments during biomarker-drug co-development may lead to a new successful era for Alzheimer's disease therapeutics. We argue that the time is now for implementing a liquid biopsy-guided strategy for the development of drugs that precisely target Alzheimer's disease pathophysiology in individual patients

    The reform of the Italian legislation on childhood immunization

    Get PDF
    Upon the proposal of the Italian government, Law n. 191/2017 has been enacted, meant to considerably raise the number of mandatory vaccinations, while leaving several others merely "recommended" (non-mandatory). Such a reform has proven necessary in light of the latest epidemiologic data reflecting a steady decrease in the rates of immunization coverage in most Italian regions over the past few years, including mandatory vaccinations. Court rulings that held vaccinations may have caused autism, or even a child's death, have probably contributed to decrease in coverage. Early interventions to mandate immunization had been put in place at the regional level, yet the Italian Government and Parliament have opted for a national piece of legislation devised to make mandatory vaccinations a requirement to gain access to the preschool system or day care services. The authors elaborate on the reform's contents and shed a light on the medical, ethical and legal elements underpinning the mandate to immunize children. As a matter of fact, possible risks arising from vaccinations are rare, and largely offset by the benefits to both the children and society at large. On the heels of the reform in question, the doctor-patient relationship is still at the forefront. In fact, citizens need to understand the value and usefulness of non-mandatory, recommended vaccines as well. Therefore, it appears necessary to improve the quality of vaccination counseling practices in childcare, but such activities need to take place within the framework of a broader strategy, centered on the fostering of a culture of prevention, backed by scientific research to the fullest extent possible

    Biomarker-Drug and Liquid Biopsy Co-development for Disease Staging and Targeted Therapy: Cornerstones for Alzheimer’s Precision Medicine and Pharmacology

    Get PDF
    Systems biology studies have demonstrated that different (epi)genetic and pathophysiological alterations may be mapped onto a single tumor’s clinical phenotype thereby revealing commonalities shared by cancers with divergent phenotypes. The success of this approach in cancer based on analyses of traditional and emerging body fluid-based biomarkers has given rise to the concept of liquid biopsy enabling a non-invasive and widely accessible precision medicine approach and a significant paradigm shift in the management of cancer. Serial liquid biopsies offer clues about the evolution of cancer in individual patients across disease stages enabling the application of individualized genetically and biologically guided therapies. Moreover, liquid biopsy is contributing to the transformation of drug research and development strategies as well as supporting clinical practice allowing identification of subsets of patients who may enter pathway-based targeted therapies not dictated by clinical phenotypes alone. A similar liquid biopsy concept is emerging for Alzheimer’s disease, in which blood-based biomarkers adaptable to each patient and stage of disease, may be used for positive and negative patient selection to facilitate establishment of high-value drug targets and counter-measures for drug resistance. Going beyond the “one marker, one drug” model, integrated applications of genomics, transcriptomics, proteomics, receptor expression and receptor cell biology and conformational status assessments during biomarker-drug co-development may lead to a new successful era for Alzheimer’s disease therapeutics. We argue that the time is now for implementing a liquid biopsy-guided strategy for the development of drugs that precisely target Alzheimer’s disease pathophysiology in individual patients

    The reform of the Italian Legislation on Childhood immunization

    Get PDF
    Over the past few decades, giant strides have been made in the field of vaccinations, the range of vaccines available has been broadened, with a higher degree of safety and effectiveness. Paradoxically, distrust towards childhood immunization has also increased in the public opinion, a significant share of which sees not so much its advantages as the possibility of potentially serious side-effects. Vaccinations pose an issue as to the reconciliation of interests pertaining, on the one hand, to the safeguard of health, spelled out in art.13 of the Italian Constitution, and to the freedom of personal choice, protected in art.13, on the other. Therefore, the question to which the authors of this paper have sought to answer reads as follows: should immunization, and childhood immunization in particular, be deemed mandatory treatment, or is it best left up to the parents to choose? The legislation on the subject appears outdated and untimely, and the dichotomy between “mandatory vaccination” and “recommended vaccination” only adds to the sense of confusion in the public opinion. It appears necessary to improve the quality of vaccination counseling practices in childcare, but such activities need to take place within the framework of a broader strategy, centered on the fostering of a culture of prevention, backed by scientific research to the fullest extent possible. The paper’s authors point to the absolute necessity for a new, updated set of national regulations aimed at overcoming current inconsistencies and the discrepancies in guidelines set forth by each region

    Menopause hormone therapy significantly alters pathophysiological biomarkers of Alzheimer's disease

    Get PDF
    INTRODUCTION: This increasing body of literature indicates that menopause hormonal replacement therapy (MHT) may substantially mitigate the risk of developing late-life cognitive decline due to progressive Alzheimer's disease (AD) pathophysiology. For the first time, we investigated the question whether MHT impacts AD biomarker-informed pathophysiological dynamics in de-novo diagnosed menopausal women. METHODS: We analyzed baseline and longitudinal differences between MHT-taking and -not women in terms of concentrations of core pathophysiological AD plasma biomarkers, validated in symptomatic and cognitively healthy individuals, including biomarkers of (1) the amyloid-β (Aβ) pathway, (2) tau pathophysiology, (3) neuronal loss, and (4) axonal damage and neurodegeneration. RESULTS: We report a prominent and significant treatment response at the Aβ pathway biomarker level. Women at genetic risk for AD (APOE e4 allele carriers) have particularly shown favorable results from treatment. DISCUSSION: To our knowledge, we present first prospective clinical evidence on effects of MHT on AD pathophysiology during menopause

    beta-Secretase1 biological markers for Alzheimer's disease : state-of-art of validation and qualification

    Get PDF
    beta -Secretase1 (BACE1) protein concentrations and rates of enzyme activity, analyzed in human bodily fluids, are promising candidate biological markers for guidance in clinical trials investigating BACE1 inhibitors to halt or delay the dysregulation of the amyloid-beta pathway in Alzheimer's disease (AD). A robust body of evidence demonstrates an association between cerebrospinal fluid/blood BACE1 biomarkers and core pathophysiological mechanisms of AD, such as brain protein misfolding and aggregration, neurodegeneration, and synaptic dysfunction.In pharmacological trials, BACE1 candidate biomarkers may be applied to a wide set of contexts of use (CoU), including proof of mechanism, dose-finding, response and toxicity dose estimation. For clinical CoU, BACE1 biomarkers show good performance for prognosis and disease prediction.The roadmap toward validation and qualification of BACE1 biomarkers requires standardized pre-analytical and analytical protocols to reduce inter-site variance that may have contributed to inconsistent results.BACE1 biomarker-drug co-development programs, including biomarker-guided outcomes and endpoints, may support the identification of sub-populations with a higher probability to benefit from BACE1 inhibitors with a reduced risk of adverse effects, in line with the evolving precision medicine paradigm

    Age and sex impact plasma NFL and t-Tau trajectories in individuals with subjective memory complaints : a 3-year follow-up study

    Get PDF
    Background Plasma neurofilament light (NFL) and total Tau (t-Tau) proteins are candidate biomarkers for early stages of Alzheimer's disease (AD). The impact of biological factors on their plasma concentrations in individuals with subjective memory complaints (SMC) has been poorly explored. We longitudinally investigate the effect of sex, age, APOE epsilon 4 allele, comorbidities, brain amyloid-beta (A beta) burden, and cognitive scores on plasma NFL and t-Tau concentrations in cognitively healthy individuals with SMC, a condition associated with AD development. Methods Three hundred sixteen and 79 individuals, respectively, have baseline and three-time point assessments (at baseline, 1-year, and 3-year follow-up) of the two biomarkers. Plasma biomarkers were measured with an ultrasensitive assay in a mono-center cohort (INSIGHT-preAD study). Results We show an effect of age on plasma NFL, with women having a higher increase of plasma t-Tau concentrations compared to men, over time. The APOE epsilon 4 allele does not affect the biomarker concentrations while plasma vitamin B12 deficiency is associated with higher plasma t-Tau concentrations. Both biomarkers are correlated and increase over time. Baseline NFL is related to the rate of A beta deposition at 2-year follow-up in the left-posterior cingulate and the inferior parietal gyri. Baseline plasma NFL and the rate of change of plasma t-Tau are inversely associated with cognitive score. Conclusion We find that plasma NFL and t-Tau longitudinal trajectories are affected by age and female sex, respectively, in SMC individuals. Exploring the influence of biological variables on AD biomarkers is crucial for their clinical validation in blood

    Brain A beta load association and sexual dimorphism of plasma BACE1 concentrations in cognitively normal individuals at risk for AD

    Get PDF
    Introduction: Successful development of effective beta-site amyloid precursor protein cleaving enzyme 1 (BACE1)-targeted therapies for early stages of Alzheimer's disease requires biomarker-guided intervention strategies. Methods: We investigated whether key biological factors such as sex, apolipoprotein E (APOE epsilon 4) allele, and age affect longitudinal plasma BACE1 concentrations in a large monocenter cohort of individuals at risk for Alzheimer's disease. We explored the relationship between plasma BACE1 concentrations and levels of brain amyloid-beta (A beta) deposition, using positron emission tomography global standard uptake value ratios. Results: Baseline and longitudinal mean concentrations of plasma BACE1 were significantly higher in women than men. We also found a positive significant impact of plasma BACE1 on baseline A beta-positron emission tomography global standard uptake value ratios. Discussion: Our results suggest a sexual dimorphism in BACE1-related upstream mechanisms of brain A beta production and deposition. We argue that plasma BACE1 should be considered in further biomarker validation and qualification studies as well as in BACE1 clinical trials. (C) 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer's Association

    The amyloid-β pathway in Alzheimer's disease: a plain language summary

    Get PDF
    WHAT IS THIS SUMMARY ABOUT?: This plain language summary of an article published in Molecular Psychiatry, reviews the evidence supporting the role of the amyloid-β (Aβ) pathway and its dysregulation in Alzheimer's disease (AD), and highlights the rationale for drugs targeting the Aβ pathway in the early stages of the disease. WHY IS THIS IMPORTANT?: Aβ is a protein fragment (or peptide) that exists in several forms distinguished by their size, shape/structure, degree of solubility and disease relevance. The accumulation of Aβ plaques is a hallmark of AD. However, smaller, soluble aggregates of Aβ - including Aβ protofibrils - also play a role in the disease. Because Aβ-related disease mechanisms are complex, the diagnosis, treatment and management of AD should be reflective of and guided by up-to-date scientific knowledge and research findings in this area. This article describes the Aβ protein and its role in AD, summarizing the evidence showing that altered Aβ clearance from the brain may lead to the imbalance, toxic buildup and misfolding of the protein - triggering a cascade of cellular, molecular and systematic events that ultimately lead to AD. WHAT ARE THE KEY TAKEAWAYS?: The physiological balance of brain Aβ levels in the context of AD is complex. Despite many unanswered questions, mounting evidence indicates that Aβ has a central role in driving AD progression. A better understanding of the Aβ pathway biology will help identify the best therapeutic targets for AD and inform treatment approaches
    corecore