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Abstract

Introduction: This increasing body of literature indicates that menopause hormonal

replacement therapy (MHT) may substantially mitigate the risk of developing late-life

cognitive decline due to progressiveAlzheimer’s disease (AD) pathophysiology. For the

first time,we investigated the questionwhetherMHT impactsADbiomarker-informed

pathophysiological dynamics in de-novo diagnosedmenopausal women.

Methods:Weanalyzedbaseline and longitudinal differences betweenMHT-taking and

-notwomen in termsof concentrations of core pathophysiological ADplasmabiomark-

ers, validated in symptomatic and cognitively healthy individuals, including biomarkers

of (1) the amyloid-β (Aβ) pathway, (2) tau pathophysiology, (3) neuronal loss, and (4)

axonal damage and neurodegeneration.

Results: We report a prominent and significant treatment response at the Aβ path-

way biomarker level. Women at genetic risk for AD (APOE e4 allele carriers) have

particularly shown favorable results from treatment.

Discussion: To our knowledge, we present first prospective clinical evidence on effects

ofMHT on AD pathophysiology duringmenopause.
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2 DEPYPERE ET AL.

1 INTRODUCTION

Decades of failing late-stage neuropharmacological trials and highly

variable therapeutic outcomes in current healthcare suggest that

merely adjusting statistical regression models for sex may not be suf-

ficient when it comes to an appropriate understanding of the question

why sex-based biological differencesmay account for substantially dif-

ferent risk rates of disease.1–3 Evidence clearly indicates that there

is an increased age-independent prevalence of Alzheimer’s disease

(AD) in women compared to men (average odds ratio is 1.6) and that

it is consistent with sexual dimorphism in AD pathophysiology, span-

ningmolecular pathways of brain proteinopathies, neurodegeneration,

neuroinflammation, and large-scale high-order organization of the

brain.4–12 In addition, womenwho experience early menopause, either

naturally or iatrogenic, represent the highest risk cluster within the

menopause population of late-life cognitive decline and dementia.13,14

The higher vulnerability of perimenopausal (transition phase) and

early-menopausewomen thanmenhas been established by large-scale

neuropsychological studies, post-mortem investigations, biomarker-

based studies, data-driven multi-variate analysis, and experimental

models of aging and AD. Multi-modal imaging studies corroborate

the evidence of sexual dimorphism in AD biology and specifically

indicate a positive association of (peri)menopause status with AD

proteinopathies, neuronal loss and neurodegeneration, and cogni-

tive outcomes.6,15–17 In all these inter-sex comparison studies, the

reported sexual dimorphism related to AD risk is clearly not signifi-

cantly impacted by age, generating and supporting the hypothesis that

midlife endocrinological, hormonal change patterns-rather than aging-

related metabolic pathways-may drive/trigger/facilitate AD related

pathophysiological events. This evidence-driven model is consistent

with the established effects of sexual steroids on physiological neu-

rodevelopment,which also account for the sexual dimorphismof global

brain volume, regional gray- and white-matter density, shape, and

volume of regional anatomical structures.4,18,19

Systematic and single-center studies provide indirect evidence of

an endocrine-mediated AD risk in menopause since the chronic use

of menopausal hormone therapy (MHT)-a therapeutic approach to

mitigate menopause associated signs, symptoms, and complications-

reduces the incidence of AD. 2,5,20

The timing of MHT commencement is an additional significant

factor concerning the AD-risk and long-term clinical outcomes.2,5,20

Longer exposure toMHT (estrogen/progestogen)may trigger and facil-

itate neuroprotective pathways, as suggested by the calculated risk

reduction of AD equal to 0.5% for every extra-month of steroids

intake.21,22

While initiating MHT early during menopause seems significantly

protective against development of AD, a delayed therapeutic program

may less likely be effective.5,22,23 Moreover, sub-analysis of the large-

scale randomized Women’s Health Initiative (WHI) clinical trial show

that delayedMHTmay even enhance the risk of vascular incidents and

worsen an established dementia syndrome.23–25

In the present university-based expert outpatient menopause clinic

prospective study, we recruited cognitively healthy women who had

RESEARCH INCONTEXT

1. Systematic Review: Women in menopause have a 1,67

higher risk to develop Alzheimer’s disease. Menopausal

hormone treatment (MHT) and related timingof initiation

significantly reduces the risk of AD in this population.

2. Interpretation: We report a prominent MHT response

at the Aβ pathway biomarker level, more pronounced in

APOE ε4allele carrierwomen. This is the first prospective

clinical evidence on the effects of MHT on Alzheimer’s

disease pathophysiology duringmenopause.

3. Future Directions: If corroborated, these data hold the

potential to support menopause- Alzheimer’s disease

joint screening for timely and precision medicine inter-

ventions.

recently transitioned tomenopause andmet the indication criteria and

were prescribedMHT (i.e., natural estrogens and progesterone).

We assessed the baseline and longitudinal concentrations of

validated core pathophysiological AD plasma biomarkers, including

biomarkers of (1) the amyloid-β (Aβ) pathway, (2) tau pathophysiology,
(3) neuronal loss, and (4) axonal damage and neurodegeneration.

The Aβ pathway, currently known as the earliest biochemical and

pathophysiological cycle occurring in theADbiological continuumby26

analyzing Aβ peptide 42 over Aβ peptide 40 (Aβ-42/Aβ-40 ratio)27 and
protein concentrations of the β-site amyloid precursor protein cleaving

enzyme 1 (also known as β-secretase 1 or BACE1).28,29

Plasma Aβ1-42/Aβ1-40 ratio has close concordance with amyloid-

PET status.27 BACE1 plasma concentration is hypothesized to

reflect levels of gene expression of BACE1, and are associated with

brain Αβ concentrations, axonal damage, and neurodegeneration

biomarkers, volumetric loss in the cholinergic circuitry, and cognitive

scores.12,28,30,31

We further implemented tau protein phosphorylated at threo-

nine 231 (p-tau231), a particularly early indicator of AD related tau

protein phosphorylation and neurofibrillary pathology,32 rate of hip-

pocampal atrophy 33 and rate of regional brain atrophy, longitudinal

patterns of brain networks functional decline, and indirectly reflects

Aβ plaque rates of deposition when combined with Aβ1-42 in a com-

posite value (Aβ1-42/p-tau231 ratio). 34,35 Plasma NfL and to a lesser

extent total tau (t-tau) are surrogate biomarkers of axonal damage,

neurodegeneration, and neuronal loss, respectively.28,36

The primary objective of the present study was to investigate

whether women receiving MHT show significantly different longi-

tudinal changes of core pathophysiological AD plasma biomarkers

compared with women who opted out of MHT. The second objective

was to address the question whether age and the presence of at least

one APOE ε4 allele may influence biomarker expression and trajecto-

ries and partially explain potential significant inter-group differences

(treated vs. untreatedmenopausal women).
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DEPYPERE ET AL. 3

2 MATERIALS AND METHODS

Women consulting the University-based academic expert Breast and

Menopause Clinic, at the Ghent University Hospital and the Coupure

MenopauseClinic inGhentwere proposed to participate in the present

prospective, interventional study. The study was approved by the eth-

ical board of the University of Ghent (Belgian registration number:

B670201835724/ clinicaltrial.gov number isNCT04312399). The core

eligibility criteria were the established diagnosis of menopause, the

condition of drug-naïve forMHT, nomedical contraindications toMHT,

the preservation of normal global cognition and the absence of risk

factors for acute onset of cognitive impairment (see section “Global

cognition”).

Additional inclusion criteria were: normal blood pressure at study

baseline, normal thyroid function parameters; normal values of urea,

glucose, electrolytes, ALAT, homocysteine, vitamin B12, vitamin B9,

cholesterol, and triglycerides. Moreover APOE genotyping was per-

formed. The use of pharmacological treatments such as antihyper-

tensives, thyroid medication, lipid/cholesterol lowering medication,

antidiabetic drugs, psychotropic medications were exclusion criteria

to participate in the study. This was done to exclude comorbidity that

could influence the risk of AD development. Body mass index (BMI)

and adherence to the Mediterranean diet were also quantified and

recorded.

2.1 Treatment assignment

Given the multi-dimensional (medical, psychological, and social) bur-

den of menopause on the individual experiencing it,37 we opted to give

thewomen the possibility to decidewhich treatment/control arm to be

allocated in, that is, whether starting anMHT program.

MHT was prescribed in accordance with the guidelines of inter-

national societies IMS, EMAS, NAMS, and NICE.38 Women with a

history of hysterectomy or in women with a levonorgestrel-releasing

intrauterine system (LNG-IUS),39 natural oral or transdermal estrogen

was prescribed. All other women were prescribed a combination of

estrogen and natural progesterone. Natural progesterone was used,

since it offers a well-documented protection for the endometrium,40 is

safe for the breast,41 and does not interfere with the beneficial effects

of estrogens on the serum lipid profile.42

Oral or transdermal route of estrogen supplementation was pre-

scribed according to the woman’s preference. If a woman opted for

an oral estrogen, estradiol valerate 1 mg (Progynova 1 mg once

daily) was prescribed. If a woman opted for a transdermal intake

of hormones, an estrogen gel (Oestrogel two doses per day) or

spray (Lenzetto two spray applications per day) was used. If, women

had menopausal complaints, but after extensive counselling about

the advantages and risks of MHT, opted not to take hormonal

therapy, they were asked to participate in this trial as controls.

Women without menopausal complaints, who met inclusion crite-

ria for the study, were equally asked to participate in this trial as

controls.

Hereafter, women who underwent a therapeutic MHT program are

identified in the “MHT” arm, whereas women who opted out for any

MHT treatment are identified in the “control” arm.

2.2 Global cognition

Medical exclusion criteria were a diagnosis of mild cognitive impair-

ment/dementia, any type of disease potentially affecting cognition

in the short- or long-term, including severe cardiac comorbidities

(severe congestive heart failure -NYHA III-IV-; severe arrhythmias),43

severe psychiatric comorbidities, alcohol and/or substances abuse

(excluding nicotine) according to the Diagnostic and Statistical Manual

of Mental Disorders-fifth edition (DSM-V),44 uncompensated hep-

atic/renal/metabolic, endocrine disorders. These clinical data were

based on information provided by patient and caregiver, and all the

available medical records.

All individuals had achieved the high-school education level. The

neuropsychometric-based baseline inclusion criterionwas aMiniMen-

tal State Examination (MMSE), a measure of global cognition,45 with

a score below 25 out of 30 (raw values). This cutoff was used to rule

out individuals who may exhibit objective cognitive impairment in one

or more cognitive domains if tested with an extensive psychometric

battery.46 We did not assess MMSE at V2 since we do not expect

significant changes in the global cognition status over the 6-month

follow-up.

2.3 Blood collection, pre-analytical processing,
and AD plasma biomarkers assessment: Analytical
protocols

Blood withdrawal was performed at V1 and V2 following the same

pre-analytical protocol. BD vacutainers n#368861 (K2 EDTA as

anticoagulant) were used for blood collection. All blood samples

were handled in a standardized way and centrifuged at 1200 ×

g during 15 min. After that, the plasma was extracted, aliquoted

per 1 ml, and frozen at –80◦C within 1 h. Aliquoting was done

in Sarstedt PP tube 1.5 ml (Cat No 72.694.105) using PP tips

Greiner Cat No 741050. Six months later, participating women

had another blood draw. Plasma and whole blood were subse-

quently stored at –80◦C. The subsequent neurological plasma

parameters were all determined in one run to exclude inter-assay

variation.

Plasma t-tau and NfL concentrations were measured using the Sin-

gle molecule array (Simoa) Tau2.0 and the NF-Light Advantage assays,

respectively (Quanterix, Billerica, MA). The p-tau231 concentration

was measured using an in-house Simoa assay on an HD-X Analyzer

(Quanterix, Billerica, MA), as previously described.34

Plasma BACE1, Aβ1-42, and Aβ1-40 were measured at ADx Neuro-

Sciences, Ghent, Belgium. The previously described amyblood assay47

was used to measure plasma Aβ1-42 and Aβ1-40 was used to measure

plasma Aβ1-42 and Aβ1-40.
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4 DEPYPERE ET AL.

F IGURE 1 Study design overview of the study inclusion / exclusion flowchart

See Supplementary Methods for more details about the AD plasma

biomarkers assessment.

2.4 APOE genotyping

APOE variants were genotyped by sequencing at the Genetic Service

Facility (GSF, www.vibgeneticservicefacility.be) of theVIBDepartment

of Molecular Genetics, in line with previous works carried out by the

same group.48

3 STATISTICAL ANALYSIS

The statistical analyses were conducted on the 224 participants who

had no missing data on plasma biomarkers collected at the two time-

points, education, MMSE, and APOE genotype (see study flow-chart

illustrated in Figure 1). The Gaussian distribution and homoskedastic-

ity were checked visually through histograms and density plots with

normal probability density function curve overlaid as well as Q-Q

plots. To perform group-wise comparisons for categorical and contin-

uous variable, we used Pearson’s chi-squared test and Student’s t-test,

respectively.

Outliers were visually inspected for each single biomarker and not

for the composite ratio values.

We used linear models (LM) to assess the potential difference of

plasma biomarkers concentrations at V1 (baseline) between the two

study groups (treatment vs. non-treatment). Age and APOE ε4 car-

rier status (presence vs. absence) were included as covariates, to rule

out potential confounding effect and to better weight in on treatment

effect size in case of significant results. For longitudinal analysis, we

calculated the annual rate of change (ARC) as the difference in plasma

concentration between the two visits (V1 and V2) divided by the delay

in years.49

ARC =
Concentration at V1 − Concentration at V2

Delay in year
(1)

We used LM to test whether the two study groups may have a

different ARC. Age and APOE ε4 status were set as covariates.
To follow, we performed an additional subgroup analysis to exam-

ine whether APOE ε4 status impacts the treatment effect on plasma

biomarkers.We used a LMwith an interaction termbetween the group

(MHT arm or control arm) and APOE ε4 status (APOE ε4 status*group).

Eventually, we performed post-hoc analysis to breakdown significant

results and capture the difference between each pair of subgroups

created by the interaction term.

For all models, we reported regression coefficients (β) and stan-

dard error (SE). In addition, effect sizes were estimated using partial

Cohen’s f2, which represent the amount of variance of the response

variables (outcome) that is explained by an explanatory variable (pre-

dictor) after accounting for other predictors in the regressionmodel.50

All tests were two-sided and p-values, p < .05 were considered signifi-

cant in all statistical elaboration. Influent data points onmodel outputs

were inspected throughCook’s distance.When the distance is equal or

higher than 1, models were refitted with a robust regression to con-

sider the presence of influent data point.51 Since the plasma biomarker

investigated track partially independent molecular pathways, we ran

separate LM for each biomarker and applied no correction of p.

Statistical analyses were performed using R software, version 4.0.5.

Robust linear models, post-hoc analyses, and Cohen’s f2 were carried

with the libraries “MASS”, “emmeans”, and “effectsize”, respectively, all

available at http://cran.r-project.org/web/packages.

4 RESULTS

4.1 Group-wise comparison for
socio-demographic and clinical features

V1 socio-demographic features, clinical measures and scores, APOE

ε4 status are reported in Table 1. In the 224 women participating in

this study 67 (29.9%) were genotyped as carriers of at least one APOE

ε4 allele. The percentage of APOE ε4 carriers was not significantly
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DEPYPERE ET AL. 5

TABLE 1 Sociodemographic variables, MMSE, and APOE ε4 status at V1

Control (n= 31) MHT (n= 193) Total (n= 224) p value

Age, in years

Mean (SD) 55.69 (4.94) 53.76 (4.63) 54.03 (4.71) .03a

APOE ε4 status

ε4-negative 21 (67.7%) 136 (70.5%) 157 (70.1%) .76b

ε4-positive 10 (32.3%) 57 (29.5%) 67 (29.9%)

APOE genotype

ε2/ε2 0 (0.0%) 1 (0.5%) 1 (0.4%) .83b

ε2/ε3 6 (19.4%) 24 (12.4%) 30 (13.4%)

ε2/ε4 0 (0.0%) 3 (1.6%) 3 (1.3%)

ε3/ε3 15 (48.4%) 111 (57.5%) 126 (56.2%)

ε3/ε4 8 (25.8%) 43 (22.3%) 51 (22.8%)

ε4/ε4 2 (6.5%) 11 (5.7%) 13 (5.8%)

MMSE score

Mean (SD) 29.77 (0.56) 29.52 (1.07) 29.55 (1.01) .19a

Familial AD

No 24 (77.4%) 146 (75.6%) 170 (75.9%) .83b

Yes 7 (22.6%) 47 (24.4%) 54 (24.1%)

Abbreviations: APOE , apolipoprotein E; Familial AD, familial history of Alzheimer’s or other neurodegenerative diseases with prominent cognitive

impairment, MHT, menopause hormone therapy, MMSE,MiniMental State Examination.
aStudent’s t-test.
bPearson’s chi-squared test.

different between the control and the MHT study arms (Table 1).

There was no group-wise difference in terms ofMMSE scores.Women

enrolled in the control group were significantly older than participants

enrolled in the MHT arm (p = .033). No significant differences but

a trend was present in education levels with the control group hav-

ing lower levels (p = .055). The mean delay between V1 and V2 was

7.2± 2.4months in the control group and 6.7± 1.6months in theMHT

group, with no significant between-group difference.

4.2 Baseline and longitudinal comparison
between MHT and control arms for AD biomarkers

Description of plasma biomarkers at baseline and follow-up, and the

ARC are reported in Table S1. We report no significant differences

for plasma concentrations of AD biomarkers result from the V1 and

V2 comparison of women enrolled in the MHT arm versus untreated

women. As expected, LM shows that age is positively associated with a

fewAD biological pathways, as indicated by the Aβ1-42/p-tau231 ratio,
BACE1, and NfL (all p < .05). Such an age-wise significant association

faded out at the follow-up (longitudinal changes of biomarkers).

In addition, we observe an expected cross-sectional and longitu-

dinal trend in the APOE ε4 positive group, exhibiting lower levels of

plasma Aβ1-42 concentrations at baseline compared to the APOE ε4
negative group (baseline: Figure 2, β = -3.18, SE = 1.65, p = .055,

Cohen f2= 0.02, and longitudinal: β= 4.32, SE= 2.35, p= .067, Cohen

f2= 0.02).

F IGURE 2 Plasma Aβ1-42 concentrations at V1 according to
APOE ε4 allele carrier status (positive or negative).Notes: The values
represented refer to the estimatedmarginal means computed based
on the linear model to account for the effect of age and treatment
groups. Aβ, amyloid-β; APOE, apolipoprotein E; V1, baseline visit

4.3 Longitudinal APOE-wise comparison between
MHT and control arms for AD biomarkers

TheMHT-control groups difference for Aβ1-42/p-tau231 ratio is signif-
icant at the longitudinal analysis. At the 6-month follow-up evaluation
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6 DEPYPERE ET AL.

F IGURE 3 Longitudinal changes of the Aβ1-42/p-tau231 ratio according to treatment group and APOE ε4 allele carrier status (positive or
negative).Notes: The values represented refer to the estimatedmarginal means computed based on the linear model to account for the effect of
age. Post-hoc pairwise group comparison: Control APOE ε4-negative -MHT APOE ε4-negative: p= 0.76, Control APOE ε4-negative - Control APOE
ε4-positive: p= 0.02, Control APOE ε4-negative -MHT APOE ε4-positive: p= 0.95,MHT APOE ε4-negative - Control APOE ε4-positive: p= 0.008,
MHT APOE ε4-negative -MHT APOE ε4-positive: p= 0.71, Control APOE ε4-positive -MHT APOE ε4-positive: p= 0.007. Aβ, amyloid-β; APOE,
apolipoprotein E;MHT, menopause hormone therapy; p-tau231, tau protein phosphorylated at site threonine 231

and biomarker assessment, the effect of treatment still differs accord-

ing to APOE ε4 allele status (β = 4.18, 1.74, p = .02, Cohen f2 = 0.03),

with the pairwise subgroups comparison indicating that controls with

APOE ε4 showed greater reduction in Aβ1-42/p-tau231 ratio levels

than both MHT group individuals APOE ε4 allele carriers and non-

carriers (p= .007 and p= .008 respectively, see Figure 3 and Table S2)).

Although Aβ1-42/p-tau231 ratio does not differ between the twoMHT

subgroups split by APOE ε4 status, the MHT APOE ε4-positive individ-
uals exhibit a significantly greater reduction of Aβ1-42 levels than the

MHT APOE ε4-negative individuals (p= .03, see Figure 4 and Table S2).

Moreover, APOE ε4 carrier control individuals have significantly dif-
ferent levels ofAβ1-42/p-tau231 ratio thannon-carriers (p= .02, Cohen

f2 = 2.65e-3, see Figure 3 and Table S2). MHT group individuals car-

rying at least one APOE ε4 allele have smaller reduction of Aβ1-42
than APOE ε4-negative treated women (see also Figure 4). Of note, HT

APOE ε4-positivewomenhave amildwithin-group increment of plasma

Aβ1-42 over time (2.41, 95% confidence interval [CI] -1.83 to 6.65;

p = .26), while HT APOE ε4-negative women show a significant longi-

tudinal reduction of the same biomarker (-3.17, 95% CI -5.89 to 0.46,

p= .02). The twoMHT subgroups show opposite directions, albeit with

slight changes, in p-tau231 levels with either an increase or a decrease

inAPOE ε4-positive and ε4-negativewomen, respectively. Notably, con-

trol APOE ε4-positive individuals display an average higher increment

rate of p-tau231 levels than eachMHTsubgroups (and the controlAPOE

ε4-negative individuals aswell).Hence, it is conceivable to infer that the
effect ofMHT in APOE ε4-positive women is on the Aβ pathway.

5 DISCUSSION

To our knowledge, this is the first-ever prospective longitudinal study

performed with healthy, MHT-naïve women during menopause who

underwent two time point assessments of an extensive panel of

blood-based biomarkers charting AD pathophysiological processes,

including the Aβ and tau pathways, axonal damage, neurodegenera-

tion. We report that MHT is associated with smaller changes toward

AD pathophysiology than no-therapy (control groups) and that APOE

ε4 allele carrying condition is associated with an amplified treat-

ment outcome. Specifically, the most prominent effect of MHT on AD

pathophysiological biomarkers focuses on the Aβ pathway, an early

and central AD patho-biochemical cycle which defines and propa-

gates progression in the disease continuum. Such a result is consistent

with (a) the clinical features of the study cohort, cognitively healthy

women with no familial history of AD; and (b) previous molecu-

lar imaging studies (Aβ-PET) reporting that women in menopause

have higher rates of brain Aβ accumulation, especially in APOE ε4
carriers.4–12

Our findings are also in agreement with the large-scale, randomized

WHI study showing that MHT can reduce the risk of late-life demen-

tia and indicated that the timing of MHT influences this outcome. In

this sense, our study provides preliminary biological context for the

WHI clinical results.24,25 Moreover, our results are in line with struc-

tural neuroimaging studies showing that perimenopausal women not

treated with MHT have significantly greater AD-vulnerable regions
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DEPYPERE ET AL. 7

F IGURE 4 Longitudinal changes of Aβ1-42 concentrations according to the treatment group and APOE ε4 allele carrier status (positive or
negative).Notes: The values represented refer to the estimatedmarginal means computed based on the linear model to account for the effect of
age. Post-hoc pairwise group comparison: Control APOE ε4-negative -MHT APOE ε4-negative: p= 0.64, Control APOE ε4-negative - Control APOE
ε4-positive: p= 0.67, Control APOE ε4-negative -MHT APOE ε4-positive: p= 0.37,MHT APOE ε4-negative - Control APOE ε4-positive: p= 0.88,
MHT APOE ε4-negative -MHT APOE ε4-positive: p= 0.03, Control APOE ε4-positive -MHT APOE ε4-positive: p= 0.23. Aβ, amyloid-β; APOE,
apolipoprotein E;MHT, menopause hormone therapy

volumetric reduction (a surrogatemarker of regional neuronal loss and

neurodegeneration) over time.17,52

We provide preliminary evidence of an MHT-associated effect on

core biomarkers of ADpathophysiology, especially the central Aβ path-
way (currently the target of late-stage anti-Aβ drug developments) and

mostly in females carrying the APOE ε4 risk allele, the greatest genetic
risk factor for late-onset AD.53

A recent study investigating sexual dimorphism in AD brain

endophenotypes showed for the first time that the accumulation of

soluble Aβ aggregates was higher in women than men, especially in

peri-menopausal and post-menopausal women carrying the APOE ε4
allele.54

The APOE ε4 allele-wise effect we found in the MHT arm is con-

sistent with other therapeutic approaches for AD, either symptomatic

or candidate disease-modifying drugs, reported to be associated with

better cognitive-functional outcomes in APOE ε4 allele carriers.55–57

Clinical and animal models indicate the menopause-related risk

of AD in women is non-linearly increased by the presence of the

APOE ε4 allele.53,58–60 Mouse models suggest that estrogen upregu-

lates the APOE gene, whereas progesterone acts antagonistically to

estrogen at the gene expression level. It is hypothesized that such bal-

anced cross-talk is impaired during menopause.59 Therefore, all these

clinical-biological findings arebackedbymousemodels of aging andAD

showing that induced estradiol deficiency is associated with cognitive

worsening, synaptic decline, and AD biological signatures.58,61–64

Stratifying pharmacological clinical trial outcomes for female sex

alongside concomitant intake ofMHTmay uncover specific population

clusters with selective response rates to pathways-targeting drugs.65

This reasoning may apply to late stage-development/already approved

anti-Aβ treatments and developing anti-tau compounds, given the

experimental and clinical evidence of a sex-APOE ε4 allele interaction

effect on tau-mediated pathways related trajectories.7,11,55

We believe that an extensive and thorough elaboration of the lim-

itation of this study is useful to facilitate future replication studies.

Although a significant effect of MHT on AD neurobiology at 6-months

is potentially clinically meaningful, data need to be handled with cau-

tion and call for studies with longer follow-up periods. Replication

studies may also indicate that menopause-related and biomarker-

guided dose adjustments of MHT may be beneficial and needed to

maintain a stable significant effect on biomarker indicators of AD

pathophysiology.

Given the multi-dimensional (medical, psychological, and social)

consequences of menopause on the affected individual, we chose

to give the study participants the option to decide which treat-

ment/control arm to be allocated to, that is, whether starting a MHT

program. The consequence of giving priority to this matter is repre-

sented by the absence of randomized treatment assignment, which

also translates into unbalanced numbers of subgroups. On the flip

side, the study enrolled more women than the number reported in the

longitudinal results.

Another potential caveat of the present study is of pharmacologi-

cal nature and refers to the impossibility to differentiate whether oral

or transdermal estrogen as well as whether the concomitant use of

progesterone yielded different effects on AD biomarkers.
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8 DEPYPERE ET AL.

Mono-centric studies have the intrinsic limitations of not ade-

quately addressing inter-ethnical differences that may exist due to

genetic polymorphism variations accounting for downstream differ-

ences in disease vulnerability and drugmetabolism.

Finally, several lines of cross-disciplinary evidence have been pub-

lished between menopause and the dysregulation of neuroinflamma-

tory and neuroimmune responses,66–68 two critical pathophysiological

mechanisms occurring early in AD and involved in complex dynamic

cross-links with other AD-related pathobiological changes.66–68

6 CONCLUSIONS

Substantial progress in the analytical and clinical validation of blood-

based biomarkers, alongside the definition of their context-of-use,

have recently accelerated AD clinical diagnostic and therapy research.

We provide the first prospective clinical evidence on the potential

effect of MHT on core biomarkers associated to AD pathophysiology

in menopause. In particular, we demonstrate a prominent response at

the critical Aβ pathway biomarker level. Women at genetic risk for AD

(carrying at least oneAPOEe4allele) seem tobeparticularly benefiting

fromMHT.
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