29 research outputs found

    Observational tests of hurricane intensity estimations using GPS radio occultations

    Get PDF
    This study presents a novel approach to estimating the intensity of hurricanes using temperature profiles from Global Positioning System radio occultation (GPSRO) measurements. Previous research has shown that the temperature difference between the ocean surface and the eyewall outflow region defines hurricanes' thermodynamic efficiency, which is directly proportional to the storm's intensity. Outflow temperatures in the eyewall region of 27 hurricanes in 2004–2011 were obtained from GPSRO observations. These observations, along with ocean surface temperatures from NASA Modern Era-Retrospective Analysis for Research and Applications, made it possible to estimate hurricane intensities using a simplified hurricane model. Our preliminary results are quantitatively consistent with best-track values from the National Hurricane Center within 9.4%. As a by-product of our study, we present for the first time GPSRO vertical temperature profiles in the vicinity of the eyewall region of hurricanes, which we compared with collocated temperature profiles from the European Centre for Medium-Range Weather Forecasts Reanalysis Interim (ERA-Interim). Some of the GPSRO data sets reveal a double tropopause in the vicinity of the eyewall—a characteristic that we do not see in ERA-Interim. We conclude that GPSRO observations can be of supplementary assistance in augmenting existing data sets used in hurricane intensity estimation. GPSROs' cloud-penetrating capability and high vertical resolution can be useful in providing soundings in the area close to the eyewall region of hurricanes revealing detailed information about their thermal structure, potentially advancing our current knowledge of their dynamics, evolution, and physics

    Advantages of geostationary satellites for Ionospheric anomaly studies. Ionospheric plasma depletion following a rocket launch

    Get PDF
    In this study, we analyzed signals transmitted by the U.S. Wide Area Augmentation System (WAAS) geostationary (GEO) satellites using the Variometric Approach for Real-Time Ionosphere Observation (VARION) algorithm in a simulated real-time scenario, to characterize the ionospheric response to the 24 August 2017 Falcon 9 rocket launch from Vandenberg Air Force Base in California. VARION is a real-time Global Navigation Satellites Systems (GNSS)-based algorithm that can be used to detect various ionospheric disturbances associated with natural hazards, such as tsunamis and earthquakes. A noise reduction algorithm was applied to the VARION-GEO solutions to remove the satellite-dependent noise term. Our analysis showed that the interactions of the exhaust plume with the ionospheric plasma depleted the total electron content (TEC) to a level comparable with nighttime TEC values. During this event, the geometry of the satellite-receiver link is such that GEO satellites measured the depleted plasma hole before any GPS satellites. We estimated that the ionosphere relaxed back to a pre-perturbed state after about 3 h, and the hole propagated with a mean speed of about 600 m/s over a region of 700 km in radius. We conclude that the VARION-GEO approach can provide important ionospheric TEC real-time measurements, which are not affected by the motion of the ionospheric pierce points (IPPs). Furthermore, the VARION-GEO measurements experience a steady noise level throughout the entire observation period, making this technique particularly useful to augment and enhance the capabilities of well-established GNSS-based ionosphere remote sensing techniques and future ionospheric-based early warning system

    Advantages of Geostationary Satellites for Ionospheric Anomaly Studies: Ionospheric Plasma Depletion Following a Rocket Launch

    Get PDF
    In this study, we analyzed signals transmitted by the U.S. Wide Area Augmentation System (WAAS) geostationary (GEO) satellites using the Variometric Approach for Real-Time Ionosphere Observation (VARION) algorithm in a simulated real-time scenario, to characterize the ionospheric response to the 24 August 2017 Falcon 9 rocket launch from Vandenberg Air Force Base in California. VARION is a real-time Global Navigation Satellites Systems (GNSS)-based algorithm that can be used to detect various ionospheric disturbances associated with natural hazards, such as tsunamis and earthquakes. A noise reduction algorithm was applied to the VARION-GEO solutions to remove the satellite-dependent noise term. Our analysis showed that the interactions of the exhaust plume with the ionospheric plasma depleted the total electron content (TEC) to a level comparable with nighttime TEC values. During this event, the geometry of the satellite-receiver link is such that GEO satellites measured the depleted plasma hole before any GPS satellites. We estimated that the ionosphere relaxed back to a pre-perturbed state after about 3 h, and the hole propagated with a mean speed of about 600 m/s over a region of 700 km in radius. We conclude that the VARION-GEO approach can provide important ionospheric TEC real-time measurements, which are not affected by the motion of the ionospheric pierce points (IPPs). Furthermore, the VARION-GEO measurements experience a steady noise level throughout the entire observation period, making this technique particularly useful to augment and enhance the capabilities of well-established GNSS-based ionosphere remote sensing techniques and future ionospheric-based early warning systems

    Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle

    Get PDF
    In the context of the International GNSS Service (IGS), several IGS Ionosphere Associated Analysis Centers (IAAC) have developed different techniques to provide Global Ionospheric Maps (GIMs) of Vertical Total Electron Content (VTEC) since 1998. In this paper we present a comparison of the performances of all the GIMs created in the frame of IGS. Indeed we compare the classical ones (for the ionospheric analysis centers CODE, ESA/ESOC, JPL and UPC) with the new ones (NRCAN, CAS, UWH). To assess the qual- ity of them in fair and completely independent ways, two assessment meth- ods are used: a direct comparison to altimeter data (VTEC-altimeter) and to the difference of slant total electron content (STEC) observed in independent ground reference stations (dSTEC-GPS). The main conclusion of this study, performed during one solar cycle, is the consistency of the results between so many different GIM techniques and implementations

    St. Patrick’s Day 2015 geomagnetic storm analysis based on Real Time Ionosphere Monitoring

    Get PDF
    A detailed analysis is presented for the days in March, 2015 surrounding St. Patrick’s Day 2015 geomagnetic storm, based on the existing real-time and near real-time ionospheric models (global or regional) within the group, which are mainly based on Global Navigation Satellite Systems (GNSS) and ionosonde data. For this purpose, a variety of ionospheric parameters is considered, including Total Electron Content (TEC), F2 layer critical frequency (foF2), F2 layer peak (hmF2), bottomside halfthickness (B0) and ionospheric disturbance W-index. Also, ionospheric high-frequency perturbations such as Travelling Ionospheric Disturbances (TIDs), scintillations and the impact of solar flares facing the Earth will be presented to derive a clear picture of the ionospheric dynamicsPostprint (published version

    Correlation Between Optic Nerve Head Parameters, RNFL, and CCT in Patients with Bilateral Pseudoexfoliation Using HRT-III

    No full text
    Background: It is well-established that eyes with pseudoexfoliation syndrome (PXS) have higher intraocular pressure (IOP). Early diagnosis of preperimetric glaucoma will assist with better management of these patients. The aim of this study is to evaluate the optic nerve head (ONH) parameters and retinal nerve fiber layer (RNFL) thickness in subjects with bilateral PXS, bilateral pseudoexfoliative glaucoma (PXG) and normal, correlating these results with central corneal thickness (CCT). Design: This is a cross-sectional, case control study. All participants were from the Department of Ophthalmology, Athens University Medical School. Participants: A total of 55 eyes from 55 patients with PXS (27 eyes from 27 patients with PXG and 28 eyes from 28 normal subjects) were studied. Methods: Topographic measurements of the ONH and peripapillary RNFL thickness were performed using a confocal scanning laser ophthalmoscope (the Heidelberg Retina Tomograph-III). The outcomes were correlated with the CCT of the subjects. Main Outcome Measures: PXS subjects and age-matched normal subjects did not differ significantly in ONH parameters. RNFL thickness was significantly lower in the PXS group compared with the normal group, but there was not a statistically significant difference with the PXG patients. Regarding the correlation with CCT, the PXG group showed negative correlation with mean (p = 0.027) and max cup depth (p = 0.031), while PXS subjects revealed a positive correlation with RNFL thickness (p = 0.032). Conclusions: Our study showed that PXS subjects may be at greater risk of RNFL thinning, presenting a statistically significant positive association of the latter parameter with the CCT

    Surgical and Perioperative Considerations for the Treatment of Cataract in Eyes with Glaucoma: A Literature Review

    No full text
    Cataract surgery in the presence of glaucoma poses certain challenges that need to be addressed to offer the maximum benefit without complications. In this paper, we are reviewing the preoperative assessment, surgical options, the planning, and postoperative care. Cataract surgery can help reduce the intraocular pressure alone or combined with MIGS. When performed in patients with glaucoma, it can transiently increase the intraocular pressure and later on decrease the IOP to levels lower than the postoperative. The preoperative IOP and biometric characteristics are the main predictors of the postoperative course of IOP. The combination of cataract surgery with trabeculectomy remains controversial, in terms of best timing of each operation

    Vitamin Status as a Determinant of Serum Homocysteine Concentration in Type 2 Diabetic Retinopathy

    No full text
    We investigated the association of serum homocysteine levels and vitamin status with type 2 diabetic retinopathy. This study included 65 patients with and 75 patients without diabetic retinopathy. Patients with diabetic retinopathy had significantly higher serum homocysteine levels P<0.001, higher prevalence of hyperhomocysteinemia P<0.001, lower serum folic acid P<0.001, and vitamin B12 (P=0.014) levels than those without diabetic retinopathy. Regression analysis revealed that homocysteine was an independent risk factor for diabetic retinopathy and there was a threshold in its serum level (13.7 μmol/L), above which the risk of diabetic retinopathy greatly increases (OR=1.66, P=0.001). Folic acid was associated with decreased odds for diabetic retinopathy (OR=0.73, P<0.001). There was a threshold in serum vitamin B12 level (248.4 pg/mL), below which serum homocysteine concentration significantly increases with decreasing serum vitamin B12 (P=0.003). Our findings suggest that hyperhomocysteinemia is an independent risk factor for the development and progression of diabetic retinopathy. Decreased serum levels of folic acid and vitamin B12, through raising serum homocysteine concentrations, may also affect the diabetic retinopathy risk

    Vitamin Status as a Determinant of Serum Homocysteine Concentration in Type 2 Diabetic Retinopathy

    No full text
    We investigated the association of serum homocysteine levels and vitamin status with type 2 diabetic retinopathy. This study included 65 patients with and 75 patients without diabetic retinopathy. Patients with diabetic retinopathy had significantly higher serum homocysteine levels (P &lt; 0.001), higher prevalence of hyperhomocysteinemia (P &lt; 0.001), lower serum folic acid (P &lt; 0.001), and vitamin B-12 (P = 0.014) levels than those without diabetic retinopathy. Regression analysis revealed that homocysteine was an independent risk factor for diabetic retinopathy and there was a threshold in its serum level (13.7 mu mol/L), above which the risk of diabetic retinopathy greatly increases (OR = 1.66, P = 0.001). Folic acid was associated with decreased odds for diabetic retinopathy (OR = 0.73, P &lt; 0.001). There was a threshold in serum vitamin B-12 level (248.4 pg/mL), below which serum homocysteine concentration significantly increases with decreasing serum vitamin B-12 (P = 0.003). Our findings suggest that hyperhomocysteinemia is an independent risk factor for the development and progression of diabetic retinopathy. Decreased serum levels of folic acid and vitamin B-12, through raising serum homocysteine concentrations, may also affect the diabetic retinopathy risk
    corecore