37 research outputs found

    Repeatability of parametric methods for [F-18]florbetapir imaging in Alzheimer's disease and healthy controls:A test-retest study

    Get PDF
    Accumulation of amyloid beta (Aβ) is one of the pathological hallmarks of Alzheimer’s disease (AD), which can be visualized using [18F]florbetapir positron emission tomography (PET). The aim of this study was to evaluate various parametric methods and to assess their test-retest (TRT) reliability. Two 90 min dynamic [18F]florbetapir PET scans, including arterial sampling, were acquired (n = 8 AD patient, n = 8 controls). The following parametric methods were used; (reference:cerebellum); Logan and spectral analysis (SA), receptor parametric mapping (RPM), simplified reference tissue model2 (SRTM2), reference Logan (rLogan) and standardized uptake value ratios (SUVr(50–70)). BPND+1, DVR, VT and SUVr were compared with corresponding estimates (VT or DVR) from the plasma input reversible two tissue compartmental (2T4k_VB) model with corresponding TRT values for 90-scan duration. RPM (r2 = 0.92; slope = 0.91), Logan (r2 = 0.95; slope = 0.84) and rLogan (r2 = 0.94; slope = 0.88), and SRTM2 (r2 = 0.91; slope = 0.83), SA (r2 = 0.91; slope = 0.88), SUVr (r2 = 0.84; slope = 1.16) correlated well with their 2T4k_VB counterparts. RPM (controls: 1%, AD: 3%), rLogan (controls: 1%, AD: 3%) and SUVr(50–70) (controls: 3%, AD: 8%) showed an excellent TRT reliability. In conclusion, most parametric methods showed excellent performance for [18F]florbetapir, but RPM and rLogan seem the methods of choice, combining the highest accuracy and best TRT reliability

    Validation and test-retest repeatability performance of parametric methods for [11C]UCB-J PET

    Get PDF
    [(11)C]UCB-J is a PET radioligand that binds to the presynaptic vesicle glycoprotein 2A. Therefore, [(11)C]UCB-J PET may serve as an in vivo marker of synaptic integrity. The main objective of this study was to evaluate the quantitative accuracy and the 28-day test–retest repeatability (TRT) of various parametric quantitative methods for dynamic [(11)C]UCB-J studies in Alzheimer’s disease (AD) patients and healthy controls (HC). Eight HCs and seven AD patients underwent two 60-min dynamic [(11)C]UCB-J PET scans with arterial sampling over a 28-day interval. Several plasma-input based and reference-region based parametric methods were used to generate parametric images using metabolite corrected plasma activity as input function or white matter semi-ovale as reference region. Different parametric outcomes were compared regionally with corresponding non-linear regression (NLR) estimates. Furthermore, the 28-day TRT was assessed for all parametric methods. Spectral analysis (SA) and Logan graphical analysis showed high correlations with NLR estimates. Receptor parametric mapping (RPM) and simplified reference tissue model 2 (SRTM2) BP(ND), and reference Logan (RLogan) distribution volume ratio (DVR) regional estimates correlated well with plasma-input derived DVR and SRTM BP(ND). Among the multilinear reference tissue model (MRTM) methods, MRTM1 had the best correspondence with DVR and SRTM BP(ND). Among the parametric methods evaluated, spectral analysis (SA) and SRTM2 were the best plasma-input and reference tissue methods, respectively, to obtain quantitatively accurate and repeatable parametric images for dynamic [(11)C]UCB-J PET. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13550-021-00874-8

    Amyloid-β Load Is Related to Worries, but Not to Severity of Cognitive Complaints in Individuals With Subjective Cognitive Decline: The SCIENCe Project

    Get PDF
    Objective: Subjective cognitive decline (SCD) is associated with an increased risk of Alzheimer’s Disease (AD). Early disease processes, such as amyloid-β aggregation measured with quantitative PET, may help to explain the phenotype of SCD. The aim of this study was to investigate whether quantitative amyloid-β load is associated with both self- and informant-reported cognitive complaints and memory deficit awareness in individuals with SCD.Methods: We included 106 SCD patients (mean ± SD age: 64 ± 8, 45%F) with 90 min dynamic [18F]florbetapir PET scans. We used the following questionnaires to assess SCD severity: cognitive change index (CCI, self and informant reports; 2 × 20 items), subjective cognitive functioning (SCF, four items), and five questions “Do you have complaints?” (yes/no) for memory, attention, organization and language), and “Does this worry you? (yes/no).” The Rivermead Behavioral Memory Test (RBMT)-Stories (immediate and delayed recall) was used to assess objective episodic memory. To investigate the level of self-awareness, we calculated a memory deficit awareness index (Z-transformed (inverted self-reported CCI minus episodic memory); higher index, heightened self-awareness) and a self-proxy index (Z-transformed self- minus informant-reported CCI). Mean cortical [18F]florbetapir binding potential (BPND) was derived from the PET data. Logistic and linear regression analyses, adjusted for age, sex, education, and depressive symptoms, were used to investigate associations between BPND and measures of SCD.Results: Higher mean cortical [18F]florbetapir BPND was associated with SCD-related worries (odds ratio = 1.76 [95%CI = 1.07 ± 2.90]), but not with other SCD questionnaires (informant and self-report CCI or SCF, total scores or individual items, all p > 0.05). In addition, higher mean cortical [18F]florbetapir BPND was associated with a higher memory deficit awareness index (Beta = 0.55), with an interaction between BPND and education (p = 0.002). There were no associations between [18F]florbetapir BPND and self-proxy index (Beta = 0.11).Conclusion: Amyloid-β deposition was associated with SCD-related worries and heightened memory deficit awareness (i.e., hypernosognosia), but not with severity of cognitive complaints. Our findings indicate that worries about self-perceived decline may reflect an early symptom of amyloid-β related pathology rather than subjective cognitive functioning

    Kinetics and 28-day test-retest repeatability and reproducibility of [C-11]UCB-J PET brain imaging

    Get PDF
    [C-11]UCB-J is a novel radioligand that binds to synaptic vesicle glycoprotein 2A (SV2A). The main objective of this study was to determine the 28-day test-retest repeatability (TRT) of quantitative [C-11]UCB-J brain positron emission tomography (PET) imaging in Alzheimer's disease (AD) patients and healthy controls (HCs). Nine HCs and eight AD patients underwent two 60 min dynamic [C-11]UCB-J PET scans with arterial sampling with an interval of 28 days. The optimal tracer kinetic model was assessed using the Akaike criteria (AIC). Micro-/macro-parameters such as tracer delivery (K-1) and volume of distribution (V-T) were estimated using the optimal model. Data were also analysed for simplified reference tissue model (SRTM) with centrum semi-ovale (white matter) as reference region. Based on AIC, both 1T2k_V-B and 2T4k_V-B described the [C-11]UCB-J kinetics equally well. Analysis showed that whole-brain grey matter TRT for V-T, DVR and SRTM BPND were -2.2% +/- 8.5, 0.4% +/- 12.0 and -8.0% +/- 10.2, averaged over all subjects. [C-11]UCB-J kinetics can be well described by a 1T2k_V-B model, and a 60 min scan duration was sufficient to obtain reliable estimates for both plasma input and reference tissue models. TRT for V-T, DVR and BPND wa

    Altered brain metabolism in frontotemporal dementia and psychiatric disorders: involvement of the anterior cingulate cortex

    Get PDF
    Background: Behavioural symptoms and frontotemporal hypometabolism overlap between behavioural variant of frontotemporal dementia (bvFTD) and primary psychiatric disorders (PPD), hampering diagnostic distinction. Voxel-wise comparisons of brain metabolism might identify specific frontotemporal-(hypo)metabolic regions between bvFTD and PPD. We investigated brain metabolism in bvFTD and PPD and its relationship with behavioural symptoms, social cognition, severity of depressive symptoms and cognitive functioning. Results: Compared to controls, bvFTD showed decreased metabolism in the dorsal anterior cingulate cortex (dACC) (p < 0.001), orbitofrontal cortex (OFC), temporal pole, dorsolateral prefrontal cortex (dlPFC) and caudate, whereas PPD showed no hypometabolism. Compared to PPD, bvFTD showed decreased metabolism in the dACC (p < 0.001, p < 0.05FWE), insula, Broca’s area, caudate, thalamus, OFC and temporal cortex (p < 0.001), whereas PPD showed decreased metabolism in the motor cortex (p < 0.001). Across bvFTD and PPD, decreased metabolism in the temporal cortex (p < 0.001, p < 0.05FWE), dACC and frontal cortex was associated with worse social cognition. Decreased metabolism in the dlPFC was associated with compulsiveness (p < 0.001). Across bvFTD, PPD and controls, decreased metabolism in the PFC and motor cortex was associated with executive dysfunctioning (p < 0.001). Conclusions: Our findings indicate subtle but distinct metabolic patterns in bvFTD and PPD, most strongly in the dACC. The degree of frontotemporal and cingulate hypometabolism was related to impaired social cognition, compulsiveness and executive dysfunctioning. Our findings suggest that the dACC might be an important region to differentiate between bvFTD and PPD but needs further validation

    Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis

    Get PDF
    IMPORTANCE: Amyloid-β positron emission tomography (PET) imaging allows in vivo detection of fibrillar plaques, a core neuropathological feature of Alzheimer disease (AD). Its diagnostic utility is still unclear because amyloid plaques also occur in patients with non-AD dementia. OBJECTIVE: To use individual participant data meta-analysis to estimate the prevalence of amyloid positivity on PET in a wide variety of dementia syndromes. DATA SOURCES: The MEDLINE and Web of Science databases were searched from January 2004 to April 2015 for amyloid PET studies. STUDY SELECTION: Case reports and studies on neurological or psychiatric diseases other than dementia were excluded. Corresponding authors of eligible cohorts were invited to provide individual participant data. DATA EXTRACTION AND SYNTHESIS: Data were provided for 1359 participants with clinically diagnosed AD and 538 participants with non-AD dementia. The reference groups were 1849 healthy control participants (based on amyloid PET) and an independent sample of 1369 AD participants (based on autopsy). MAIN OUTCOMES AND MEASURES: Estimated prevalence of positive amyloid PET scans according to diagnosis, age, and apolipoprotein E (APOE) ε4 status, using the generalized estimating equations method. RESULTS: The likelihood of amyloid positivity was associated with age and APOE ε4 status. In AD dementia, the prevalence of amyloid positivity decreased from age 50 to 90 years in APOE ε4 noncarriers (86% [95% CI, 73%-94%] at 50 years to 68% [95% CI, 57%-77%] at 90 years; n = 377) and to a lesser degree in APOE ε4 carriers (97% [95% CI, 92%-99%] at 50 years to 90% [95% CI, 83%-94%] at 90 years; n = 593; P < .01). Similar associations of age and APOE ε4 with amyloid positivity were observed in participants with AD dementia at autopsy. In most non-AD dementias, amyloid positivity increased with both age (from 60 to 80 years) and APOE ε4 carriership (dementia with Lewy bodies: carriers [n = 16], 63% [95% CI, 48%-80%] at 60 years to 83% [95% CI, 67%-92%] at 80 years; noncarriers [n = 18], 29% [95% CI, 15%-50%] at 60 years to 54% [95% CI, 30%-77%] at 80 years; frontotemporal dementia: carriers [n = 48], 19% [95% CI, 12%-28%] at 60 years to 43% [95% CI, 35%-50%] at 80 years; noncarriers [n = 160], 5% [95% CI, 3%-8%] at 60 years to 14% [95% CI, 11%-18%] at 80 years; vascular dementia: carriers [n = 30], 25% [95% CI, 9%-52%] at 60 years to 64% [95% CI, 49%-77%] at 80 years; noncarriers [n = 77], 7% [95% CI, 3%-18%] at 60 years to 29% [95% CI, 17%-43%] at 80 years. CONCLUSIONS AND RELEVANCE: Among participants with dementia, the prevalence of amyloid positivity was associated with clinical diagnosis, age, and APOE genotype. These findings indicate the potential clinical utility of amyloid imaging for differential diagnosis in early-onset dementia and to support the clinical diagnosis of participants with AD dementia and noncarrier APOE ε4 status who are older than 70 years

    Neurobiological basis and risk factors of persistent fatigue and concentration problems after COVID-19: study protocol for a prospective case-control study (VeCosCO)

    Get PDF
    INTRODUCTION: The risk factors for persistent fatigue and cognitive complaints after infection with SARS-CoV-2 and the underlying pathophysiology are largely unknown. Both clinical factors and cognitive-behavioural factors have been suggested to play a role in the perpetuation of complaints. A neurobiological aetiology, such as neuroinflammation, could be the underlying pathophysiological mechanism for persisting complaints.To unravel factors associated with persisting complaints, VeCosCO will compare individuals with and without persistent fatigue and cognitive complaints >3 months after infection with SARS-CoV-2. The study consists of two work packages. The first work package aims to (1) investigate the relation between persisting complaints and neuropsychological functioning; (2) determine risk factors and at-risk phenotypes for the development of persistent fatigue and cognitive complaints, including the presence of postexertional malaise and (3) describe consequences of persistent complaints on quality of life, healthcare consumption and physical functioning. The second work package aims to (1) determine the presence of neuroinflammation with [ 18F]DPA-714 whole-body positron emission tomography (PET) scans in patients with persisting complaints and (2) explore the relationship between (neuro)inflammation and brain structure and functioning measured with MRI. METHODS AND ANALYSIS: This is a prospective case-control study in participants with and without persistent fatigue and cognitive complaints, >3 months after laboratory-confirmed SARS-CoV-2 infection. Participants will be mainly included from existing COVID-19 cohorts in the Netherlands covering the full spectrum of COVID-19 acute disease severity. Primary outcomes are neuropsychological functioning, postexertional malaise, neuroinflammation measured using [ 18F]DPA-714 PET, and brain functioning and structure using (f)MRI. ETHICS AND DISSEMINATION: Work package 1 (NL79575.018.21) and 2 (NL77033.029.21) were approved by the medical ethical review board of the Amsterdam University Medical Centers (The Netherlands). Informed consent is required prior to participation in the study. Results of this study will be submitted for publication in peer-reviewed journals and shared with the key population

    The course of the neural correlates of reversal learning in obsessive-compulsive disorder and major depression: A naturalistic follow-up fMRI study

    No full text
    Objectives Reversal learning (RL) is impaired in obsessive–compulsive disorder (OCD) as well as in major depressive disorder (MDD). It is yet unknown to what extent pathophysiological mechanisms are state-dependent. Methods Neural activation patterns during RL were measured using event-related functional magnetic resonance imaging (fMRI) reversal learning in patients with OCD (N=18) and MDD (N=15). A naturalistic follow-up design enabled investigation of the relationship between changes in clinical state, task performance and task-related neural activation over time. Results During follow-up, disease severity decreased significantly in both groups. Whereas task speed improved trend-significantly, task accuracy was unchanged. Task-related dorsal frontal-striatal activation decreased at follow-up in MDD, but increased in OCD. In both groups, symptom improvement was associated with reward-related changes in neural activation in the putamen and the orbitofrontal cortex. Conclusions In both OCD and MDD, symptom reduction over time was associated with partial normalization of task-related activation patterns in brain regions. Whereas in OCD this normalization was characterized by increased recruitment of previously hypoactive frontal-striatal brain regions (i.e. dorsal frontal-striatal failure), in MDD previously hyperactive brain regions (frontal-striatal inefficiency), were recruited less after recovery. These results show that in both disorders frontal-striatal dysfunction is at least partly state-dependent

    Thinner temporal and parietal cortex is related to incident clinical progression to dementia in patients with subjective cognitive decline

    Get PDF
    INTRODUCTION: We aimed to investigate if thinner cortex of the Alzheimer's disease (AD)-signature region was related to clinical progression in patients with subjective cognitive decline (SCD). METHODS: We included 302 SCD patients with clinical follow-up (≥1 year) and three-dimensional T1 magnetic resonance imaging. We estimated AD-signature cortical thickness, consisting of nine frontal, parietal, and temporal gyri and hippocampal volume. We used Cox proportional hazard models (hazard ratios and 95% confidence intervals) to evaluate cortical thickness in relation to clinical progression to mild cognitive impairment (MCI) or dementia. RESULTS: After a follow-up of the mean (standard deviation) 3 (2) years, 49 patients (16%) showed clinical progression to MCI (n = 32), AD (n = 9), or non-AD dementia (n = 8). Hippocampal volumes, thinner cortex of the AD-signature (hazard ratio [95% confidence interval], 5 [2-17]) and various AD-signature subcomponents were associated with increased risk of clinical progression. Stratified analyses showed that thinner AD-signature cortex was specifically predictive for clinical progression to dementia but not to MCI. DISCUSSION: In SCD patients, thinner regional cortex is associated with clinical progression to dementia
    corecore