44 research outputs found

    Use of a new enrichment nanosorbent for speciation of mercury by FI-CV-ICP-MS

    Get PDF
    Mercury is one of the most toxic environmental pollutants and its effects on human and ecosystem health are well known. All mercury species are toxic, with organic mercury compounds generally being more toxic than inorganic species. Chromatography techniques (GC, HPLC) coupled to element specific detectors, are able to separate mercury species in order to elucidate mercury transformation and transport processes where the determination of all mercury species is desirable. However, in practice, especially in sampling campaigns for sea water analysis where a large number of samples are collected over a longer period of time, a combination of methods is usually applied to accurately determine the most toxic mercury species. These include non-chromatographic methods based on the different chemical and/or physical behavior of the mercury species. These non-chromatographic methods can be less time consuming, more cost effective and available, and present competitive limits of detection. Especially when mercury could vapor (CV) generation technique is employed, which reduces salt effect on the analytical signal and improve the sensibility. Among non-chromatographic methods, solid phase extraction and microextraction (SPE and SPME) which is becoming increasingly popular for sample preparation in organic analysis, found its way to speciation analysis of organometals. SPE/SPME is the most popular sample preconcentration method for its simplicity, high enrichment factor, low or no consumption of organic solvents and feasibly to be automated. On the other hand, the exploration of new materials, especially nanometer sized materials, as the support phase is another active research area in SPE/SPME for mercury determination. The use of nanoparticles leads to higher extraction capacity/efficiency and rapid dynamics of extraction originated from the higher surface area to volume ratio and short diffusion route. In this work, a new enrichment nanosorbent functionalized with 1,5 bis (2-pyridyl) methylene thiocarbohidrazide was synthesized and characterized. From the study of its adsorption capacity toward metal ions, Hg2+ was observed to be one of the most retained 173.1 ”mol g-1 at pH 5. Thus, a flow injection solid phase extraction and cold vapor generation method for its determination and speciation based on the use of this new chelating nanosorbent was optimized. The method developed has showed to be useful for the automatic pre-concentration and sequential speciation of mercury and methylmercury in environmental and biological samples. The system was based on chelating retention of the analytes onto a mini-column filled with the new nanosorbent and their sequential elution by using two different eluents, 0.2 % HCl for CH3Hg+ and 0.1 % thiourea in 0.5 % HCl for Hg2+. The determination was performed using inductively coupled plasma mass spectrometry. Under the optimum conditions and 120 s preconcentration time, the enrichment factors were 4.7 and 11.0; the detection limits (3σ) were 0.002 and 0.004 ”g L-1; the determination limits (10σ) were 0.011 and 0.024 ”g L-1; and the precisions (calculated for 10 replicate determinations at a 2 ”g L-1 standard of both species) were 2.8 and 2.6 % (RSD); for CH3Hg+ and Hg2+, respectively. Linear calibration graphs were obtained for both species from the determination limits to at least 70 ”g L-1. For the quality control of the analytical performance and the validation of the newly developed method, the analysis of two certified samples, LGC 6016 estuarine water and SRM 2976 mussel tissue were addressed. The results showed good agreement with the certified values. The method was successfully applied to the speciation of mercury in sea-water samples collected in the MĂĄlaga Bay.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Phosphorus removal and recycled from tertiary effluent in sewage treatment plant using graphene modified with magnetic nanoparticles (M@GO).

    Get PDF
    Phosphorus is employed in detergents, as fertilizers in agriculture, etc. As a nutrient for plants, too much phosphorus can cause increased growth of algae and large aquatic plants, which can result in decreased levels of dissolved oxygen– a process called eutrophication. On the other hand, P is a relatively limited resource, considered by the European Union as a strategic interest material. Thus, the removal and recycled of P from the sewage treatment plants is of great interest to the society. In this work, a new patented magnetic graphene oxide (M@GO) for the removal of phosphorus from wastewater is studied. The main technical advantage of this solid adsorbent is its easy separation from the treated water by applying a magnetic field. The key factors affecting the sorption and elution efficiency are studied. The thermodynamic adsorption model that provides a best fit was the Langmuir isotherm. The mass transfer kinetic model indicates that the mass transfer of P between the bulk liquid and the solid surface is not the rate-limiting step of the adsorption process. The P adsorption on M@GO was demonstrated by TEM, XPS, FTIR. After the adsorption, an ammonia aqueous solution has provided to be the best eluent to recover the phosphorus from the solid adsorbent, as ammonium phosphate, with recovery yields above 90%. The results of this work have driven to the design of a new magnetic reactor for the treatment of waste water. Acknowledgements The authors thank to Spanish Ministerio de Ciencia e Innovación, Project PID2021-126794OB and the II Plan Propio UMA.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Synthesis and characterization of a new nanosorbent based on functionalized magnetic nanoparticles and its use in the determination of mercury by FI-CV-ETAAS

    Get PDF
    In this work, a new chelating sorbent which employs 1,5-bis(di-2-pyridil)methylene thiocarbohydrazide as the functional group and magnetic nanoparticles (MNPs) as its support (DPTH-MNP) was synthetized and characterized. The MNPs were prepared by coprecipitation of Fe+2 and Fe+3 with NH3 and then coated with silica in order to easily bind the support and the functionalizing molecule. The aim of the synthesis of this material is applying it as a solid-phase extracting agent and evaluating its potential for the extraction and pre-concentration of trace amounts of analytes present in biological and environmental samples with on-line methods. The MNPs’ magnetic core would allow overcoming the usual backpressure problems that happen in solid-phase extraction methods thanks to the possibility of immobilizing the MNPs by applying an external magnetic field. From the study of its adsorption capacity toward metal ions, mercury and antimony were the most retained. Thus, a flow injection solid phase extraction and cold vapor generation method for mercury determination based on the use of this new chelating nanosorbent was optimized. The greatest efforts were put into the reactor design to minimize compaction and loss of nanosorbent. The knotted reactor shown in Figure 1 was chosen as the best. Then, chemical and flow variables were optimized by Central composite designs (CCDs). The method developed has showed to be useful for the automatic pre-concentration and determination of mercury in environmental and biological samples. The determination was performed using electrothermal atomic absorption spectrometry (ETAAS). Under the optimum conditions, pH 5 and 120 s preconcentration time, the enrichment factor was 5.33; the detection limit (3σ) was 7.8 ng L-1; the determination limit (10σ) was 99 ng L-1; and the precisions (calculated for 10 replicate determinations at a 1 and 5 ”g L-1 standards) were 1.7 and 1.9 % (RSD), respectively. Two linear calibration graphs were obtained, from the determination limits to 10 ”g L-1 and from 10 to at least 50 ”g L-1. From the comparison with other similar methods found in the bibliography, the detection limit and precisions calculated with our method were better. In order to evaluate the accurate and applicability of the method, the analysis of five certified samples LGC 6016 estuarine water, TMDA 54.4 fortified lake water, SRM 2976 mussel tissue, TORT-1 lobster hepatopancreas and DOLT-1 dogfish liver by standard addition and external calibration, were addressed. The results showed good agreement between the certified values, or added amounts of mercury, and the found concentrations. The method was successfully applied to the determination of mercury in sea-water samples collected in the MĂĄlaga Bay.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tec

    Calculate content of vitamin C in a pharmaceutical compound. PBL used as a strategy to make easy to learn chemistry at university.

    Get PDF
    In Project-Based Learning, teacher transmits to the students the contents that the curriculum marks, helping to motivate them and awaken their concerns about the previous knowledge. This way of working intends that students discover and feel that what they are learning in class has an application, in some cases close to their reality, it is not simple content that they must pass to pass the course. It is intended that they are aware that the learning they are doing is helping them to prepare for life. This work focuses on the utility of the laboratory as a space with a problem-solving approach, that is, contextualizing problems and fulfilling a series of purposes. These purposes are the ability to internalize general and specific knowledge (know), acquire technical and procedural skills (know how), develop attitudes (know how to be) and social skills (know how to live together). The laboratories allow the student to be trained, since the students are responsible for their own learning, thus contributing to their self-learning; Teamwork implies assertive communication, both in oral and written communication, which contributes to improving their skills. The students learned to discuss and support their ideas. Therefore, it was revealed that it is a training for the students, and it is managing to improve the performance of the students. The results have shown, after the students completed a questionnaire, after the laboratories, 59% of the students indicated that the experience contributed to their learning (aspects such as comprehension and self-learning) compared to 41% who thought that it did not help in this regard; 88% indicated that it helped them better understand the experience they were carrying out and only 14% stressed that there was no coherence between theory and practice.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Simultaneous determination of traces of PT, PD, OS, IR, RH, AG and AU by using magnetic nanoparticles solid phase extraction coupled with ICP OES

    Get PDF
    The direct analysis of these target analytes is very limited being essential sample pre-treatment techniques and the use of very sensitive instrumental techniques to carry out determinations. The inductively coupled plasma optical emission spectrometry shows a poor sensitivity because the concentration of some elements in environmental samples is below the detection limit of ICP OES. To solve this problem, preconcentration separation procedures have been proposed, minimizing the spectral and matrix interferences. Thus, enrichment is a very important issue for achievement of low detection limits [1-4]. In this study, a chelating resin 1,5 bis (di 2 pyridil) methylene thiocarbonohydrazide bonded to iron oxide magnetic nanoparticles (DPTH-MNPs) were synthesized. These magnetic nanoparticles were employed as a solid phase extraction (SPE) adsorbent for the separation and concentration of trace amounts of 7 elements (Au, Ag, Pd, Pt, Ir, Rh and Os) from environmental water samples. The main aim of this work was to develop a precise and accurate method for the simultaneous determination of the maximum possible number of elements by using this new absorbent and a multimode sample introduction system (MSIS). The MSIS acts as a system for the generation, separation and introduction of chemical vapours (CVG) and also as an introduction system for sample aerosols, in a simultaneous form, into an inductively coupled plasma-optical emission spectrometer. The on-line SPE-CVG-ICP-OES system developed was applied in the determination of the aforementioned metals in natural water samples (sea water, estuarine, lake and river water), with the least demanding and simple sample preparation procedure. The developed method was validated by analysing natural water certiïŹed reference materials (TMDA 54.4 fortified lake waters and SRM 1643e, trace elements in water; and National Institute of Standards and Technology (NIST), NIST-2557 autocatalyst). Sea water, tap water and well water samples collected from Malaga (Spain) were also analysed. The procedure has been demonstrated to be fast, easy, automatic, selective and economical, and the sensitivity was good. The main advantage of DPTH-MNPs is its very good stability and resistance because chemisorption of chelating molecules on the surface of solid supports provides immobility, mechanical stability and insolubility. The precision (RSD), accuracy (by standard addition or recovery) and limit of detection (LOD) were used to evaluate the characteristics of the procedure. Furthermore, the proposed method was applied in the simultaneous determination of the 7 elements mentioned above with a sample throughput of about 13 h-1, thereby, reducing the time of analysis and the volume of reagents and sample required. References [1] M. Tuzen, M. Soylak, D. Citak, H.S. Ferreira, M.G.A. Korn, M.A. Bezerra, A pre-concentration system for determination of copper and nickel in water and food samples employing ïŹ‚ame atomic absorption spectrometry, Journal of Haz-ardous Materials 162 (2009) 1041–1045. [2] Y. Cui, X. Chang, Y. Zhai, X. Zhu, H. Zheng, N. Lian, ICP-AES determination of trace elements after preconcentrated with p-dimethylaminobenzaldehyde-modiïŹed nanometer SiO2 from sample solution, Microchem. J. 83 (2006) 35–41. [3] P. Liang, B. Hu, Z. Jiang, Y. Qin, T. Peng, Nanometer-sized titanium dioxide micro-column on-line preconcentration of La, Y, Yb, Eu, Dy and their determination by inductively coupled plasma atomic emission spectrometry, J. Anal. Atom. Spectrom. 16 (2001) 863–866. [4] B. Feist, B. Mikula, K. Pytlakowska, B. Puzio, F. Buhl, Determination of heavy metals by ICP-OES and F-AAS after preconcentration with 2,2-bipyridyl and erythrosine, J. Hazard. Mater. 152 (2008) 1122–1129.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Sequential determination of heavy metals in environmental water samples by flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry

    Get PDF
    The toxicity of “heavy metals” has been well recognized for a long time. Often the non-specific term “heavy metals” is used for three of the metals, cadmium, mercury and lead. These have large bioconcentration factors in marine organism, are highly toxic and, unlike many of the transition elements have no known natural biological functions. For these reasons these metals generate the greatest concern for the general public and therefore also for environmental agencies in the majority of states. The monitoring and control of these trace elements in the environment requires powerful analytical methods to accurately characterize their abundance and to reach reliable conclusions. In this work, an inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the sequential determination of Pb, Cd and Hg in natural waters, including sea-water, using an on-line preconcentration flow injection chemical vapour generation system (FI-CVG). It is difficult to simultaneously determine these elements by CVG, because their conditions of CVG are different. Thus, the system was based on the use of two minicolumns packed with 1-(di-2-pyridyl)methylene thiocarbonohydrazide chelating resin which were placed in two injection valves of a simple flow manifold to be loaded simultaneously. A third valve was arranged to select the reagent for the selective vapour generation of the analytes and, thus make possible the sequential determination of the three metals. By using this device, diverse advantages are attained: increase of the sensitivity and reduction of the interferences by the preconcentration and the vapour generation. The detection limits achieved (3 min sample loading time) were: 9, 17 and 12 ngL-1 for Pb, Cd and Hg, respectively, with a sample throughput about 10.4 h-1. The accuracy of the proposed method was checked with three certified reference materials (CRMs): TMDA-54.4 fortified lake water, LGC6016 estuarine water and CASS-5 oceanic water and the results obtained were in good agreement with the certified values. The method was also applied to the determination of Pb, Cd and Hg in different sea-water samples from the Málaga Bay.Universidad de Málaga, Campus de Excelencia Internacional Andalucia Tec

    Magnetic graphene molecularly imprinted polypyrrole polymer (MGO@MIPy) for electrochemical sensing of malondialdehyde in serum samples

    Get PDF
    A modified screen-printed carbon electrode (SPCE) has been designed and fabricated for the determination of malondialdehyde (MDA), an important biomarker of oxidative stress. Magnetic graphene oxide (MGO) was synthesized and coated by a molecularly imprinted polypyrrole (MIPy) for the preparation of a novel hybrid nanomaterial (MGO@MIPy). The nanocomposite has been characterized using different spectroscopic and imaging techniques. The coupling of MIPy with MGO allows the exploitation of the magnetic properties of the material for separation, preconcentration and manipulation of analyte which is selectively captured onto the MIPy surface of the nanocomposite. Besides, the derivatization of MDA with diaminonaphtalene (DAN) was carried out, resulting in a more electroactive molecule (MDA-DAN). MDA-DAN was used as template in the synthesis of MIPy. SPCEs were employed to monitor the differential pulse voltammetry (DVP) levels of the material, which is related to the amount of the captured analyte. Under optimum conditions, the nanocomposite-based sensing system has proved to be suitable for the monitoring of MDA, presenting a wide linear range (0.01–100 ”M), high sensitivity (experimental LOQ = 0.01 ”M) and precision (RSD = 4%). For validation purposes, three chicken serum samples were analysed by external calibration, obtaining recoveries values close to 100% for all the spiked tests. Finally, the developed electrochemical sensor demonstrated to be adequate for bioanalytical application, presenting an excellent analytical performance for the routine monitoring of MDA in serum samples.The Spanish Ministry of Science and Innovation, JJCC Castilla-La Mancha and Junta de AndalucĂ­a are gratefully acknowledged for funding this work with Fellowship FPU18/05371, and Grants PID2019-104381 GB-I00, JCCM SBPLY/17/180501/000262, and UMA18FEDERJA060, respectively. Funding for open access charge: Universidad de MĂĄlaga /CBUA

    Simultaneous determination of PT, PD, RH and IR traces in environmental samples by flow injection solid phase extraction coupled with online inductively coupled plasma atomic emission spectroscopy (ICP-AES)

    Get PDF
    An increased worldwide usage of platinum group elements (PGEs) has been observed during the last twenty years due to their applications in areas such as chemical industry, metallurgy, jewelry production, dental devices, anti-cancer drug and automobile catalytic converter systems. These applications were found to be anthropogenic sources of pollution of these elements nowadays. The presence of PGEs in different environmental and biological materials is a risk to ecological and human health because may be easily mobilized and solubilized in several matrices. The determination of Pt, Pd, Rh and Ir presents difficulties because of the low concentrations of these metals in environmental samples and the numerous interactions between the analytes and the matrix constituents, which can significantly influence both the limit of detection and the accuracy of determination in complex samples. Initial sample pretreatment such as pre-concentration of these elements and matrix separation are often necessary. Numerous reviews devoted to PGEs determination have been published; however, they deal mainly with techniques used for analytical signal formation and less with pre-concentration and separation procedures which usually precede the quantification of the analyte by spectrometric techniques [1]. In this work, Pt, Pd, Rh and Ir have been simultaneously determined by flow injection solid phase extraction coupled online with ICP-AES. The system is based on the retention of the analytes onto a minicolumn filled with a chelating exchange resin placed in the injection valve of a simple flow manifold. This configuration offers several advantages, including (a) elimination of the matrix effect, (b) increase the sensitivity by the preconcentration and, (c) automatization of the different steps. The effects of chemicals and flow variables were investigated. The optimized operating conditions selected were: sample pH 7.5, sample flow rate 2.2 mL min-1, eluent flow rate 0.9 mL min-1, eluent 0.07% thiourea in 2M HCl. With these conditions, the enrichment factors obtained were 6.3, 6.7, 3.7 and 6.3 for Pt, Pd, Rh and Ir respectively. Detection limits (3 min sample loading time) were 1.4 ”g L-1 for Pt, 0.5 ”g L-1 for Pd, 256 ”g L-1 for Rh and 0.6 ”g L-1 for Ir. The accuracy of the proposed method was checked with the certified reference material NIST-2557 autocatalyst. The results obtained using this method were in good agreement with the certified values of the standard reference material. The method was applied to the determination of Pt, Pd, Rh and Ir in different sea-water samples collected in Målaga, Spain. [1] B. Godlewska-Zylkiewicz, Microchim. Acta 147 (2004) 189.Universidad de Målaga. Campus de Excelencia Internacional Andalucía Tec

    Sequential determination of traces of As, Sb and hg by on-line magnetic solid phase extraction coupled with Hr-Cs-Cvg-Gfaas

    Get PDF
    A green and rapid method was developed for the simultaneous separation/preconcentration and sequential monitoring pf arsenic, antimony and mercury by flow injection magnetic solid phase extraction coupled with on-line chemical vapor generation and determination by high resolution continuum source graphite furnace atomic absorption spectrometry. The system is based on chelating/cationic retention of the analytes onto a magnet based reactor designed to contain functionalized magnetic nanoparticles (MNPs). The MNP score allows overcoming the back-pressure problems that usually happen in SPME methods with NPs thanks to the possibility of inmobilizing the MNPs by applying an external magnetic field. Several chemical and flow variables were considered as factors in the optimization process using central composite designs. With the optimized procedure the detection limits obtained were 0.2, 0.003 and 0.4 ”g/L for As, Sb and Hg respectively. For the quality control of the analytical performance and the validation of the developed method the analysis of two certified samples TM 24.3 and TMDA 54.4 Fortified Lake Waters was addressed. The results showed good agreement with the certified values.Universidad de Målaga. Campus de Excelencia Internacional Andalucía Tech

    Rapid Magnetic Dispersive solid phase extraction to preconcentration/determination of Cd and Pb in aqueous samples

    Get PDF
    A new magnetic dispersive solid phase extraction (MDSPE) method and graphite furnace atomic absorption spectrometry (GFAAS) have been combined for the analysis of Cd and Pb in environmental samples. For the preconcentration, a shell structured Fe3O4@graphene oxide nanospheres was synthetized and characterized. The material was suspended in the ionic liquid 1-n-butyl-3-metilimidazolium tetrafluoroborate [BMIM][BF4], the obtained stable colloidal suspension is named ferrofluid. GO presents excellent adsorbent properties for organic species due to the presence of the electronic π system. For this reason, the organic ligand [1,5-bis-(2-dipyridyl) methylene] thiocarbonohydrazide (DPTH) was used in order to form organic complexes of Cd and Pb. Once the DPTH ligand has been added to sample, the ferrofluid was injected and finely dispersed in the sample solution in order to extract the formed chelates. The complete adsorption of the chelates took place within few seconds then, the solid was separated from the solution with the aid of a strong magnet. Cd and Pb ions were desorbed from the material with 1 mL of acid nitric 5% solution and quantified by GFAAS. All experimental and instrumental variables were optimized. The analytical performances of the optimized method were: EF (Enrichment factor): 200 with LODs (detection limit): 0.005 and 0.004 ”g L-1 and LOQs (determination limit): 0.017 and 0.013 ”g L-1, for Cd and Pb, respectively. The reliability of the developed procedure was tested by relative standard deviation (% RSD), which was found to be < 5%. The accuracy of the proposed method was verified using certified reference materials (SLRS-5, SPS-SW2, and BCR-723) and by determining the analyte content in spiked aqueous samples. Sea waters and tap water samples collected from MĂĄlaga (Spain) were also analysed. The determined values were in good agreement with the certiïŹed values and the recoveries for the spiked samples were around 100% in all cases.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tec
    corecore