87 research outputs found
A Roadmap for the Restoration of Mediterranean Macroalgal Forests
Canopy-forming macroalgae play a crucial role in coastal primary production and nutrient cycling, providing food, shelter, nurseries, and habitat for many vertebrate and invertebrate species. However, macroalgal forests are in decline in various places and natural recovery is almost impossible when populations become locally extinct. Hence, active restoration emerges as the most promising strategy to rebuild disappeared forests. In this regard, significant efforts have been made by several EU institutions to research new restoration tools for shallow and mesophotic reef habitats (e.g., MERCES EU project, AFRIMED, and ROCPOP-life) and effective techniques have subsequently been proposed to promote self-sustaining populations. Recent research indicates that macroalgal forest recovery requires a broad spectrum of measures, ranging from mitigating human impacts to restoring the most degraded populations and habitats, and that the viability of large restoration actions is compromised by ongoing human pressures (e.g., pollution, overgrazing, and climate change). We propose a roadmap for Mediterranean macroalgal restoration to assist researchers and stakeholders in decision-making, considering the most effective methods in terms of cost and cost-effectiveness, and taking background environmental conditions and potential threats into account. Last, the challenges currently faced by the restoration of rocky coastal ecosystems under changing climate conditions are also discussed
Sensitization of retinoids and corticoids to epigenetic drugs in MYC-activated lung cancers by antitumor reprogramming
Components of the SWI/SNF chromatin remodeling complex, including BRG1 (also SMARCA4), are inactivated in cancer. Among other functions, SWI/SNF orchestrates the response to retinoid acid (RA) and glucocorticoids (GC) involving downregulation of MYC. The epigenetic drugs SAHA and azacytidine, as well as RA and GC, are currently being used to treat some malignancies but their therapeutic potential in lung cancer is not well established. Here we aimed to determine the possible therapeutic effects of azacytidine and SAHA (A/S) alone or in combination with GC plus RA (GC/RA) in lung cancers with either BRG1 inactivation or MYC amplification. In vitro, responses to GC/RA treatment were more effective in MYC-amplified cells. These effects were mediated by BRG1 and involved a reprogramming towards prodifferentiation gene expression signatures and downregulation of MYC. In MYC-amplified cells, administration of GC/RA enhanced the cell growth inhibitory effects of A/S which, in turn, accentuated the prodifferentiation features promoted by GC/RA. Finally, these treatments improved overall survival of mice orthotopically implanted with MYC-amplified, but not BRG1-mutant, cells and reduced tumor cell viability and proliferation. We propose that the combination of epigenetic treatments with retinoids and corticoids of MYC-driven lung tumors constitute a strategy for therapeutic intervention in this otherwise incurable disease
Local-scale climatic refugia offer sanctuary for a habitat-forming species during a marine heatwave
En prens
Effects of Natural and Anthropogenic Stressors on Fucalean Brown Seaweeds Across Different Spatial Scales in the Mediterranean Sea
Algal habitat-forming forests composed of fucalean brown seaweeds (Cystoseira, Ericaria, and Gongolaria) have severely declined along the Mediterranean coasts, endangering the maintenance of essential ecosystem services. Numerous factors determine the loss of these assemblages and operate at different spatial scales, which must be identified to plan conservation and restoration actions. To explore the critical stressors (natural and anthropogenic) that may cause habitat degradation, we investigated (a) the patterns of variability of fucalean forests in percentage cover (abundance) at three spatial scales (location, forest, transect) by visual estimates and or photographic sampling to identify relevant spatial scales of variation, (b) the correlation between semi-quantitative anthropogenic stressors, individually or cumulatively (MA-LUSI index), including natural stressors (confinement, sea urchin grazing), and percentage cover of functional groups (perennial, semi-perennial) at forest spatial scale. The results showed that impacts from mariculture and urbanization seem to be the main stressors affecting habitat-forming species. In particular, while mariculture, urbanization, and cumulative anthropogenic stress negatively correlated with the percentage cover of perennial fucalean species, the same stressors were positively correlated with the percentage cover of the semi-perennial Cystoseira compressa and C. compressa subsp. pustulata. Our results indicate that human impacts can determine spatial patterns in these fragmented and heterogeneous marine habitats, thus stressing the need of carefully considering scale-dependent ecological processes to support conservation and restoration
Extra Virgin Olive Oil Contains a Phenolic Inhibitor of the Histone Demethylase LSD1/KDM1A
The lysine-specific histone demethylase 1A (LSD1) also known as lysine (K)-specific
demethylase 1A (KDM1A) is a central epigenetic regulator of metabolic reprogramming in
obesity-associated diseases, neurological disorders, and cancer. Here, we evaluated the ability
of oleacein, a biophenol secoiridoid naturally present in extra virgin olive oil (EVOO), to target
LSD1. Molecular docking and dynamic simulation approaches revealed that oleacein could target
the binding site of the LSD1 cofactor flavin adenosine dinucleotide with high affinity and at low
concentrations. At higher concentrations, oleacein was predicted to target the interaction of LSD1
with histone H3 and the LSD1 co-repressor (RCOR1/CoREST), likely disturbing the anchorage of
LSD1 to chromatin. AlphaScreen-based in vitro assays confirmed the ability of oleacein to act as
a direct inhibitor of recombinant LSD1, with an IC50 as low as 2.5 umol/L. Further, oleacein fully
suppressed the expression of the transcription factor SOX2 (SEX determining Region Y-box 2) in cancer
stem-like and induced pluripotent stem (iPS) cells, which specifically occurs under the control of an
LSD1-targeted distal enhancer. Conversely, oleacein failed to modify ectopic SOX2 overexpression
driven by a constitutive promoter. Overall, our findings provide the first evidence that EVOO contains
a naturally occurring phenolic inhibitor of LSD1, and support the use of oleacein as a template to
design new secoiridoid-based LSD1 inhibitors.Work in the Menendez laboratory is supported by the Spanish Ministry of Science and Innovation
(Grant SAF2016-80639-P, Plan Nacional de l+D+I, founded by the European Regional Development Fund, Spain)
and by an unrestricted research grant from the Fundació Oncolliga Girona (Lliga catalana d’ajuda al malalt de
càncer, Girona). The Spanish Ministry of Economy and Competitiveness (MINECO, Project RTI2018-096724-B-C21)
and the Generalitat Valenciana (PROMETEO/2016/006) supports work in the Encinar laborator
Fatty acid synthase (FASN) regulates the mitochondrial priming of cancer cells
Inhibitors of the lipogenic enzyme fatty acid synthase (FASN) have attracted much attention in the last decade as potential targeted cancer therapies. However, little is known about the molecular determinants of cancer cell sensitivity to FASN inhibitors (FASNis), which is a major roadblock to their therapeutic application. Here, we find that pharmacological starvation of endogenously produced FAs is a previously unrecognized metabolic stress that heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors. Evaluation of the death decision circuits controlled by the BCL-2 family of proteins revealed that FASN inhibition is accompanied by the upregulation of the pro-death BH3-only proteins BIM, PUMA, and NOXA. Cell death triggered by FASN inhibition, which causally involves a palmitate/NADPH-related redox imbalance, is markedly diminished by concurrent loss of BIM or PUMA, suggesting that FASN activity controls cancer cell survival by fine-tuning the BH3 only proteins-dependent mitochondrial threshold for apoptosis. FASN inhibition results in a heightened mitochondrial apoptosis priming, shifting cells toward a primed-for-death state “addicted” to the anti-apoptotic protein BCL-2. Accordingly, co-administration of a FASNi synergistically augments the apoptosis-inducing activity of the dual BCL-XL/BCL-2 inhibitor ABT-263 (navitoclax) and the BCL-2 specific BH3-mimetic ABT-199 (venetoclax). FASN inhibition, however, fails to sensitize breast cancer cells to MCL-1- and BCL-XL-selective inhibitors such as S63845 and A1331852. A human breast cancer xenograft model evidenced that oral administration of the only clinically available FASNi drastically sensitizes FASN-addicted breast tumors to ineffective single-agents navitoclax and venetoclax in vivo. In summary, a novel FASN-driven facet of the mitochondrial priming mechanistically links the redox-buffering mechanism of FASN activity to the intrinsic apoptotic threshold in breast cancer cells. Combining next-generation FASNis with BCL-2-specific BH3 mimetics that directly activate the apoptotic machinery might generate more potent and longer-lasting antitumor responses in a clinical setting.The authors would like to thank Dr. Kenneth McCreath for editorial support. This work was supported by the NIH National Cancer Institute Grants R01 CA116623 (to Ruth Lupu) and R01 CA166741 (to Scott H. Kaufmann) and by the U.S. Department of Defense (DOD)-Breakthrough 3 Grants BC151072 and BC151072P1 (to Ruth Lupu). Work in the Menendez laboratory is supported by the Spanish Ministry of Science and Innovation (Grants SAF2016-80639-P and PID2019-10455GB-I00, Plan Nacional de l + D + I, founded by the European Regional Development Fund, Spain) and by an unrestricted research grant from the Fundació Oncolliga Girona (Lliga catalana d’ajuda al malalt de càncer, Girona). Joan Montero acknowledges support from the Ramon y Cajal Programme, Ministerio de Economía y Competitividad (RYC-2015-18357) and the Spanish National Plan “Retos Investigación” I + D + I (RTI2018-094533-A-I00) from the Ministerio de Ciencia, Innovación y Universidades. Elisabet Cuyàs holds a research contract “Miguel Servet” (CP20/00003) from the Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation (Spain). All authors have read and agreed to the published version of the manuscript
Where Is More Important Than How in Coastal and Marine Ecosystems Restoration
Restoration is considered an effective strategy to accelerate the recovery of biological communities at local scale. However, the effects of restoration actions in the marine ecosystems are still unpredictable. We performed a global analysis of published literature to identify the factors increasing the probability of restoration success in coastal and marine systems. Our results confirm that the majority of active restoration initiatives are still concentrated in the northern hemisphere and that most of information gathered from restoration efforts derives from a relatively small subset of species. The analysis also indicates that many studies are still experimental in nature, covering small spatial and temporal scales. Despite the limits of assessing restoration effectiveness in absence of a standardized definition of success, the context (degree of human impact, ecosystem type, habitat) of where the restoration activity is undertaken is of greater relevance to a successful outcome than how (method) the restoration is carried out. Contrary to expectations, we found that restoration is not necessarily more successful closer to protected areas (PA) and in areas of moderate human impact. This result can be motivated by the limits in assessing the success of interventions and by the tendency of selecting areas in more obvious need of restoration, where the potential of actively restoring a degraded site is more evident. Restoration sites prioritization considering human uses and conservation status present in the region is of vital importance to obtain the intended outcomes and galvanize further actions
Genome-wide profiling of non-smoking-related lung cancer cells reveals common RB1 rearrangements associated with histopathologic transformation in EGFR-mutant tumors.
The etiology and the molecular basis of lung adenocarcinomas (LuADs) in nonsmokers are currently unknown. Furthermore, the scarcity of available primary cultures continues to hamper our biological understanding of non-smoking-related lung adenocarcinomas (NSK-LuADs).
We established patient-derived cancer cell (PDC) cultures from metastatic NSK-LuADs, including two pairs of matched EGFR-mutant PDCs before and after resistance to tyrosine kinase inhibitors (TKIs), and then performed whole-exome and RNA sequencing to delineate their genomic architecture. For validation, we analyzed independent cohorts of primary LuADs.
In addition to known non-smoker-associated alterations (e.g. RET, ALK, EGFR, and ERBB2), we discovered novel fusions and recurrently mutated genes, including ATF7IP, a regulator of gene expression, that was inactivated in 5% of primary LuAD cases. We also found germline mutations at dominant familiar-cancer genes, highlighting the importance of genetic predisposition in the origin of a subset of NSK-LuADs. Furthermore, there was an over-representation of inactivating alterations at RB1, mostly through complex intragenic rearrangements, in treatment-naive EGFR-mutant LuADs. Three EGFR-mutant and one EGFR-wild-type tumors acquired resistance to EGFR-TKIs and chemotherapy, respectively, and histology on re-biopsies revealed the development of small-cell lung cancer/squamous cell carcinoma (SCLC/LuSCC) transformation. These features were consistent with RB1 inactivation and acquired EGFR-T790M mutation or FGFR3-TACC3 fusion in EGFR-mutant tumors.
We found recurrent alterations in LuADs that deserve further exploration. Our work also demonstrates that a subset of NSK-LuADs arises within cancer-predisposition syndromes. The preferential occurrence of RB1 inactivation, via complex rearrangements, found in EGFR-mutant tumors appears to favor SCLC/LuSCC transformation under growth-inhibition pressures. Thus RB1 inactivation may predict the risk of LuAD transformation to a more aggressive type of lung cancer, and may need to be considered as a part of the clinical management of NSK-LuADs patients.This work was supported by the Fundacion Cientifica Asociacion Española Contra el Cancer-AECC (grant number GCB14142170MONT) to LMM, MS-C, and EF; the Spanish Ministry of Economy and Competitivity-MINECO (grant number SAF-2017-82186R to MS-C; Rio Hortega-CM17/00180 to MS; PROYBAR17005NADA to EN); the Health Institute Carlos III-ISCIII, Fondo Europeo de Desarrollo Regional-FEDER (grant Number PT13/0001/0044, PT17/0009/0019, PI16 01821); the Government of Navarra (grant number DIANA project); and the Ramon Areces Foundation (no grant number is applicable) to LMM and RP.S
Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species
To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized
a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus,
Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes
textilis (Tunisia), and Botrylloides diegensis (Tunisia)
Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder.
GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome
- …