5 research outputs found

    Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer\u27s disease

    Get PDF
    Curcumin derived from turmeric is well documented for its anti-carcinogenic, antioxidant and anti-inflammatory properties. Recent studies show that curcumin also possesses neuroprotective and cognitive-enhancing properties that may help delay or prevent neurodegenerative diseases, including Alzheimer’s disease (AD). Currently, clinical diagnosis of AD is onerous, and it is primarily based on the exclusion of other causes of dementia. In addition, phase III clinical trials of potential treatments have mostly failed, leaving disease-modifying interventions elusive. AD can be characterised neuropathologically by the deposition of extracellular β amyloid (Aβ) plaques and intracellular accumulation of tau-containing neurofibrillary tangles. Disruptions in Aβ metabolism/clearance contribute to AD pathogenesis. In vitro studies have shown that Aβ metabolism is altered by curcumin, and animal studies report that curcumin may influence brain function and the development of dementia, because of its antioxidant and anti-inflammatory properties, as well as its ability to influence Aβ metabolism. However, clinical studies of curcumin have revealed limited effects to date, most likely because of curcumin’s relatively low solubility and bioavailability, and because of selection of cohorts with diagnosed AD, in whom there is already major neuropathology. However, the fresh approach of targeting early AD pathology (by treating healthy, pre-clinical and mild cognitive impairment-stage cohorts) combined with new curcumin formulations that increase bioavailability is renewing optimism concerning curcumin-based therapy. The aim of this paper is to review the current evidence supporting an association between curcumin and modulation of AD pathology, including in vitro and in vivo studies. We also review the use of curcumin in emerging retinal imaging technology, as a fluorochrome for AD diagnostics

    Inflamation and oxidative stress : The molecular connectivity between insulin resistance, obesity and Alzheimer\u27s disease

    Get PDF
    Type 2 diabetes (T 2 DM), Alzheimer’s disease (AD), and insulin resistance are age-related conditions and increased prevalence is of public concern. Recent research has provided evidence that insulin resistance and impaired insulin signalling may be a contributory factor to the progression of diabetes, dementia, and other neurological disorders. Alzheimer’s disease (AD) is the most common subtype of dementia. Reduced release (for T 2 DM) and decreased action of insulin are central to the development and progression of both T 2 DM and AD. A literature search was conducted to identify molecular commonalities between obesity, diabetes, and AD. Insulin resistance affects many tissues and organs, either through impaired insulin signalling or through aberrant changes in both glucose and lipid (cholesterol and triacylglycerol) metabolism and concentrations in the blood. Although epidemiological and biological evidence has highlighted an increased incidence of cognitive decline and AD in patients with T 2 DM, the common molecular basis of cell and tissue dysfunction is rapidly gaining recognition. As a cause or consequence, the chronic in flammatory response and oxidative stress associated with T 2 DM, amyloid- ! (A ! ) protein accumulation, and mitochondrial dysfunction link T 2 DM and AD

    The Guinea Pig as a Model for Sporadic Alzheimer\u27s Disease (AD): The Impact of Cholesterol Intake on Expression of AD-Related Genes

    Get PDF
    We investigated the guinea pig, Cavia porcellus, as a model for Alzheimer’s disease (AD), both in terms of the conservation of genes involved in AD and the regulatory responses of these to a known AD risk factor - high cholesterol intake. Unlike rats and mice, guinea pigs possess an Ab peptide sequence identical to human Ab. Consistent with the commonality between cardiovascular and AD risk factors in humans, we saw that a high cholesterol diet leads to up-regulation of BACE1 (b-secretase) transcription and down-regulation of ADAM10 (a-secretase) transcription which should increase release of Ab from APP. Significantly, guinea pigs possess isoforms of AD-related genes found in humans but not present in mice or rats. For example, we discovered that the truncated PS2V isoform of human PSEN2, that is found at raised levels in AD brains and that increases c-secretase activity and Ab synthesis, is not uniquely human or aberrant as previously believed. We show that PS2V formation is up-regulated by hypoxia and a high-cholesterol diet while, consistent with observations in humans, Ab concentrations are raised in some brain regions but not others. Also like humans, but unlike mice, the guinea pig gene encoding tau, MAPT, encodes isoforms with both three and four microtubule binding domains, and cholesterol alters the ratio of these isoforms. We conclude that AD-related genes are highly conserved and more similar to human than the rat or mouse. Guinea pigs represent a superior rodent model for analysis of the impact of dietary factors such as cholesterol on the regulation of AD-related genes

    Amylin and beta amyloid proteins interact to form amorphous heterocomplexes with enhanced toxicity in neuronal cells

    Get PDF
    Human pancreatic islet amyloid polypeptide (hIAPP) and beta amyloid (Aβ) can accumulate in Type 2 diabetes (T2D) and Alzheimer’s disease (AD) brains and evidence suggests that interaction between the two amyloidogenic proteins can lead to the formation of heterocomplex aggregates. However, the structure and consequences of the formation of these complexes remains to be determined. The main objective of this study was to characterise the different types and morphology of Aβ-hIAPP heterocomplexes and determine if formation of such complexes exacerbate neurotoxicity. We demonstrate that hIAPP promotes Aβ oligomerization and formation of small oligomer and large aggregate heterocomplexes. Co-oligomerized Aβ42-hIAPP mixtures displayed distinct amorphous structures and a 3-fold increase in neuronal cell death as compared to Aβ and hIAPP alone. However, in contrast to hIAPP, non-amyloidogenic rat amylin (rIAPP) reduced oligomer Aβ-mediated neuronal cell death. rIAPP exhibited reductions in Aβ induced neuronal cell death that was independent of its ability to interact with Aβ and form heterocomplexes; suggesting mediation by other pathways. Our findings reveal distinct effects of IAPP peptides in modulating Aβ aggregation and toxicity and provide new insight into the potential pathogenic effects of Aβ-IAPP hetero-oligomerization and development of IAPP based therapies for AD and T2D

    Plasma high density lipoprotein small subclass is reduced in Alzheimer’s disease patients and correlates with cognitive performance

    Get PDF
    Background: The link between cholesterol and Alzheimer’s disease (AD) has received much attention, as evidence suggests high levels of cholesterol might be an AD risk factor. The carriage of cholesterol and lipids through the body is mediated via lipoproteins, some of which, particularly apolipoprotein E (ApoE), are intimately linked with AD. In humans, high density lipoprotein (HDL) is regarded as a “good” lipid complex due to its ability to enable clearance of excess cholesterol via ‘cholesterol reverse transport’, although its activities in the pathogenesis of AD are poorly understood. There are several subclasses of HDL; these range from the newly formed small HDL, to much larger HDL. Objective: We examined the major subclasses of HDL in healthy controls, mild cognitively impaired, and AD patients who were not taking statins to determine whether there were HDL profile differences between the groups, and whether HDL subclass levels correlated with plasma amyloid-β (Aβ) levels or brain Aβ deposition. Methods: Samples from AIBL cohort were used in this study. HDL subclass levels were assessed by Lipoprint while Aβ1–42 levels were assessed by ELISA. Brain Aβ deposition was assessed by PET scan. Statistical analysis was performed using parametric and non-parametric tests. Results: We found that small HDL subclass is reduced in AD patients and it correlates with cognitive performance while plasma Aβ concentrations do not correlate with lipid profile or HDL subfraction levels. Conclusion: Our data indicate that AD patients exhibit altered plasma HDL profile and that HDL subclasses correlate with cognitive performances
    corecore