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Abstract.
Background: The link between cholesterol and Alzheimer’s disease (AD) has received much attention, as evidence suggests
high levels of cholesterol might be an AD risk factor. The carriage of cholesterol and lipids through the body is mediated via
lipoproteins, some of which, particularly apolipoprotein E (ApoE), are intimately linked with AD. In humans, high density
lipoprotein (HDL) is regarded as a “good” lipid complex due to its ability to enable clearance of excess cholesterol via
‘cholesterol reverse transport’, although its activities in the pathogenesis of AD are poorly understood. There are several
subclasses of HDL; these range from the newly formed small HDL, to much larger HDL.
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Objective: We examined the major subclasses of HDL in healthy controls, mild cognitively impaired, and AD patients who
were not taking statins to determine whether there were HDL profile differences between the groups, and whether HDL
subclass levels correlated with plasma amyloid-� (A�) levels or brain A� deposition.
Methods: Samples from AIBL cohort were used in this study. HDL subclass levels were assessed by Lipoprint while A�1–42

levels were assessed by ELISA. Brain A� deposition was assessed by PET scan. Statistical analysis was performed using
parametric and non-parametric tests.
Results: We found that small HDL subclass is reduced in AD patients and it correlates with cognitive performance while
plasma A� concentrations do not correlate with lipid profile or HDL subfraction levels.
Conclusion: Our data indicate that AD patients exhibit altered plasma HDL profile and that HDL subclasses correlate with
cognitive performances.

Keywords: Amyloid-�, apolipoprotein, blood, cholesterol, lipid transport

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neu-
rodegenerative disease, pathologically characterized
by the extracellular deposition of amyloid-� (A�) in
the brain and the accumulation of hyperphosphory-
lated tau filaments in neurons. While a small portion
of AD cases can be attributed to a genetic predisposi-
tion, sporadic or late-onset AD (LOAD) accounts for
the majority of cases.

In the periphery, cholesterol is transported to the
cells where it accumulates through the action of very
low-density lipoproteins (VLDL) and low-density
lipoproteins (LDL), which are referred to as ‘bad
cholesterol’ as their action increases the cholesterol
levels and the risk for several diseases associated
with it. The cholesterol balance is maintained by the
action of high-density lipoproteins (HDL), which are
referred to as ‘good cholesterol’, as their duty is to
remove excess cholesterol by transporting it to the
liver for its elimination. However, the lipid environ-
ment in the brain is very different compared to the
lipid environment in the periphery, and these dif-
ferences are maintained by the protective features
of the blood-brain barrier (BBB), which isolates the
brain from the periphery and forces the brain to gen-
erate cholesterol in situ. In the brain, cholesterol is
carried by HDL-like particles, in which Apolipopro-
tein E (ApoE), produced by astrocytes and microglia
[1–4], is the main apolipoprotein (whereas in plasma
it is ApoA-I) and cholesterol-carrier in the brain,
followed by ApoA-I, which is not produced in the
brain but it can be transported across in the choroid
plexus [5]. These differences are at the basis for four
different CSF lipoprotein classes, CSF-Lp ApoA-I,
CSF-Lp ApoE, CSF-Lp ApoE/ApoA-I, and CSF-
Lp (without ApoE and ApoA-I) [6]. Additionally,
other lipoproteins that are common in the periph-

eral circulation, such as LDL and VLDL, are not
present in the brain environment, leaving the whole
load of cholesterol transport duties to CSF-Lp parti-
cles. Finally, the elimination of excess of cholesterol
requires the conversion of cholesterol to a more solu-
ble 24S-hydroxycholesterol, which allows it to cross
the BBB into the peripheral circulation, where it is
picked up by plasma lipoprotein and redirected to the
liver for its elimination [7].

Overall, lipid metabolism has been linked to AD
pathogenesis in several ways. Several reports sug-
gest that high levels of intracellular cholesterol cause
an increase in A� deposition in the brain [8–10],
whereas low cholesterol levels have been shown to
increase processing of the amyloid-� protein pre-
cursor (A�PP) via the non-amyloidogenic pathway
[11–14]. In addition, longitudinal studies have shown
that mid-life obesity and cardiovascular disease are
also risk factors for AD [15, 16] and peripheral
biomarker studies have found preclinical AD-related
biomarkers are associated with lipid metabolism
[17–19]. To date, studies of cholesterol levels in AD
have produced conflicting results. Some studies have
found increased levels of cholesterol in AD [20–22],
while other reports have not [23–25]. It has also been
reported that individuals who subsequently develop
AD exhibit decreased cholesterol levels before clin-
ical manifestation of the disease [26]. Despite such
reports, hypercholesterolemia is still considered an
early risk factor for developing AD [27] and has
been associated with impaired memory recall in the
elderly [28]. In support of these studies, mice fed with
high-fat diets exhibit altered brain mass and amy-
loid levels in the brain [9, 29, 30], while elevated
plasma triglyceride (TG) levels have been shown to
precede amyloid deposition [31]. Consistent with the
notion that high cholesterol levels increase disease
risk, statins have shown the potential to reduce the risk



S. Pedrini et al. / High Density Lipoproteins in Alzheimer’s Disease 735

for AD, though their effectiveness appears to require
administration well before clinical manifestation of
symptoms [32–35]. More recently, statins have also
been shown to be capable of raising HDL levels, most
likely through a mechanism independent of lowering
LDL levels [36, 37]. There are studies which have
reported altered HDL levels in AD compared to con-
trols [21, 22], and some that have reported no such
association [23, 24, 38]. It is, however, important to
note that low plasma HDL levels have recently been
associated with higher cerebral A� deposition [39]
and that ApoA-I, the major constituent of plasma
HDL, has been reported to be lower in AD com-
pared to controls [40–43]. ApoA-I binds to the A�
peptide as well as its precursor protein A�PP, and
has been shown to reduce A�-induced toxicity and
A� aggregation into �-pleated sheets [44, 45]. In AD
mouse models, ApoA-I overexpression reduces cog-
nitive deterioration and neuroinflammation, whereas
its deficiency increases cognitive defects and cerebral
amyloid angiopathy [46, 47].

It is most likely the first clear link between AD and
lipid metabolism was reported when APOE polymor-
phisms were shown to influence AD [48]. The APOE
gene is located on chromosome 19, and there are
three allelic variations of APOE (�2, �3, �4), with the
possession of the �4 allele (APOE �4) to be the pre-
dominant genetic risk factor for the late-onset form
of the disease (carried by ∼50% of all sporadic AD
patients, yet is only found at a frequency of around
14% in the general population), whereas possession
of the APOE �2 allele appears to be protective [49,
50]. It is still not clear how possession of the APOE
�4 allele increases AD risk, but ApoE appears to be
required for A� aggregation, and ApoE �4 has been
shown to be the most efficient at promoting such
oligomerization; ApoE also helps remove A� from
the brain to the periphery, yet again, ApoE �4 is the
least efficient at this task [51, 52]. The �4 allele is also
the least efficient in promoting cholesterol efflux from
neuronal cells [53], and cholesterol bound to ApoE
�4 displays a lower rate of cellular uptake [54].

Clearly, there is still a need for further studies
to increase our understanding of changes to plasma
cholesterol levels in AD. Therefore, we evaluated
plasma cholesterol and lipoproteins further, by inves-
tigating plasma lipoprotein subgroups, to provide
more insight into the early pathogenic events involved
in the development of AD. An aspect overlooked by
most previous studies is that cholesterol is transported
by at least four different subclasses of lipoproteins
in the blood stream: chylomicrons, VLDL, LDL,

and HDL. HDL also exists in different forms, from
the newly generated HDL small (which have been
reported to display anti-oxidant features), to the more
mature HDL large. Changes in the levels of these
subclasses may be missed if not measured individ-
ually. In this study, we evaluated the plasma levels
of HDL subclasses, as well as levels of cholesterol,
LDL, total HDL, and TG, to determine whether
more detailed lipid profiles would reveal differences
between healthy controls, MCI, and AD patients. In
addition, we evaluated the cerebral A� deposition
in this cohort, measured as neocortical standard-
ized uptake value ratio (SUVR) score from 11C-PiB
positron emission tomography (PET) analysis and
investigated correlations with regards to HDL levels
to determine whether HDL subclasses levels could
reflect brain amyloid deposition.

MATERIALS AND METHODS

The AIBL study was approved by the ethics com-
mittees of St. Vincent’s Health and Austin Health in
Melbourne, Hollywood Private Hospital and Edith
Cowan University in Perth (Australia). All volunteers
gave written and informed consent before participat-
ing in our study. A total of 486 participants, divided
into healthy controls (HC), mild cognitive impaired
(MCI), and Alzheimer’s patients (AD) from the AIBL
cohort were used, after ensuring that this subset was
not undergoing statin treatment, and that conversion
to a different status did not occur in the following
18 months. A full description of the recruitment pro-
cess has already been published. Exclusion criteria
included a history of non-AD dementia, schizophre-
nia, bipolar disorder, current depression (GDS score
above 5/15), Parkinson’s disease, uncontrolled hyper-
tension (systolic BP > 170 or diastolic BP > 100),
cancer (other than basal cell skin carcinoma) within
the last two years, symptomatic stroke, uncontrolled
diabetes, or current regular alcohol use exceeding
two standard drinks per day for women or four per
day for men [55]. The AIBL Study clinical panel
meets on a monthly basis to discuss baseline classi-
fication for each set of patients recently tested and
ensures diagnoses were made in accordance with
the NINCDS-ARDA criteria [56, 57]. Various body
parameters were evaluated at the examinations, such
as weight, height, blood pressure, and pulse rate.
Blood was drawn from overnight fasting participants
and collected to obtain plasma or serum for our analy-
sis. APOE status was determined by genotyping cells
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from whole blood as previously described [17]. Total
cholesterol, LDL, HDL, and TG levels were assessed
in plasma.

The Lipoprint system (Quantimetrix, Redondo
Beach, CA, USA) was used to examine the serum
HDL profiles of study participants following the kit
instructions. Briefly, 25 �l samples of serum were
combined with 200 �L of the supplied loading buffer
in glass gel tubes and allowed to polymerize for
30 min. Samples were then separated in an elec-
trophoretic chamber for 1–1.5 h at 3 mA per tube.
Finally, gels were scanned and the band intensity
of each subfraction was obtained using the sup-
plied software. The HDL analysis provided values
for 10 subclasses of HDL which we divided into
three major groups named HDL Large (subclasses
1 through 3), HDL Intermediate (subclasses 4–6),
and HDL Small (subclasses 7–10). Initial analysis
indicated a good correlation between HDL Large
and HDL-2 (1.063–1.125 g/ml) and between HDL
Intermediate + Small and HDL-3 (1.125–1.21 g/ml)
(personal communication). Upon assessing the sub-
class percentage in serum, absolute levels (mg/dl) in
each subclass (L, I, and S) were determined using
the plasma HDL concentration measured in the initial
blood drawn analysis which was routinely performed
in all participants. Although plasma and serum are
different biological fluids, it has been reported that
HDL concentration is almost identical [58, 59].

Plasma A�1–42 concentrations were measured
using a commercially available ELISA kit (INNO-
BIA, Innogenetics, Gent, Belgium) following manu-
facturer’s instructions.

PET scans consisting of 30 min acquisitions
were performed 40 min after injection of 370 MBq
11C-PiB. PET images were processed using a semi-
automatic region-of-interested method as previously
described [60]. Standardized uptake values (SUV) for
11C-PiB were calculated for all brain regions exam-
ined. The SUV ratio (SUVR) was calculated dividing
all regional SUV by the cerebellar cortex SUV. How-
ever, the centiloid scale was recently proposed to
provide a standard quantification of A�-PET images.
In the centiloid scale, the A� burden can be expressed
with values ranging from 0 (the typical A� burden in
young controls) to 100 (the typical A� burden in mild
AD patients) [61]. Centiloid values were generated
using CapAIBL as described elsewhere [62].

Statistical comparison of means in different groups
was based on ANCOVA (Analysis of Covariance)
where adjustment was made for covariates such as
age, gender, site, and APOE status. For non-normal

distributions, a non-parametric ANOVA (Kruskal-
Wallis) and non-parametric U Test (Mann-Whitney)
were used. Associations between continuous variates
were assessed using Spearman’s correlation. Due to
the non-normal distribution of our variables, most of
our analysis were performed using non-parametric
tests, which limits our power to adjust for several
covariates. We acknowledge this is a limitation of
our study. A p-value less than 0.05 was regarded as
significant. Analyses were carried out using TIBCO
Spotfire S+ version 8.2 (Boston, MA) and SPSS ver-
sion 25 (Chicago, IL, USA).

RESULTS

The basic demographics of the study participants
are summarized in Table 1. In total, 347 HC, 55
MCI, and 84 AD patients were studied (all partici-
pants were 65-years old and older). All samples were
evaluated for total cholesterol, LDL, HDL, and TG
levels. Using Kruskal-Wallis analysis, we compared
the levels of cholesterol, LDL, HDL, and triglycerides
among HC, MCI, and AD patients and we did not
observe any significant difference (Table 1). Addi-
tionally, the effect of APOE genotype was assessed
in each clinical group by Mann-Whitney U Test.
The levels of cholesterol and LDL were significantly
higher APOE �4-carrier in HC only, but not in MCI
or AD. Conversely, HDL and TG levels were not
affected by the presence of APOE �4 allele in any
clinical group (Supplementary Table 1). To determine
whether the number of APOE �4 alleles affected the
lipid profile, we performed the Kruskal-Wallis anal-
ysis in each clinical group. Again, the cholesterol
and LDL levels were significantly affected by APOE
genotype in HC only with APOE �4 homozygous
individuals displaying highest levels of cholesterol

Table 1
Comparison of demographic characteristics and cholesterol, LDL,
HDL, and triglyceride levels among HC, MCI, and AD participants

HC MCI AD ANOVA
(p)

N 347 55 84
Age (y) 72 ± 6 79 ± 6 81 ± 7
M/F 148/199 25/30 34/50
Melbourne/Perth 196/151 27/28 53/31
APOE �4 (no/yes) 2871/76 23/32 36/48
Cholesterol (mg/dl) 222 ± 37 215 ± 38 226 ± 44 0.19
LDL (mg/dl) 134 ± 33 128 ± 34 135 ± 39 0.46
HDL (mg/dl) 66 ± 18 63 ± 14 66 ± 18 0.73
TG (mg/dl) 113 ± 50 119 ± 56 129 ± 85 0.14

Values are presented as mean ± S.D or as frequency. Non-
parametric ANOVA (Kruskal-Wallis analysis) was performed.
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and LDL. HDL and TG levels were not affected by
the number of APOE �4 alleles in any clinical groups
(data not shown).

The levels of HDL subgroups, expressed as a
percentage of the total HDL or in terms of concentra-
tion, are listed in Table 2 (top). These analyses were
performed using ANCOVA for normal distributions
(HDL L% and HDL I%) or Kruskal-Wallis analy-
sis for non-normal distributions (HDL S%, HDL L
mg/dl, HDL I mg/dl, and HDL S mg/dl). Using the
data reported in percentage (Table 2, bottom), anal-
yses found that differences between the HC, MCI,
and AD patients are associated with the HDL Small
group only (p < 0.001). A pairwise comparison with
Mann-Whitney U Test within the HDL Small group
shows that the AD participants exhibit significantly
less HDL Small particles when compared to the
HC (p < 0.001) (–26%) and MCI (p = 0.004) (–25%)
participants. In contrast, comparison of HC with
MCI participants showed no differences (p = 0.77).
Conversely, there were no significant differences
associated with HDL Large (p = 0.10) or HDL Inter-
mediate (p = 0.21). Analysis of the absolute values
(Table 2, bottom) resulted in the same conclusion; sig-
nificant differences associated with the HDL Small
values (p = <0.001), while no differences are associ-
ated with HDL Large (p = 0.12) or HDL Intermediate
(p = 0.56). A further post hoc analysis of the HDL
Small group demonstrated the same decrease in HDL
Small particles in AD versus HC (p < 0.001) (–24%)
and in AD versus MCI (p = 0.006) (–21%), while
HC versus MCI displayed no significant difference
(p = 0.58). The significance of our results was not

affected by performing the same analysis in non-
smokers only, which removed an important factor
known to modulate HDL [63] (HDL S%: Kruskal-
Wallis p < 0.001; Mann-Whitney U Test, HC versus
AD p < 0.001, MCI versus AD p = 0.009; HDL S
mg/dl: Kruskal-Wallis p < 0.001; Mann-Whitney U
Test, HC versus AD p < 0.001, MCI versus AD
p = 0.026). We have also performed the same analysis
in APOE �4-carriers and APOE �4-non-carriers but
we did not find any difference between those groups
(Supplementary Table 2). A more detailed analysis
assessing the number of APOE �4 alleles (ANCOVA
for HDL L% and I% and Kruskal-Wallis for HDL S%
and HDL L, I, S mg/dl) did not alter our previous find-
ings in HC and AD, suggesting that HDL subclasses
distributions are not affected by APOE genotype in
these clinical groups. In MCI, the distribution of HDL
L or I (expressed as % or mg/dl) was not affected by
the number of APOE �4 alleles. However, Kruskal-
Wallis analysis unexpectedly indicated that in MCI,
HDL S% subclasses are affected by APOE genotype
(p = 0.03) (with APOE �4 homozygous displaying
the highest levels), while HDL S mg/dl distribution
are not (p = 0.107) (data not shown). However, the
low number of APOE �4 homozygous (n = 6) in the
MCI group may have affected the results and further
analysis is needed.

Based on the evidence that HDL Small levels
were affected by clinical classifications, with lev-
els lower in AD versus HC, we also evaluated if
HDL subclass levels were affected by brain amy-
loid deposition in HC (HC A�– versus HC A�+).
These analyses were performed using ANCOVA for

Table 2
Comparison of HDL sub-distribution in the HC, MCI, and AD groups, expressed as % or mg/dl

Lipoprotein fractions (% of total HDL) Lipoprotein fractions (mg/dl)
HC MCI AD HC MCI AD

HDL L 34.5 ± 10.2 34.5 ± 10.0 38.3 ± 10.4 24.0 ± 12.4 22.7 ± 10.7 25.9 ± 11.2
HDL I 53.9 ± 6.8 54.0 ± 6.1 53.1 ± 7.4 34.9 ± 7.6 33.5 ± 6.0 34.5 ± 8.4
HDL S 11.5 ± 5.6 11.3 ± 6.0 8.5 ± 5.4 7.1 ± 3.1 6.8 ± 3.2 5.4 ± 3.5

General linear model

HDL Subdistribution expressed as % HDL Subdistribution expressed as mg/dl
Overall, p Individual comparisons, p Overall, p Individual comparisons, p

HDL L 0.10 0.12
HDL I 0.21 0.56
HDL S <0.001 HC-o versus MCI 0.77 <0.001 HC-o versus MCI 0.58

HC-o versus AD < 0.001 HC-o versus AD < 0.001
MCI versus AD 0.004 MCI versus AD 0.006

ANCOVA (analyses were adjusted for sex, age, site, and APOE �4-carrier status) or non-parametric ANOVA (Kruskal-Wallis analysis) were
used and regarded as significant when p < 0.05 (bold). When Kruskal-Wallis analysis was significant, individual comparison was performed
using Mann-Whitney U Test and considered significant when p < 0.05 (bold). For HDL S (% and mg/dl), HDL L (mg/dl) and HDL I (mg/dl)
non-parametric tests were used. Values are presented as mean ± S.D.
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Table 3
Comparison of HDL sub-distribution in HC with low (A�–) and high (A�+) A� deposition, expressed as % or mg/dl

Lipoprotein fractions (% of total HDL) Lipoprotein fractions (mg/dl)
HC A�– (n = 49) HC A�+ (n = 21) HC A�– (n = 49) HC A�+ (n = 21)

HDL L 34.3 ± 11.2 34.5 ± 9.5 24.4 ± 12.6 24.6 ± 12.5
HDL I 53.9 ± 7.4 54.0 ± 5.5 35.5 ± 6.9 35.6 ± 8.6
HDL S 11.7 ± 6.8 11.5 ± 5.4 7.2 ± 3.5 7.1 ± 2.4

General linear model

HDL Subdistribution (% of total HDL) HDL Subdistribution (mg/dl)
p p

HDL L 0.72 0.91
HDL I 0.40 0.88
HDL S 0.94 0.99

ANCOVA (analyses were adjusted for sex, age, site, and APOE �4-carrier status) or non-parametric Mann-Whitney U Test were used and
regarded as significant when p < 0.05. For HDL S (% and mg/dl), HDL L (mg/dl) and HDL I (mg/dl) non-parametric tests were used. Values
are presented as mean ± S.D.

normal distributions (HDL L% and HDL I%) or
Mann-Whitney U Test analysis for non-normal dis-
tributions (HDL S%, HDL L mg/dl, HDL I mg/dl,
and HDL S mg/dl). As shown in Table 3 (top), there
was no different distribution of any HDL subclass
with regards to brain amyloid deposition. ANCOVA
analysis (performed adjusted for age, gender, site,
and APOE status) or Mann-Whitney U Test analy-
sis did not reveal any significant difference (Table 3,
bottom).

Using Spearman’s correlation, SUVR-Centiloid
values were correlated with HDL or HDL sub-
fractions (HDL Large, Intermediate, and Small) to
determine whether alteration in the HDL profile was
associated with a different SUVR score in HC and
in combined MCI/AD groups. No significant associ-
ation with HDL, HDL Intermediate, or HDL Small
in any of the groups, nor with HDL Large in HC was
observed (Table 4, top). However, there was a signif-
icant negative association between SUVR and HDL
Large in the MCI/AD group only (p = 0.037). We also
evaluated if plasma levels of A�1–42 correlated with
HDL or HDL subclasses in HC or MCI/AD. Again,
we did not find any significant correlation between
plasma levels of A�1–42 and HDL (or any HDL
subclasses) in any clinical classification (Table 4,
bottom).

Cognitive performance scores (MMSE) were cor-
related with the HDL or HDL subfractions in HC
and MCI/AD groups to determine whether cogni-
tive performances were associated with HDL profile.
HDL Small levels significantly positively corre-
lated with MMSE in the MCI/AD group (ρ = 0.171,
p = 0.044), but not in the HC group (ρ = –0.052,
p = 0.334). However, we did not find any signifi-

Table 4
Correlations between brain A� deposition, plasma A�1–42 levels,

and HDL subclasses

SUVR-Centiloid
HC (n = 70) MCI/AD (n = 32)

mg/dl ρ p ρ p

HDL 0.010 0.931 –0.325 0.070
HDL L 0.083 0.493 –0.371 0.037
HDL I –0.054 0.660 –0.160 0.382
HDL S 0.008 0.950 0.225 0.216

Plasma A�1–42 (pg/ml)
HC (n = 346) MCI/AD (n = 135)

mg/dl ρ p ρ P

HDL 0.013 0.815 0.118 0.174
HDL L 0.015 0.774 0.089 0.304
HDL I –0.025 0.637 0.080 0.357
HDL S 0.041 0.443 0.088 0.310

Spearman’s correlation evaluating brain amyloidosis or plasma
A�1–42 levels with HDL (or HDL subgroups) was performed in
HC, MCI, and AD and considered significant when p < 0.05 (bold).

cant association between HDL, HDL Large and HDL
Intermediate with MMSE in any clinical group (in
HC: ρ = –0.001, p = 0.989; ρ = –0.004, p = 0.934; and
ρ = 0.001, p = 0.986 for HDL, HDL L, and HDL
I, respectively; in MCI/AD: ρ = 0.070, p = 0.416;
ρ = –0.038, p = 0.653; and ρ = 0.051, p = 0.551 for
HDL, HDL L, and HDL I, respectively (Fig. 1).

DISCUSSION

The finding over two decades ago that APOE poly-
morphisms can influence the risk of AD strongly
implied a link between lipid metabolism, particularly
cholesterol metabolism, and AD. The later findings
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Fig. 1. Correlations between MMSE scores and HDL subclasses. Unadjusted correlation between MMSE scores and (A) HDL, (B) HDL
Large, (C) HDL Intermediate, and (D) HDL Small subclasses. Spearman’s correlation data are reported in the text.

that brain A� plaque deposits can be found commonly
in coronary artery disease (CAD) as well as in hyper-
tension patients strengthened this concept, suggesting
a neuropathologic link between CAD, hypertension,
and AD. It is now known that many related condi-
tions, including CAD, hypertension, mid-life obesity,
type 2 diabetes, and insulin resistance all increase AD
risk to some extent [64].

However, cholesterol metabolism is substantially
different in the periphery and in the brain. While in
the periphery, chylomicrons, VLDL, LDL, and HDL
are all responsible for cholesterol transport, in the
brain the whole burden is carried by HDL-like par-
ticles. Additionally, these HDL-like particles have
ApoE generated in the brain as the major apolipopro-
tein, while ApoA-I relies upon transport across the
choroid plexus to enter the brain as it is not gen-
erated in situ [1–5]. Furthermore, cholesterol in the
brain can be eliminated only after conversion to 24S-
hydroxycholesterol, which allows it to cross the BBB
and reach the periphery where it is directed to the
liver for its excretion [7]. These differences alto-
gether indicate that with regards to cholesterol and its

metabolism, the periphery and the brain may display
different behaviors that can modulate the risk for AD
in different ways.

The notion of a linkage between cholesterol and
AD is reported in studies indicating that high-fat diets
in animal models induce the deposition of A� [9, 29,
30, 65, 66]. Other studies looking for a mechanis-
tic link found that cholesterol can modulate A�PP
processing toward the amyloidogenic pathway [27,
67–69], and the conclusions from all these studies
were that high levels of cholesterol in the circulation
are most likely a risk factor for AD.

Many studies have tested the effects of lowering
cholesterol levels on AD or AD risk through the use
of statins, either in clinical trials or in vitro stud-
ies; however, results have been inconsistent [11–13,
32, 35, 70–74]. A possible reason for the conflicting
data may be due to the way in which statins func-
tion. In clinical studies, many reports linked the use
of statins to a decreased risk for AD, whereas other
reports did not observe changes in symptoms, or any
altered A�PP processing in AD patients. Overall, the
results suggest that statins may be protective before
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the onset of the disease but become less efficient or
ineffective once the disease has started [32–35]. Inter-
estingly, while statins may have beneficial effects in
preventing AD due to cholesterol-lowering proper-
ties, this may have little to do with cholesterol effects
on A� production in the brain, as positive results were
seen in some studies despite the fact that the statins
being tested were not able to cross the BBB, hence
effects must have been due to peripheral changes.
Alternatively, statins may be able to reduce AD risk
due to influences on other biochemical pathways, for
example, statins also alter the isoprenylation of small
GTPases, another pathway that has been linked to
AD [75–78]. In order to eliminate this confounding
factor, our sample population excluded all partici-
pants who were undergoing statin treatment. In our
cohort, we did not observe any marked alteration in
total cholesterol, total LDL, total HDL, or TG lev-
els (Table 1) between the different groups. Other
studies have reported mostly unchanged levels of
lipoproteins, with one or two exceptions. For exam-
ple, one study found that the charge-based major
LDL subfraction, as characterized by capillary iso-
tachophoresis, was associated with both MCI and
AD, yet did not find differences in other lipoprotein
classes [22]. Another study detected mild hyperc-
holesterolemia in AD patients, with no changes in
triglycerides [20–22]. One study demonstrated that
low levels of HDL are associated with lower grey
matter volume in cognitively healthy adults [79].

It is important to note that comparisons of appar-
ently similar studies are complicated to an extent
by the presence of other conditions, and also by
the type of lipoprotein measure used, such as HDL-
cholesterol levels versus HDL particle levels. For
example, in one study of a cohort enriched for
cerebrovascular disease and elevated vascular risk,
statistical models that controlled for age and APOE
�4 alleles revealed independent associations among
the levels of LDL-cholesterol, HDL-cholesterol, and
the level of A� deposition as measured by PiB-PET:
in this study, higher LDL-cholesterol and lower HDL-
cholesterol levels were both associated with a higher
A� deposition [39].

Intrigued by the apparent lack of change in total
HDL levels, we then compared levels of the respec-
tive HDL subclasses between AD, MCI, and controls.
As shown in Table 2, HDL exhibited a different pro-
file in the plasma of AD participants. Examination of
the HDL profiles revealed lower levels of the smaller
HDL particles (HDL Small) in AD participants com-
pared with the MCI or healthy controls. Other studies

of plasma HDL have reported, for example: lower
overall levels of HDL in vascular dementia, but
not AD [21, 80], lower levels of HDL in AD with
cardiovascular comorbidities but not in AD alone
[81], or lower levels of HDL-cholesterol and ApoA-
I in AD [82], showing that results have not been
conclusive. These studies did not investigate HDL
subclasses, however, and further lipoprotein subclass
studies such as ours may reveal more information
concerning plasma lipoprotein changes in various
conditions. It is interesting to note that these small,
dense HDL particles have been shown to be beneficial
against atherosclerosis and vascular related oxida-
tive stress [83], which fits with the hypothesis that
AD is intimately linked to metabolic syndrome [84].
As metabolic syndrome (as well as type 2 diabetes)
linked oxidative stress and vascular damage (leading
to vascular insufficiency) are believed to be risk fac-
tors for AD, more detailed studies might reveal other
changes in small HDL particles which occur at earlier
stages of AD pathogenesis. In accordance with the
notion that small HDL display protective features, our
data indicated that higher levels of HDL small parti-
cles were significantly associated with higher MMSE
scores in MCI/AD, suggesting a beneficial role of
these small dense HDL in the disease.

In other studies, aging has been shown to affect the
composition and function of HDL [85], and HDL lev-
els in general have been shown to decrease with aging
[86]. In people with exceptional longevity (age > 95),
lower HDL levels do appear to be associated with
lower cognitive function [85–89]. Furthermore, phos-
pholipid transfer protein (PLTP) is responsible for
HDL remodeling and HDL enlargement, and it is
also possible that lower levels of small HDL in AD
are a consequence of higher PLTP activity, which
has already been reported in AD [90]. Additionally,
cholesterol efflux has been shown to be abnormal in
aging and has been associated with decreased levels
of HDL in aged individuals [86].

It has been reported that increased cerebral A�
deposition is associated with high levels of LDL and
low levels of HDL [39]; however, our analysis did
not find any association between A� deposition levels
and the levels of cholesterol, LDL, HDL, or TG in any
clinical group (data not shown). We then evaluated
whether levels of the HDL subgroups correlated with
levels of A� deposition in the brain. From our results,
cerebral A� deposition level appears to be indepen-
dent of levels of HDL sub-fractions in almost every
clinical group, with the sole exception of a signifi-
cant negative association between SUVR and HDL
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Large in the MCI/AD group (p = 0.037). Additionally,
we did not observe any correlation between A�1–42
plasma levels and HDL or HDL subclasses. We
have also considered HDL subclasses as potential
biomarkers for HC with high amyloidosis for whom
the conversion to AD is more likely. However, we did
not observe any different HDL subclasses distribu-
tion with regards to brain amyloid deposition. These
data indicated that, at least in our cohort, in spite of
an altered HDL metabolism, there is no correlation
between HDL subclasses levels and brain amyloid
deposition or plasma levels of A�1–42. However, we
cannot exclude that a more detailed HDL analysis
that includes additional factor would unveil a link
between HDL and amyloid deposition. The fact that
HDL subclasses are altered in AD but not in HC A�+
suggests that an altered HDL metabolism may be a
consequence of the disease progression.

Taken together, our data support previous stud-
ies which have shown that patients with AD exhibit
alterations in their plasma lipoprotein profile, and we
suggest that HDL changes can be attributed to lower
levels of small HDL particles. Further studies will be
necessary to determine at what stage of AD pathogen-
esis these alterations to small HDL occur, and how
they are involved in the progression of the disease.
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