1,281 research outputs found
BAO+BBN revisited -- Growing the Hubble tension with a 0.7km/s/Mpc constraint
The combination of Baryonic Acoustic Oscillation (BAO) data together with
light element abundance measurements from Big Bang Nucleosynthesis (BBN) has
been shown to constrain the cosmological expansion history to an unprecedented
degree. Using the newest LUNA data and DR16 data from SDSS, the BAO+BBN probe
puts tight constraints on the Hubble parameter (), resulting in a tension with the local distance
ladder determination from SH0ES in a CDM model. In the updated BAO
data the high- and low-redshift subsets are mutually in excellent agreement,
and there is no longer a mild internal tension to artificially enhance the
constraints. Adding the recently-developed ShapeFit analysis yields ( tension). For combinations with
additional data sets, there is a strong synergy with the sound horizon
information of the cosmic microwave background, which leads to one of the
tightest constraints to date, , in
tension with SH0ES. The region preferred by this combination is
perfectly in agreement with that preferred by ShapeFit. The addition of
supernova data also yields a tension with SH0ES for Pantheon, and a
tension for PantheonPLUS. Finally, we show that there is a degree
of model-dependence of the BAO+BBN constraints with respect to early-time
solutions of the Hubble tension, and the loss of constraining power in extended
models depends on whether the model can be additionally constrained from BBN
observations.Comment: 27 pages, 9 figures, 1 table. Comments are welcome
The Bispectrum of IRAS Galaxies
We compute the bispectrum for the galaxy distribution in the IRAS QDOT, 2Jy,
and 1.2Jy redshift catalogs for wavenumbers 0.05<k<0.2 h/Mpc and compare the
results with predictions from gravitational instability in perturbation theory.
Taking into account redshift space distortions, nonlinear evolution, the survey
selection function, and discreteness and finite volume effects, all three
catalogs show evidence for the dependence of the bispectrum on configuration
shape predicted by gravitational instability. Assuming Gaussian initial
conditions and local biasing parametrized by linear and non-linear bias
parameters b_1 and b_2, a likelihood analysis yields 1/b_1 =
1.32^{+0.36}_{-0.58}, 1.15^{+0.39}_{-0.39} and b_2/b_1^2=-0.57^{+0.45}_{-0.30},
-0.50^{+0.31}_{-0.51}, for the for the 2Jy and 1.2Jy samples, respectively.
This implies that IRAS galaxies trace dark matter increasingly weakly as the
density contrast increases, consistent with their being under-represented in
clusters. In a model with chi^2 non-Gaussian initial conditions, the bispectrum
displays an amplitude and scale dependence different than that found in the
Gaussian case; if IRAS galaxies do not have bias b_1> 1 at large scales, \chi^2
non-Gaussian initial conditions are ruled out at the 95% confidence level. The
IRAS data do not distinguish between Lagrangian or Eulerian local bias.Comment: 30 pages, 11 figure
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Inflation
We confront predictions of inflationary scenarios with the WMAP data, in
combination with complementary small-scale CMB measurements and large-scale
structure data. The WMAP detection of a large-angle anti-correlation in the
temperature--polarization cross-power spectrum is the signature of adiabatic
superhorizon fluctuations at the time of decoupling. The WMAP data are
described by pure adiabatic fluctuations: we place an upper limit on a
correlated CDM isocurvature component. Using WMAP constraints on the shape of
the scalar power spectrum and the amplitude of gravity waves, we explore the
parameter space of inflationary models that is consistent with the data. We
place limits on inflationary models; for example, a minimally-coupled lambda
phi^4 is disfavored at more than 3-sigma using WMAP data in combination with
smaller scale CMB and large scale structure survey data. The limits on the
primordial parameters using WMAP data alone are: n_s(k_0=0.002
Mpc^{-1})=1.20_{-0.11}^{+0.12}, dn/dlnk=-0.077^{+0.050}_{- 0.052}, A(k_0=0.002
Mpc}^{-1})=0.71^{+0.10}_{-0.11} (68% CL), and r(k_0=0.002 Mpc^{-1})<1.28 (95%
CL).Comment: Accepted by ApJ; 49 pages, 9 figures. V2: Gives constraints from WMAP
data alone. Corrected approximation which made the constraints in Table 1 to
shift slightly. Corrected the Inflation Flow following the revision to
Kinney, astro-ph/0206032. No conclusions have been changed. For a detailed
list of changes see http://www.astro.princeton.edu/~hiranya/README.ERRATA.tx
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectrum
We present the angular power spectrum derived from the first-year Wilkinson
Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power
spectrum estimation methods and data combinations and demonstrate that the
results are robust. The data are modestly contaminated by diffuse Galactic
foreground emission, but we show that a simple Galactic template model is
sufficient to remove the signal. Point sources produce a modest contamination
in the low frequency data. After masking ~700 known bright sources from the
maps, we estimate residual sources contribute ~3500 uK^2 at 41 GHz, and ~130
uK^2 at 94 GHz, to the power spectrum l*(l+1)*C_l/(2*pi) at l=1000. Systematic
errors are negligible compared to the (modest) level of foreground emission.
Our best estimate of the power spectrum is derived from 28 cross-power spectra
of statistically independent channels. The final spectrum is essentially
independent of the noise properties of an individual radiometer. The resulting
spectrum provides a definitive measurement of the CMB power spectrum, with
uncertainties limited by cosmic variance, up to l~350. The spectrum clearly
exhibits a first acoustic peak at l=220 and a second acoustic peak at l~540 and
it provides strong support for adiabatic initial conditions. Kogut et al.
(2003) analyze the C_l^TE power spectrum, and present evidence for a relatively
high optical depth, and an early period of cosmic reionization. Among other
things, this implies that the temperature power spectrum has been suppressed by
\~30% on degree angular scales, due to secondary scattering.Comment: One of thirteen companion papers on first-year WMAP results submitted
to ApJ; 44 pages, 14 figures; a version with higher quality figures is also
available at http://lambda.gsfc.nasa.gov/product/map/map_bibliography.htm
Baryon Self-Energy With QQQ Bethe-Salpeter Dynamics In The Non-Perturbative QCD Regime: n-p Mass Difference
A qqq BSE formalism based on DB{\chi}S of an input 4-fermion Lagrangian of
`current' u,d quarks interacting pairwise via gluon-exchange-propagator in its
{\it non-perturbative} regime, is employed for the calculation of baryon
self-energy via quark-loop integrals. To that end the baryon-qqq vertex
function is derived under Covariant Instantaneity Ansatz (CIA), using Green's
function techniques. This is a 3-body extension of an earlier q{\bar q}
(2-body) result on the exact 3D-4D interconnection for the respective BS wave
functions under 3D kernel support, precalibrated to both q{\bar q} and qqq
spectra plus other observables. The quark loop integrals for the neutron (n) -
proton (p) mass difference receive contributions from : i) the strong SU(2)
effect arising from the d-u mass difference (4 MeV); ii) the e.m. effect of the
respective quark charges. The resultant n-p difference comes dominantly from
d-u effect (+1.71 Mev), which is mildly offset by e.m.effect (-0.44), subject
to gauge corrections. To that end, a general method for QED gauge corrections
to an arbitrary momentum dependent vertex function is outlined, and on on a
proportionate basis from the (two-body) kaon case, the net n-p difference works
out at just above 1 MeV. A critical comparison is given with QCD sum rules
results.Comment: be 27 pages, Latex file, and to be published in IJMPA, Vol 1
Signature of short distance physics on inflation power spectrum and CMB anisotropy
The inflaton field responsible for inflation may not be a canonical
fundamental scalar. It is possible that the inflaton is a composite of fermions
or it may have a decay width. In these cases the standard procedure for
calculating the power spectrum is not applicable and a new formalism needs to
be developed to determine the effect of short range interactions of the
inflaton on the power spectrum and the CMB anisotropy. We develop a general
formalism for computing the power spectrum of curvature perturbations for such
non-canonical cases by using the flat space K\"all\'en-Lehmann spectral
function in curved quasi-de Sitter space assuming implicitly that the
Bunch-Davis boundary conditions enforces the inflaton mode functions to be
plane wave in the short wavelength limit and a complete set of mode functions
exists in quasi-de Sitter space. It is observed that the inflaton with a decay
width suppresses the power at large scale while a composite inflaton's power
spectrum oscillates at large scales. These observations may be vindicated in
the WMAP data and confirmed by future observations with PLANCK.Comment: 17 pages, 4 figures, Extended journal version, Accepted for
publication in JCA
Prospects in Constraining the Dark Energy Potential
We generalize to non-flat geometries the formalism of Simon et al. (2005) to
reconstruct the dark energy potential. This formalism makes use of quantities
similar to the Horizon-flow parameters in inflation, can, in principle, be made
non-parametric and is general enough to be applied outside the simple, single
scalar field quintessence. Since presently available and forthcoming data do
not allow a non-parametric and exact reconstruction of the potential, we
consider a general parametric description in term of Chebyshev polynomials. We
then consider present and future measurements of H(z), Baryon Acoustic
Oscillations surveys and Supernovae type 1A surveys, and investigate their
constraints on the dark energy potential. We find that, relaxing the flatness
assumption increases the errors on the reconstructed dark energy evolution but
does not open up significant degeneracies, provided that a modest prior on
geometry is imposed. Direct measurements of H(z), such as those provided by BAO
surveys, are crucially important to constrain the evolution of the dark energy
potential and the dark energy equation of state, especially for non-trivial
deviations from the standard LambdaCDM model.Comment: 22 pages, 7 figures. 2 references correcte
Statistical methods in cosmology
The advent of large data-set in cosmology has meant that in the past 10 or 20
years our knowledge and understanding of the Universe has changed not only
quantitatively but also, and most importantly, qualitatively. Cosmologists rely
on data where a host of useful information is enclosed, but is encoded in a
non-trivial way. The challenges in extracting this information must be overcome
to make the most of a large experimental effort. Even after having converged to
a standard cosmological model (the LCDM model) we should keep in mind that this
model is described by 10 or more physical parameters and if we want to study
deviations from it, the number of parameters is even larger. Dealing with such
a high dimensional parameter space and finding parameters constraints is a
challenge on itself. Cosmologists want to be able to compare and combine
different data sets both for testing for possible disagreements (which could
indicate new physics) and for improving parameter determinations. Finally,
cosmologists in many cases want to find out, before actually doing the
experiment, how much one would be able to learn from it. For all these reasons,
sophisiticated statistical techniques are being employed in cosmology, and it
has become crucial to know some statistical background to understand recent
literature in the field. I will introduce some statistical tools that any
cosmologist should know about in order to be able to understand recently
published results from the analysis of cosmological data sets. I will not
present a complete and rigorous introduction to statistics as there are several
good books which are reported in the references. The reader should refer to
those.Comment: 31, pages, 6 figures, notes from 2nd Trans-Regio Winter school in
Passo del Tonale. To appear in Lectures Notes in Physics, "Lectures on
cosmology: Accelerated expansion of the universe" Feb 201
Measuring the Nonlinear Biasing Function from a Galaxy Redshift Survey
We present a simple method for evaluating the nonlinear biasing function of
galaxies from a redshift survey. The nonlinear biasing is characterized by the
conditional mean of the galaxy density fluctuation given the underlying mass
density fluctuation, or by the associated parameters of mean biasing and
nonlinearity (following Dekel & Lahav 1999). Using the distribution of galaxies
in cosmological simulations, at smoothing of a few Mpc, we find that the mean
biasing can be recovered to a good accuracy from the cumulative distribution
functions (CDFs) of galaxies and mass, despite the biasing scatter. Then, using
a suite of simulations of different cosmological models, we demonstrate that
the matter CDF is robust compared to the difference between it and the galaxy
CDF, and can be approximated for our purpose by a cumulative log-normal
distribution of 1+\delta with a single parameter \sigma. Finally, we show how
the nonlinear biasing function can be obtained with adequate accuracy directly
from the observed galaxy CDF in redshift space. Thus, the biasing function can
be obtained from counts in cells once the rms mass fluctuation at the
appropriate scale is assumed a priori. The relative biasing function between
different galaxy types is measurable in a similar way. The main source of error
is sparse sampling, which requires that the mean galaxy separation be smaller
than the smoothing scale. Once applied to redshift surveys such as PSCz, 2dF,
SDSS, or DEEP, the biasing function can provide valuable constraints on galaxy
formation and structure evolution.Comment: 23 pages, 7 figures, revised version, accepted for publication in Ap
- …