research

First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Inflation

Abstract

We confront predictions of inflationary scenarios with the WMAP data, in combination with complementary small-scale CMB measurements and large-scale structure data. The WMAP detection of a large-angle anti-correlation in the temperature--polarization cross-power spectrum is the signature of adiabatic superhorizon fluctuations at the time of decoupling. The WMAP data are described by pure adiabatic fluctuations: we place an upper limit on a correlated CDM isocurvature component. Using WMAP constraints on the shape of the scalar power spectrum and the amplitude of gravity waves, we explore the parameter space of inflationary models that is consistent with the data. We place limits on inflationary models; for example, a minimally-coupled lambda phi^4 is disfavored at more than 3-sigma using WMAP data in combination with smaller scale CMB and large scale structure survey data. The limits on the primordial parameters using WMAP data alone are: n_s(k_0=0.002 Mpc^{-1})=1.20_{-0.11}^{+0.12}, dn/dlnk=-0.077^{+0.050}_{- 0.052}, A(k_0=0.002 Mpc}^{-1})=0.71^{+0.10}_{-0.11} (68% CL), and r(k_0=0.002 Mpc^{-1})<1.28 (95% CL).Comment: Accepted by ApJ; 49 pages, 9 figures. V2: Gives constraints from WMAP data alone. Corrected approximation which made the constraints in Table 1 to shift slightly. Corrected the Inflation Flow following the revision to Kinney, astro-ph/0206032. No conclusions have been changed. For a detailed list of changes see http://www.astro.princeton.edu/~hiranya/README.ERRATA.tx

    Similar works