30 research outputs found
The GUINEVERE project at the VENUS facility
Proc. on CD Rom log315International audienceThe GUINEVERE project is an international project in the framework of IP-EUROTRANS, the FP6 program which aims at addressing the main issues for ADS development in the framework of partitioning and transmutation for nuclear waste volume and radiotoxicity reduction. The GUINEVERE project is carried out in the context of domain 2 of IP-EUROTRANS, ECATS, devoted to specific experiments for the coupling of an accelerator, a target and a subcritical core. These experiments should provide an answer to the questions of online reactivity monitoring, sub-criticality determination and operational procedures (loading, start-up, shutdown, …) in an ADS by 2009-2010. The project has the objective to couple a fast lead core, within the VENUS building operated by the SCK•CEN, with a neutron generator able to work in three different modes: pulsed, continuous and continuous with beam interruptions at the millisecond scale. In order to achieve this goal, the VENUS facility has to be adapted and a modified GENEPI-3C accelerator has to be designed and constructed. The paper describes the main modifications to the reactor core and facility and to the accelerator, which will be executed during the years 2008 and 2009, and the experimental programme which will start in 2009
Human ClC-6 Is a Late Endosomal Glycoprotein that Associates with Detergent-Resistant Lipid Domains
BACKGROUND: The mammalian CLC protein family comprises nine members (ClC-1 to -7 and ClC-Ka, -Kb) that function either as plasma membrane chloride channels or as intracellular chloride/proton antiporters, and that sustain a broad spectrum of cellular processes, such as membrane excitability, transepithelial transport, endocytosis and lysosomal degradation. In this study we focus on human ClC-6, which is structurally most related to the late endosomal/lysomal ClC-7. PRINCIPAL FINDINGS: Using a polyclonal affinity-purified antibody directed against a unique epitope in the ClC-6 COOH-terminal tail, we show that human ClC-6, when transfected in COS-1 cells, is N-glycosylated in a region that is evolutionary poorly conserved between mammalian CLC proteins and that is located between the predicted helices K and M. Three asparagine residues (N410, N422 and N432) have been defined by mutagenesis as acceptor sites for N-glycosylation, but only two of the three sites seem to be simultaneously N-glycosylated. In a differentiated human neuroblastoma cell line (SH-SY5Y), endogenous ClC-6 colocalizes with LAMP-1, a late endosomal/lysosomal marker, but not with early/recycling endosomal markers such as EEA-1 and transferrin receptor. In contrast, when transiently expressed in COS-1 or HeLa cells, human ClC-6 mainly overlaps with markers for early/recycling endosomes (transferrin receptor, EEA-1, Rab5, Rab4) and not with late endosomal/lysosomal markers (LAMP-1, Rab7). Analogously, overexpression of human ClC-6 in SH-SY5Y cells also leads to an early/recycling endosomal localization of the exogenously expressed ClC-6 protein. Finally, in transiently transfected COS-1 cells, ClC-6 copurifies with detergent-resistant membrane fractions, suggesting its partitioning in lipid rafts. Mutating a juxtamembrane string of basic amino acids (amino acids 71-75: KKGRR) disturbs the association with detergent-resistant membrane fractions and also affects the segregation of ClC-6 and ClC-7 when cotransfected in COS-1 cells. CONCLUSIONS: We conclude that human ClC-6 is an endosomal glycoprotein that partitions in detergent resistant lipid domains. The differential sorting of endogenous (late endosomal) versus overexpressed (early and recycling endosomal) ClC-6 is reminiscent of that of other late endosomal/lysosomal membrane proteins (e.g. LIMP II), and is consistent with a rate-limiting sorting step for ClC-6 between early endosomes and its final destination in late endosomes
Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks
A new paradigm has recently emerged in brain science whereby communications
between glial cells and neuron-glia interactions should be considered together
with neurons and their networks to understand higher brain functions. In
particular, astrocytes, the main type of glial cells in the cortex, have been
shown to communicate with neurons and with each other. They are thought to form
a gap-junction-coupled syncytium supporting cell-cell communication via
propagating Ca2+ waves. An identified mode of propagation is based on
cytoplasm-to-cytoplasm transport of inositol trisphosphate (IP3) through gap
junctions that locally trigger Ca2+ pulses via IP3-dependent Ca2+-induced Ca2+
release. It is, however, currently unknown whether this intracellular route is
able to support the propagation of long-distance regenerative Ca2+ waves or is
restricted to short-distance signaling. Furthermore, the influence of the
intracellular signaling dynamics on intercellular propagation remains to be
understood. In this work, we propose a model of the gap-junctional route for
intercellular Ca2+ wave propagation in astrocytes showing that: (1)
long-distance regenerative signaling requires nonlinear coupling in the gap
junctions, and (2) even with nonlinear gap junctions, long-distance
regenerative signaling is favored when the internal Ca2+ dynamics implements
frequency modulation-encoding oscillations with pulsating dynamics, while
amplitude modulation-encoding dynamics tends to restrict the propagation range.
As a result, spatially heterogeneous molecular properties and/or weak couplings
are shown to give rise to rich spatiotemporal dynamics that support complex
propagation behaviors. These results shed new light on the mechanisms
implicated in the propagation of Ca2+ waves across astrocytes and precise the
conditions under which glial cells may participate in information processing in
the brain.Comment: Article: 30 pages, 7 figures. Supplementary Material: 11 pages, 6
figure