10 research outputs found

    DYW domain structures imply an unusual regulation principle in plant organellar RNA editing catalysis

    Get PDF
    RNA上の遺伝情報を書き換える酵素であるDYWドメインの構造を解明 --植物オルガネラRNA編集のユニークな活性制御--. 京都大学プレスリリース. 2021-06-23.RNA editosomes selectively deaminate cytidines to uridines in plant organellar transcripts—mostly to restore protein functionality and consequently facilitate mitochondrial and chloroplast function. The RNA editosomal pentatricopeptide repeat proteins serve target RNA recognition, whereas the intensively studied DYW domain elicits catalysis. Here we present structures and functional data of a DYW domain in an inactive ground state and activated. DYW domains harbour a cytidine deaminase fold and a C-terminal DYW motif, with catalytic and structural zinc atoms, respectively. A conserved gating domain within the deaminase fold regulates the active site sterically and mechanistically in a process that we termed gated zinc shutter. Based on the structures, an autoinhibited ground state and its activation are cross-validated by RNA editing assays and differential scanning fluorimetry. We anticipate that, in vivo, the framework of an active plant RNA editosome triggers the release of DYW autoinhibition to ensure a controlled and coordinated cytidine deamination playing a key role in mitochondrial and chloroplast homeostasis

    The Analysis of the Editing Defects in the dyw2 Mutant Provides New Clues for the Prediction of RNA Targets of Arabidopsis E+-Class PPR Proteins

    No full text
    C to U editing is one of the post-transcriptional steps which are required for the proper expression of chloroplast and mitochondrial genes in plants. It depends on several proteins acting together which include the PLS-class pentatricopeptide repeat proteins (PPR). DYW2 was recently shown to be required for the editing of many sites in both organelles. In particular almost all the sites associated with the E+ subfamily of PPR proteins are depending on DYW2, suggesting that DYW2 is required for the function of E+-type PPR proteins. Here we strengthened this link by identifying 16 major editing sites controlled by 3 PPR proteins: OTP90, a DYW-type PPR and PGN and MEF37, 2 E+-type PPR proteins. A re-analysis of the DYW2 editotype showed that the 49 sites known to be associated with the 18 characterized E+-type PPR proteins all depend on DYW2. Considering only the 288 DYW2-dependent editing sites as potential E+-type PPR sites, instead of the 795 known editing sites, improves the performances of binding predictions systems based on the PPR code for E+-type PPR proteins. However, it does not compensate for poor binding predictions

    DYW domain structures imply an unusual regulation principle in plant organellar RNA editing catalysis

    No full text
    RNA editosomes selectively deaminate cytidines to uridines in plant organellar transcripts—mostly to restore protein functionality and consequently facilitate mitochondrial and chloroplast function. The RNA editosomal pentatricopeptide repeat proteins serve target RNA recognition, whereas the intensively studied DYW domain elicits catalysis. Here we present structures and functional data of a DYW domain in an inactive ground state and activated. DYW domains harbour a cytidine deaminase fold and a C-terminal DYW motif, with catalytic and structural zinc atoms, respectively. A conserved gating domain within the deaminase fold regulates the active site sterically and mechanistically in a process that we termed gated zinc shutter. Based on the structures, an autoinhibited ground state and its activation are cross-validated by RNA editing assays and differential scanning fluorimetry. We anticipate that, in vivo, the framework of an active plant RNA editosome triggers the release of DYW autoinhibition to ensure a controlled and coordinated cytidine deamination playing a key role in mitochondrial and chloroplast homeostasis

    Multiple Specificity Recognition Motifs Enhance Plant Mitochondrial RNA Editing in Vitro*

    No full text
    Analysis of RNA editing in plant mitochondria has at least in vitro been hampered by very low activity. Consequently, none of the trans-acting factors involved has yet been identified. We here report that in vitro RNA editing increases dramatically when additional cognate recognition motifs are introduced into the template RNA molecule. Substrate RNAs with tandemly repeated recognition elements enhance in vitro RNA editing from 2–3% to 50–80%. The stimulation is not influenced by the editing status of a respective RNA editing site, suggesting that specific recognition of a site can be independent of the edited nucleotide itself. In vivo, attachment of the editing complex may thus be analogously initiated at sequence similarities in the vicinity of bona fide editing sites. This cis-acting enhancement decreases with increasing distance between the duplicated specificity signals; a cooperative effect is detectable up to ∼200 nucleotides. Such repeated template constructs promise to be powerful tools for the RNA affinity identification of the as yet unknown trans-factors of plant mitochondrial RNA editing

    Oxygen Reduction by Lithiated Graphene and Graphene-Based Materials

    No full text
    Oxygen reduction reaction (ORR) plays a key role in lithium-air batteries (LABs) that attract great attention thanks to their high theoretical specific energy several times exceeding that of lithium-ion batteries. Because of their high surface area, high electric conductivity, and low specific weight, various carbons are often materials of choice for applications as the LAB cathode. Unfortunately, the possibility of practical application of such batteries is still under question as the sustainable operation of LABs with carbon cathodes is not demonstrated yet and the cyclability is quite poor, which is usually associated with oxygen reduced species side reactions. However, the mechanisms of carbon reactivity toward these species are still unclear. Here, we report a direct in situ X-ray photoelectron spectroscopy study of oxygen reduction by lithiated graphene and graphene-based materials. Although lithium peroxide (Li2O2) and lithium oxide (Li2O) reactions with carbon are thermodynamically favorable, neither of them was found to react even at elevated temperatures. As lithium superoxide is not stable at room temperature, potassium superoxide (KO2) prepared in situ was used instead to test the reactivity of graphene with superoxide species. In contrast to Li2O2 and Li2O, KO2 was demonstrated to be strongly reactive

    Reverse Genetic Screening Identifies Five E-class PPR Proteins Involved in RNA Editing in Mitochondria of Arabidopsis thaliana*

    No full text
    RNA editing in flowering plant mitochondria post-transcriptionally alters several hundred nucleotides from C to U, mostly in mRNAs. Several factors required for specific RNA-editing events in plant mitochondria and plastids have been identified, all of them PPR proteins of the PLS subclass with a C-terminal E-domain and about half also with an additional DYW domain. Based on this information, we here probe the connection between E-PPR proteins and RNA editing in plant mitochondria. We initiated a reverse genetics screen of T-DNA insertion lines in Arabidopsis thaliana and investigated 58 of the 150 E-PPR-coding genes for a function in RNA editing. Six genes were identified to be involved in mitochondrial RNA editing at specific sites. Homozygous mutants of the five genes MEF18-MEF22 display no gross disturbance in their growth or development patterns, suggesting that the editing sites affected are not crucial at least in the greenhouse. These results show that a considerable percentage of the E-PPR proteins are involved in the functional processing of site-specific RNA editing in plant mitochondria
    corecore