152 research outputs found

    Fractal analysis reveals functional unit of ventilation in the lung

    Get PDF
    Ventilation is inhomogeneous in the lungs across species. It has been hypothesized that ventilation inhomogeneity is largely determined by the design of the airway branching network. Because exchange of gases at the alveolar barrier is more efficient when gas concentrations are evenly distributed at subacinar length scales, it is assumed that a 'functional unit' of ventilation exists within the lung periphery, where gas concentration becomes uniform. On the other hand, because the morphology of pulmonary airways and alveoli, and the distribution of inhaled fluorescent particles show self-similar fractal properties over a wide range of length scales, it has been predicted that fractal dimension of ventilation approaches unity within an internally homogeneous functional unit of ventilation. However, the existence of such a functional unit has never been demonstrated experimentally due to lack of in situ gas concentration measurements of sufficient spatial resolution in the periphery of a complex bifurcating network. Here, using energy-subtractive synchrotron radiation tomography, we measured the distribution of an inert gas (Xe) in the in vivo rabbit lung during Xe wash-in breathing manoeuvres. The effects of convective flow rate, diffusion and cardiac motion were also assessed. Fractal analysis of resulting gas concentration and tissue density maps revealed that fractal dimension was always smaller for Xe than for tissue density, and that only for the gas, a length scale existed where fractal dimension approached unity. The length scale where this occurred was seen to correspond to that of a rabbit acinus, the terminal structure comprising only alveolated airways. Key points Gas ventilation is inhomogeneous in the lung of many species. However, it is not known down to what length scales this inhomogeneity persists. It is generally assumed that ventilation becomes homogeneous at subacinar length scales, beyond the spatial resolution of commonly available imaging techniques, hence this has not been demonstrated experimentally. Here we measured the distribution of inhaled Xe gas in the rabbit lung using synchrotron radiation energy-subtractive imaging and used fractal analysis to show that ventilation becomes internally uniform within regions about the size of rabbit lung acini.Peer reviewe

    Short course radiotherapy with simultaneous integrated boost for stage I-II breast cancer, early toxicities of a randomized clinical trial

    Get PDF
    BACKGROUND: TomoBreast is a unicenter, non-blinded randomized trial comparing conventional radiotherapy (CR) vs. hypofractionated Tomotherapy (TT) for post-operative treatment of breast cancer. The purpose of the trial is to compare whether TT can reduce heart and pulmonary toxicity. We evaluate early toxicities. METHODS: The trial started inclusion in May 2007 and reached its recruitment in August 2011. Women with stage T1-3N0M0 or T1-2N1M0 breast cancer completely resected by tumorectomy (BCS) or by mastectomy (MA) who consented to participate were randomized, according to a prescribed computer-generated randomization schedule, between control arm of CR 25x2 Gy/5 weeks by tangential fields on breast/chest wall, plus supraclavicular-axillary field if node-positive, and sequential boost 8x2 Gy/2 weeks if BCS (cumulative dose 66 Gy/7 weeks), versus experimental TT arm of 15x2.8 Gy/3 weeks, including nodal areas if node-positive and simultaneous integrated boost of 0.6 Gy if BCS (cumulative dose 51 Gy/3 weeks). Outcomes evaluated were the pulmonary and heart function. Comparison of proportions used one-sided Fisher's exact test. RESULTS: By May 2010, 70 patients were randomized and had more than 1 year of follow-up. Out of 69 evaluable cases, 32 were assigned to CR (21 BCS, 11 MA), 37 to TT (20 BCS, 17 MA). Skin toxicity of grade ≥1 at 2 years was 60% in CR, vs. 30% in TT arm. Heart function showed no significant difference for left ventricular ejection fraction at 2 years, CR 4.8% vs. TT 4.6%. Pulmonary function tests at 2 years showed grade ≥1 decline of FEV1 in 21% of CR, vs. 15% of TT and decline of DLco in 29% of CR, vs. 7% of TT (P = 0.05). CONCLUSIONS: There were no unexpected severe toxicities. Short course radiotherapy of the breast with simultaneous integrated boost over 3 weeks proved feasible without excess toxicities. Pulmonary tests showed a slight trend in favor of Tomotherapy, which will need confirmation with longer follow-up of patients. TRAIL REGISTRATION: ClinicalTrials.gov NCT0045962

    Real-Life Response to Biologics in Severe Asthma with Nasal Polyposis: Insights from the Belgian Severe Asthma Registry.

    Full text link
    peer reviewed[en] BACKGROUND: Nasal polyposis (NP) is a comorbidity of type 2 severe asthma (SA) which could influence response to SA biologics. METHODS: We evaluated (super-) response in SA patients with (NP +) and without NP (NP-) enrolled in the Belgian Severe Asthma Registry (BSAR). RESULTS: 914 patients, of whom 31% NP + , were included. At enrollment, NP + patients had higher annual exacerbation rates, higher number of emergency room visits and more elevated type 2 biomarkers. In the longitudinal subanalysis of 104 patients, both groups had significant and similar asthma responses to asthma biologics, except for a greater increase in FEV1 in the NP + group. Super-response was achieved in 33 patients (32%), irrespective of NP status or type of biologic. CONCLUSION: In conclusion, both NP + and NP - patients had positive treatment responses, with some able to achieve super-response. In SA patients with NP, a greater FEV1 improvement as compared to SA patients without NP was observed

    Dynamic Mechanical Interactions Between Neighboring Airspaces Determine Cyclic Opening and Closure in Injured Lung

    Get PDF
    OBJECTIVES:: Positive pressure ventilation exposes the lung to mechanical stresses that can exacerbate injury. The exact mechanism of this pathologic process remains elusive. The goal of this study was to describe recruitment/derecruitment at acinar length scales over short-time frames and test the hypothesis that mechanical interdependence between neighboring lung units determines the spatial and temporal distributions of recruitment/derecruitment, using a computational model. DESIGN:: Experimental animal study. SETTING:: International synchrotron radiation laboratory. SUBJECTS:: Four anesthetized rabbits, ventilated in pressure controlled mode. INTERVENTIONS:: The lung was consecutively imaged at ~ 1.5-minute intervals using phase-contrast synchrotron imaging, at positive end-expiratory pressures of 12, 9, 6, 3, and 0 cm H2O before and after lavage and mechanical ventilation induced injury. The extent and spatial distribution of recruitment/derecruitment was analyzed by subtracting subsequent images. In a realistic lung structure, we implemented a mechanistic model in which each unit has individual pressures and speeds of opening and closing. Derecruited and recruited lung fractions (Fderecruited, Frecruited) were computed based on the comparison of the aerated volumes at successive time points. MEASUREMENTS AND MAIN RESULTS:: Alternative recruitment/derecruitment occurred in neighboring alveoli over short-time scales in all tested positive end-expiratory pressure levels and despite stable pressure controlled mode. The computational model reproduced this behavior only when parenchymal interdependence between neighboring acini was accounted for. Simulations closely mimicked the experimental magnitude of Fderecruited and Frecruited when mechanical interdependence was included, while its exclusion gave Frecruited values of zero at positive end-expiratory pressure greater than or equal to 3 cm H2O. CONCLUSIONS:: These findings give further insight into the microscopic behavior of the injured lung and provide a means of testing protective-ventilation strategies to prevent recruitment/derecruitment and subsequent lung damage

    Quantitative Computed Tomography in Asthma: For Good Measure

    Full text link

    Verbanck, Sylvia

    No full text

    Implications of Left-to-Right Lung Ventilation Heterogeneity

    No full text

    Verbanck_11feb2020_OnLineSuppl_withFigs.pdf

    No full text
    Online Supplemen

    Link between numbers, pictures, and physiological tests

    No full text
    SCOPUS: le.jinfo:eu-repo/semantics/publishe
    corecore