686 research outputs found

    Extragalactic Stellar Astronomy with the Brightest Stars in the Universe

    Full text link
    A supergiants are objects in transition from the blue to the red (and vice versa) in the uppermost HRD. They are the intrinsically brightest "normal" stars at visual light with absolute visual magnitudes up to -9. They are ideal to study young stellar populations in galaxies beyond the Local Group to determine chemical composition and evolution, interstellar extinction, reddening laws and distances. We discuss most recent results on the quantitative spectral analysis of such objects in galaxies beyond the Local Group based on medium and low resolution spectra obtained with the ESO VLT and Keck. We describe the analysis method including the determination of metallicity and metallicity gradients. A new method to measure accurate extragalactic distances based on the stellar gravities and effective temperatures is presented, the flux weighted gravity - luminosity relationship (FGLR). The FGLR is a purely spectroscopic method, which overcomes the untertainties introduced by interstellar extinction and variations of metallicity, which plague all photometric stellar distance determination methods. We discuss the perspectives of future work using the giant ground-based telescopes of the next generation such as the TMT, the GMT and the E-ELT.Comment: Invited review; to appear in "Massive Stars as Cosmic Engines", IAU Symp. 250, ed. F. Bresolin, P. A. Crowther, and J. Puls (Cambridge University Press

    The scatter about the "Universal" dwarf spheroidal mass profile: A kinematic study of the M31 satellites, And V and And VI

    Get PDF
    While the satellites of the Milky Way (MW) have been shown to be largely consistent in terms of their mass contained within one half--light radius (M_{half}) with a "Universal" mass profile, a number of M31 satellites are found to be inconsistent with such relations, and seem kinematically colder in their central regions than their MW cousins. In this work, we present new kinematic and updated structural properties for two M31 dSphs, And V and And VI using data from the Keck Low Resolution Imaging Spectrograph (LRIS) and the DEep Imaging Multi-Object Spectrograph (DEIMOS) instruments and the Subaru Suprime-Cam imager. We measure systemic velocities of v_r=-393.1+/-4.2km/s and -344.8+/-2.5km/s, and dispersions of sigma_v=11.5{+5.3}{-4.4}km/s and sigma_v=9.4{+3.2}{-2.4}km/s for And V and And VI respectively, meaning these two objects are consistent with the trends in sigma_v and r_{half} set by their MW counterparts. We also investigate the nature of this scatter about the MW dSph mass profiles for the "Classical" (i.e. M_V<-8) MW and M31 dSphs. When comparing both the "classical" MW and M31 dSphs to the best--fit mass profiles in the size--velocity dispersion plane, we find general scatter in both the positive (i.e. hotter) and negative (i.e. colder) directions from these profiles. However, barring one exception (CVnI) only the M31 dSphs are found to scatter towards a colder regime, and, excepting the And I dSph, only MW objects scatter to hotter dispersions. We also note that the scatter for the combined population is greater than expected from measurement errors alone. We assess this divide in the context of the differing disc-to-halo mass (i.e. stars and baryons to total virial mass) ratios of the two hosts and argue that the underlying mass profiles for dSphs differ from galaxy to galaxy, and are modified by the baryonic component of the host.Comment: 15 pages, 8 figures. Small modifications made for referee report. Accepted for publication in MNRAS (29/06/2011

    The Evolution of Oxygen and Magnesium in the Bulge and Disk of the Milky Way

    Full text link
    We show that the Galactic bulge and disk share a similar, strong, decline in [O/Mg] ratio with [Mg/H]. The similarity of the [O/Mg] trend in these two, markedly different, populations suggests a metallicity-dependent modulation of the stellar yields from massive stars, by mass loss from winds, and related to the Wolf-Rayet phenomenon, as proposed by McWilliam & Rich (2004). We have modified existing models for the chemical evolution of the Galactic bulge and the solar neighborhood with the inclusion of metallicity-dependent oxygen yields from theoretical predictions for massive stars that include mass loss by stellar winds. Our results significantly improve the agreement between predicted and observed [O/Mg] ratios in the bulge and disk above solar metallicity; however, a small zero-point normalization problem remains to be resolved. The zero-point shift indicates that either the semi-empirical yields of Francois et al. (2004) need adjustment, or that the bulge IMF is not quite as flat as found by Ballero et al. (2007); the former explanation is preferred. Our result removes a previous inconsistency between the interpretation of [O/Fe] and [Mg/Fe] ratios in the bulge, and confirms the conclusion that the bulge formed more rapidly than the disk, based on the over-abundances of elements produced by massive stars. We also provide an explanation for the long-standing difference between [Mg/Fe] and [O/Fe] trends among disk stars more metal-rich than the sun.Comment: 22 pages including 5 figures. Submitted to the Astronomical Journa

    First Stellar Abundances in the Dwarf Irregular Galaxy Sextans A

    Full text link
    We present the abundance analyses of three isolated A-type supergiant stars in the dwarf irregular galaxy Sextans A from high-resolution spectra the UVES spectrograph at the VLT. Detailed model atmosphere analyses have been used to determine the stellar atmospheric parameters and the elemental abundances of the stars. The mean iron group abundance was determined from these three stars to be [(FeII,CrII)/H]=-0.99+/-0.04+/-0.06. This is the first determination of the present-day iron group abundances in Sextans A. These three stars now represent the most metal-poor massive stars for which detailed abundance analyses have been carried out. The mean stellar alpha element abundance was determined from the alpha element magnesium as [alpha(MgI)/H]=-1.09+/-0.02+/-0.19. This is in excellent agreement with the nebular alpha element abundances as determined from oxygen in the H II regions. These results are consistent from star-to-star with no significant spatial variations over a length of 0.8 kpc in Sextans A. This supports the nebular abundance studies of dwarf irregular galaxies, where homogeneous oxygen abundances are found throughout, and argues against in situ enrichment. The alpha/Fe abundance ratio is [alpha(MgI)/FeII,CrII]=-0.11+/-0.02+/-0.10, which is consistent with the solar ratio. This is consistent with the results from A-supergiant analyses in other Local Group dwarf irregular galaxies but in stark contrast with the high [alpha/Fe] results from metal-poor stars in the Galaxy, and is most clearly seen from these three stars in Sextans A because of their lower metallicities. The low [alpha/Fe] ratios are consistent with the slow chemical evolution expected for dwarf galaxies from analyses of their stellar populations.Comment: 40 pages, 8 figures, accepted for publication in A

    Abundances in the Herbig Ae star HD 101412: Abundance anomalies; Lambda Boo-Vega characteristics?

    Get PDF
    Context: Recent attention has been directed to abundance variations among very young stars. Aims: To perform a detailed abundance study of the Herbig Ae star HD 101412, taking advantage of its unusually sharp spectral lines. Methods: High-resolution spectra are measured for accurate wavelengths and equivalent widths. Balmer-line fits and ionization equlibria give a relation between Teff, and log(g). Abundance anomalies and uncertain reddening preclude the use of spectral type or photometry to fix Teff. Excitation temperatures are used to break the degeneracy between Teff and log(g). Results: Strong lines are subject to an anomalous saturation that cannot be removed by assuming a low microturbulence. By restricting the analysis to weak (<= 20 m[A]) lines, we find consistent results for neutral and ionized species, based on a model with Teff = 8300K, and log(g)=3.8. The photosphere is depleted in the most refractory elements, while volatiles are normal or, in the case of nitrogen, overabundant with respect to the sun. The anomalies are unlike those of Ap or Am stars. Conclusions: We suggest the anomalous saturation of strong lines arises from heating of the upper atmospheric layers by infalling material from a disk. The overall abundance pattern may be related to those found for the Lambda Boo stars, though the depletions of the refractory elements are milder, more like those of Vega. However, the intermediate volatile zinc is depleted, precluding a straightforward interpretation of the abundance pattern in terms of gas-grain separation.Comment: Accepted for publication in Astronomy and Astrophysics; 7 pages, 7 figs., 2 table
    corecore