49 research outputs found
Does dual-energy abdominal computed tomography increase the radiation dose to patients : a prospective observational study
Purpose: The aim of our study was to compare single-energy (SECT) and dual-energy (DECT) abdominal computed tomography (CT) examinations in matched patient cohorts regarding the differences in effective radiation dose (ERD) and image quality performed in a third-generation dual-source computed tomography (DSCT) scanner. Material and methods: Our study included 100 patients, who were divided randomly into 2 groups. The patients included in Group A were scanned by SECT, and Group B members were scanned by DECT. Volume CT dose index (CTDIvol), dose length product (DLP), and ERD for venous phase acquisition were recorded in each patient and were normalised for 40 cm. Analyses were performed by using statistical software (SPSS version 20.0 for windows), and Bonferroni correction for multiple comparisons was applied for p-values and confidence intervals. Results: Average ERD based on DLP values normalised for 40 cm acquisition were obtained for both Group A and Group B. The mean ERD for Group A was 11.89 mSv, and for group B it was 6.87 mSv. There was a significant difference in these values between Group A and Group B as shown by a p-value of < 0.001. On subjective and objective analysis, there was no statistically significant difference in image quality between the 2 groups. Conclusions: The protocols in third-generation DSCT using dual-energy mode resulted in significant reductions in the effective radiation dose (by approximately 58%) compared to SECT in routine abdominal examination in matched cohorts. Therefore, the quantitative imaging potential of DECT can be utilised in needed patients with decreased radiation dose in third-generation DSCT
β
A number of xenobiotic-inducible cytochrome P450s (CYPs) are now known to be localized in the mitochondrial compartment, though their pharmacological or toxicological roles remain unclear. Here, we show that BNF treatment markedly inhibits liver mitochondrial O2 consumption rate (OCR), ADP-dependent OCR, and also reserve OCR, in wild-type mice but not in Cyp1a1/1a2(−/−) double knockout mice. BNF treatment markedly affected mitochondrial complex I and complex IV activities and also attenuated mitochondrial gene expression. Furthermore, under in vitro conditions, BNF treatment induced cellular ROS production, which was inhibited by mitochondria-targeted antioxidant Mito-CP and CYP inhibitor proadefin, suggesting that most of the ROS production was intramitochondrial and probably involved the catalytic activity of mitochondrial CYP1 enzymes. Interestingly, our results also show that the AHR antagonist resveratrol, markedly attenuated BNF-induced liver mitochondrial defects in wild-type mice, confirming the role of AHR and AHR-regulated CYP1 genes in eliciting mitochondrial dysfunction. These results are consistent with reduced BNF-induced mitochondrial toxicity in Cyp1a1/1a2(−/−) mice and elevated ROS production in COS cells stably expressing CYP1A1. We propose that increased mitochondrial ROS production and respiratory dysfunction are part of xenobiotic toxicity. Resveratrol, a chemopreventive agent, renders protection against BNF-induced toxicity
Whole genome sequencing of bacteriophage NINP13076 isolated against Salmonella enteritidis
Salmonella ranks among the prominent etiological agents responsible for foodborne illnesses on a global scale.
Within the scope of this investigation, a bacteriophage capable of eliminating Salmonella enteritidis was isolated
using the double-layer agar overlay technique. The phage’s morphological characteristics were elucidated through the application of Transmission Electron Microscopy. The genomic DNA of the phage underwent complete sequencing utilizing the MiSeq platform, with library preparation executed through the NexteraXT library prep kit method accompanied by the NexteraXT index kit. Paired-end sequencing was performed over 2 × 251 cycles read length, employing a Miseq V3 kit within the Illumina MiSeq system. Notably, the phage
manifested conspicuous plaques upon S. enteritidis when subjected to the double agar overlay technique.
NINP13076 displayed a 22-min latency period with a calculated average burst size of 53 PFU/cell. Phages
exhibited resilience to the diverse pH conditions, manifesting no discernible impact on their viability over a
storage duration of up to one week. storage at temperatures of 4 ◦C, 26 ◦C, and 37 ◦C demonstrated minimal effects on the phage population, with no statistically significant alterations observed. Genome assembly yielded a draft genome encompassing 161,329 base pairs with a GC content of 44.4 % and achieved coverage at a depth of 104x. Phylogenetic tree analysis unveiled a highly proximate relationship with the Salmonella Phage SSE-121 genome, demonstrating a distance score of 0.1 and signifying its classification as a novel member within the SSE121 virus group
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
Recommended from our members
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
Midazolam as an adjuvant to intrathecal lignocaine: A prospective randomized control study
Context: Unfortunately in the past decade, phenomenon of transient neurologic symptoms (TNS) cast doubts on the use of lignocaine for spinal anesthesia. Intrathecal midazolam has been proved to have its role in relieving neuropathic pain. We attempted to study the role of midazolam as an adjuvant to intrathecal lignocaine. Aims: The primary objective of the study was to evaluate the effect of intrathecal midazolam as an adjuvant to spinal lignocaine in terms of quality and duration of spinal sensory blockade. The secondary objectives are to study the effect on hemodynamics and the incidence of TNS. Settings and Design: A prospective randomized control double-blinded study in American Society of Anesthesiology I and II surgical population. Materials and Methods: Hundred healthy adult patients scheduled for elective infraumbilical surgery were randomly assigned to group A patients received spinal anesthesia with 1.5 ml of 5% lignocaine heavy with 0.4 ml of 0.9% saline and group B (control group) received spinal anesthesia with 1.5 ml of 5% heavy lignocaine with 0.4 ml of preservative-free 0.5% midazolam. Statistical Analysis Used: Z test for study parameters and analysis of variance was used for hemodynamic parameters in the same group. P < 0.05 was considered statistically significant. Results: Midazolam resulted in improved quality of sensory blockade in terms of early onset, increased duration of effective analgesia, and delayed two segment regression time and also decreases the incidence of TNS with intrathecal lignocaine. Conclusions: Midazolam is an effective adjuvant to intrathecal lignocaine
Ultrasound evaluation of effect of different degree of wrist extension on radial artery dimension at the wrist joint
Context: Successful arterial cannulation requires wide and patent arterial lumen. A recent study has shown that success rate of radial arterial cannulation at first attempt is more at 45° angle of wrist extension in both young and elderly patients. No study has reasoned whether these high success rates at 45° is because of less compression of the radial artery at this particular angle of wrist extension. Hence, we attempted to study whether the radial artery dimensions changes with increasing angles of wrist extension in young, healthy female volunteers using ultrasound examination. Aim: To investigate the effect of increasing angle of wrist extension of 0, 15, 30, 45, 60, and 75° on radial artery dimensions at the level of the wrist joint using ultrasound examination. Settings and Design: A prospective single blinded study in volunteers. Subjects and Methods: Sonographic measurements of radial artery dimension at the wrist level were performed in 48 young, healthy female subjects. Height (anteroposterior in mm), width (mediolateral in mm) and depth (skin to artery) were measured at wrist extension of 0, 15, 30, 45, 60, and 75°. The dimensions at each angle are compared with 0° as the control and statistical analysis done. Statistical Analysis: One-way analysis of variance test. Results: No statistically significant change in dimension of the radial artery is observed with increasing angle of wrist extension. Conclusion: Ultrasound evaluation showed that increasing angle of wrist extension does not significantly change the dimensions of radial artery at the wrist joint level in young healthy female volunteers
Ultrasound assessment of subglottic region for estimation of appropriate endotracheal tube size in pediatric anesthesia
Background and Aims: Endotracheal tube (ETT) selection in pediatric patients is mainly done with the age, height, or weight-based formula. We compared ultrasound assessment of the subglottic area to predict the outer diameter of the ETT, with that of modified Cole's formula. The aim of the study is to compare the appropriateness of uncuffed ETT selection based on modified Cole's formula with that of ultrasound assessment method of subglottic diameter in children undergoing surgical procedures under general anesthesia.
Material and Methods: This is a prospective, randomized, parallel group study. One hundred and fifty American Society of Anesthesiologists I and II patients of age 2–6 years were randomly allotted into two groups: Group A - ETT selection based on ultrasound assessment of subglottic diameter. Group B - ETT selection based on modified Cole's formula. The study parameters are the internal diameter and external diameter (OD) of the predicted ETT by the two methods and that of the appropriate size ETT used.
Results: The incidence of appropriate tube selection was 74.7% in the ultrasound based group while it was 45.3% in the modified Cole's formula group. There was a strong correlation between OD of the optimal ETT used and the ultrasound assessed subglottic diameter. Bland–Altman analysis of OD of appropriately sized ETT and subglottic diameter by ultrasound assessment has a bias of 0.02 mm with limits of agreement of +1.78 to −1.74.
Conclusion: Ultrasonographic assessment of the subglottic diameter at the cricoid region is a better tool in predicting the appropriate size uncuffed ETT than modified Cole's formula
Anesthetic experience of two consecutive caesarean sections in a parturient with congenitally corrected transposition of great arteries and complete heart block: A case report
We describe the clinical course of two subsequent caesarean sections in the same parturient with congenitally corrected transposition of great arteries (CCTGA) complicated with complete heart block. CCTGA represents <1% of all forms of congenital heart diseases. In such patients, the hemodynamic effects of pregnancy and surgery may trigger systemic ventricular failure. In these parturients, ventricular dysfunction will also progress rapidly with subsequent pregnancies. The literature review showed no evidence describing the anesthetic management of these high-risk parturients. We used combined spinal epidural anesthesia uneventfully for both the caesarean sections in this patient. This case report will discuss the details of this rare congenital heart disease and the anesthetic management
The effect of subcutaneous infiltration of nitroglycerin on the arterial cannulation under ultrasound guidance: a prospective randomized study
Background: Ultrasound (US) guidance has not improved the success rate of radial artery cannulation to nearly 100%. This explains the other factors that can be improved to increase the success rate. This study analyses the effect of subcutaneously infiltrated nitroglycerin on the first-attempt success rate of the US-guided short-axis method of radial artery cannulation. Patients and Methods: Two hundred and fourteen patients were randomized into two groups. In group N, 250 mcg nitroglycerin and 10 mg lignocaine were infiltrated subcutaneously at the cannulation site of the radial artery. Whereas in the control group (group S), the subjects received saline and 10 mg of lignocaine. The measured outcomes were the first-attempt success rate, cannulation time, and radial artery diameter changes. All cannulations were carried out with US guidance and employed the short-axis method. Results: One hundred and ninety-eight patients were analyzed. We found significant differences in both first-attempt success rates (P < 0.001) and decreased cannulation time (6.09 ± 2.08 vs. 3.33 ± 2.18 min, P < 0.001) in group N. The mean differences in the radial artery diameter were also significantly larger in group N at the puncture site (25.0 ± 19.5 vs. 1.9 ± 13.1 mm, P < 0.001) and at the radial fossa (23.1 ± 12.67 vs. 8.4 ± 6.5 mm, P < 0.001). Conclusion: Subcutaneous infiltration of nitroglycerin at the puncture site increases the first-attempt success rate of the US-guided short-axis method of radial arterial cannulation. Furthermore, it also decreases the cannulation time and increases the radial artery diameter