90 research outputs found

    Noninvasive Quantification of Fluid Mechanical Energy Losses in the Total Cavopulmonary Connection with Magnetic Resonance Phase Velocity Mapping

    Get PDF
    A major determinant of the success of surgical vascular modifications, such as the total cavopulmonary connection (TCPC), is the energetic efficiency that is assessed by calculating the mechanical energy loss of blood flow through the new connection. Currently, however, to determine the energy loss, invasive pressure measurements are necessary. Therefore, this study evaluated the feasibility of the viscous dissipation (VD) method, which has the potential to provide the energy loss without the need for invasive pressure measurements. Two experimental phantoms, a U-shaped tube and a glass TCPC, were scanned in a magnetic resonance (MR) imaging scanner and the images were used to construct computational models of both geometries. MR phase velocity mapping (PVM) acquisitions of all three spatial components of the fluid velocity were made in both phantoms and the VD was calculated. VD results from MR PVM experiments were compared with VD results from computational fluid dynamics (CFD) simulations on the image-based computational models. The results showed an overall agreement between MR PVM and CFD. There was a similar ascending tendency in the VD values as the image spatial resolution increased. The most accurate computations of the energy loss were achieved for a CFD grid density that was too high for MR to achieve under current MR system capabilities (in-plane pixel size of less than 0.4 mm). Nevertheless, the agreement between the MR PVM and the CFD VD results under the same resolution settings suggests that the VD method implemented with a clinical imaging modality such as MR has good potential to quantify the energy loss in vascular geometries such as the TCPC

    Reliable In-Plane Velocity Measurements With Magnetic Resonance Velocity Imaging

    Get PDF
    Magnetic resonance (MR) imaging is a well-known diagnostic imaging modality. In addition to its high-quality imaging capabilities, hydrogen-based MR can also provide non-invasively the velocity of water-based fluids in all three spatial directions (through-plane and in-plane) in an image. Many previous studies showed that MR velocity imaging can accurately measure the through-plane velocity. The aim of this study was to evaluate how reliable are the in-plane velocity measurements in an image. The axial velocity of water in horizontal tubes (inner diameter: 14.7–26.2 mm) was measured with segmented (fast) and non-segmented (slow) k-space MR velocity imaging using: (a) an imaging slice placed perpendicular to the tube axis with through-plane velocity-encoding; and (b) an imaging slice placed parallel to the tube axis with in-plane velocity-encoding. The two planes intersected along the vertical tube-centerline. The flow rate was accurately quantified (mean error plane velocity profiles were not significantly different from the through-plane profiles (mean difference =6%, correlation coefficients \u3e0.98). There was no significant difference between the velocity profiles from the segmented and the non-segmented sequences (mean difference 0.95). The results of this study suggest that fast MR velocity imaging can measure the in-plane velocity in an image with reliability

    HIV-1 Infection of DC: Evidence for the Acquisition of Virus Particles from Infected T Cells by Antigen Uptake Mechanism

    Get PDF
    Dendritic cells (DC) play a pivotal role in transmission and dissemination of HIV-1. Earlier studies reported that DC present at the site of infection trap virus particles via DC-SIGN and transfer the virus to the interacting naΓ―ve T cells. This prompted us to ask the question whether DC could acquire virus from infected T cells during DC-T cell interaction. To address this, we investigated the likely transfer of virus from HIV-1 infected T cells to DC and the underlying mechanisms involved. Results indicate that DC acquire virus from infected T cells via antigen uptake mechanism and this results in infection of DC with expression of proteins directed by viral DNA. Further studies with HIV-1 lacking the Env protein also resulted in infection of DC. The use of antibodies against DC-SIGN and DC-SIGN-R ruled out a role for receptor in the infection of DC. Additional data show that DC infection is directly correlated with the ability of DC to take up antigen from infected T cells. Overall, these studies provide evidence to suggest that HIV-1, besides infecting immune cells, also utilizes immunological mechanism(s) to acquire and disseminate virus

    Environmentally Persistent Free Radicals (EPFRs). 3. Free versus Bound Hydroxyl Radicals in EPFR Aqueous Solutions

    Get PDF
    Additional experimental evidence is presented for in vitro generation of hydroxyl radicals because of redox cycling of environmentally persistent free radicals (EPFRs) produced after adsorption of 2-monochlorophenol at 230 Β°C (2-MCP-230) on copper oxide supported by silica, 5% Cu(II)O/silica (3.9% Cu). A chemical spin trapping agent, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed. Experiments in spiked O17 water have shown that ∼15% of hydroxyl radicals formed as a result of redox cycling. This amount of hydroxyl radicals arises from an exogenous Fenton reaction and may stay either partially trapped on the surface of particulate matter (physisorbed or chemisorbed) or transferred into solution as free OH. Computational work confirms the highly stable nature of the DMPO–OH adduct, as an intermediate produced by interaction of DMPO with physisorbed/chemisorbed OH (at the interface of solid catalyst/solution). All reaction pathways have been supported by ab initio calculations

    Manipulation of Costimulatory Molecules by Intracellular Pathogens: Veni, Vidi, Vici!!

    Get PDF
    Some of the most successful pathogens of human, such as Mycobacterium tuberculosis (Mtb), HIV, and Leishmania donovani not only establish chronic infections but also remain a grave global threat. These pathogens have developed innovative strategies to evade immune responses such as antigenic shift and drift, interference with antigen processing/presentation, subversion of phagocytosis, induction of immune regulatory pathways, and manipulation of the costimulatory molecules. Costimulatory molecules expressed on the surface of various cells play a decisive role in the initiation and sustenance of immunity. Exploitation of the β€œcode of conduct” of costimulation pathways provides evolutionary incentive to the pathogens and thereby abates the functioning of the immune system. Here we review how Mtb, HIV, Leishmania sp., and other pathogens manipulate costimulatory molecules to establish chronic infection. Impairment by pathogens in the signaling events delivered by costimulatory molecules may be responsible for defective T-cell responses; consequently organisms grow unhindered in the host cells. This review summarizes the convergent devices that pathogens employ to tune and tame the immune system using costimulatory molecules. Studying host-pathogen interaction in context with costimulatory signals may unveil the molecular mechanism that will help in understanding the survival/death of the pathogens. We emphasize that the very same pathways can potentially be exploited to develop immunotherapeutic strategies to eliminate intracellular pathogens

    Investigation on the inhibitive effect of poly (p-aminophenol) on corrosion of iron in 1M HCL solutions

    No full text
    The inhibitive eftect of iron corrosion in 1M HCI by p-aminophenol and poly (p-amino phenol) were investigated by the polarization and electrochemical impedance spect-roscopy methods. The effectiveness of poly(p-aminophenol) is very high in comparison with that of monomer. The results showed that p-amino phenol and poly (p-amino phenol) suppressed both cathodic and anodic processes of iron dissolution in 1M HCI by their adsorption on the iron surface according to Langmuri's adsorption isotherm. The inhibition efficiency of both p-amino phenol and polyp-amino phenol) were found to increases with the inhibitor concentrations

    The influence of H+ and Cl- ions on the effect of corrosion inhibition of iron by p-substituted anilines

    No full text
    The Corrosion inhibition of iron at various concentrations ofH+ and CI-ions in presence of para-substituted anilines have been studied using the electro chemical measurements, such as impedance and polarization methods. The inhibition efficiency of the inhibitors has been found to be dependant on the concentrations of Wand Clions. It has been observed that, the corrosion inhibitionefficiency increases with increasing the concentrations of H+ and CI- ions
    • …
    corecore