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I. Introduction 

Hydrogen-based magnetic resonance (MR) imaging is a 
standard imaging modality, with significant contribution to the 
clinical diagnosis of a variety of diseases. Its wide medical 
application is due to the significant amount of waler in the 
human body. Inside the strong magnetic field of an MR 
scanner, the hydrogen nuclei precess at a frequency which is 
proportional to the strength of the magnetic field. If a linear 

magnetic field gradient is applied along any spatial direction, 
a corresponding linear change in the precession frequency of 
the nuclei will be induced. [n fact, by applying such magnctic 
field gradients along all three spatial directions with proper 
timing, the position of the nuclei can be encoded into the 
characteristics (frequency-phase) of the acquired signal [ I , 
2]. An imaging sequence consists of the following steps: (a) 
slice selection and nuclei excitation; (b) phase-encoding; (c) 
frequency-encoding and signal acquisition. Each of these steps 
involves the application of one spatial magnetic field gradient; 
at the end, all three spatial gradients have been applied, causing 
the encoding of the spatial position of the nuclei into the signal. 
This acquired signal is digitized and the data are used to fill 
the frequency domain, often referred to as k-space. Then, an 
inverse 2-D Fourier transform reconstructs the image in the 
space domain. 



In addition to its well-documented ability as a reliable 
imaging modality, MR imaging provides quantitative informa-
tion about flow velocity in medical and non-medical applica-
tions [3–9]. The major advantage of MR velocity imaging in 
medicine is its unique clinical ability to measure all three spa-
tial directions of the velocity in an imaging slice. Thus, it pro-
vides information about the through-plane velocity as well as 
the in-plane velocity components in every pixel of the image. 
This is extremely helpful in order to study complicated velocity 
fields. 

The ability of MR to measure flow velocity is based on the 
fact that the velocity of moving hydrogen nuclei can be encoded 
into the phase of the detected signal by applying bipolar 
magnetic field gradients [10]. By using the proper gradients, 
the resulted phase is proportional to the nuclei velocity. Each 
acquisition leads to two images, one based on the magnitude of 
the signal and one based on the phase of the signal. The latter 
is in fact the velocity image, because of the linear relationship 
between signal phase and nuclei velocity. 

MR velocity imaging can accurately measure the through-
plane velocity and quantify flow under both steady and pulsatile 
flow conditions, with errors typically within ±5% [11–15]. 
Recently, we evaluated experimentally and clinically the 
potential of ultra-fast, segmented k-space MR velocity imaging 
for through-plane velocity measurements in tubes [16] and  in  
the human aorta [17]. Our experimental results showed high 
accuracy (errors of less than 5% in the flow rate calculation) 
using segmented k-space techniques with up to 9 k-space lines 
per segment. Our clinical results showed very close agreement 
between the segmented k-space (9 lines per segment) sequences 
and the conventional non-segmented sequence (difference of 
less than 5%). Based on the  confidence we obtained from these 
studies, the aim of this work was to investigate the reliability of 
MR velocity imaging in measuring the in-plane velocity under 
a variety of flow rates. Acquisition of reliable in-plane velocity 
data is very important considering the need to characterize and 
quantify two- and three-directional flow fields in medical and 
non-medical applications. 

2. Methods 

2.1. Instrumentation, models, and flow set-up 

Steady water flow experiments were conducted in a 1.5 T 
Siemens Sonata whole-body MR scanner (Siemens Medical 
Solutions, Erlangen, Germany) with a maximum gradient 
strength of 40 mT/m. MR velocity measurements were 
performed in three straight rigid PVC tubes with inner 
diameters of 14.7 mm (tube #1), 20.2 mm (tube #2), and 
26.2 mm (tube #3). The tubes were placed in a water-filled 
acrylic container in order to tune the scanner. Without the 
addition of water, the scanner failed to detect enough protons 
within the field of view to properly adjust the transmit/receive 
frequency. Steady flow studies were performed with flow rates 
ranging between 1.0 and 7.0 L/min (Table 1). The Reynolds 
number (Re) ranged between 1450 and 10 100. The true flow 
rate was known via pre-calibrated rotameters. 

Table 1  
Flow conditions  

Tube Tube Flow rate Cross sectional average NRe 
# diameter (L/min) velocity (cm/s) 

(mm) 

1.0 9.8 1450 
1 14.7 4.0 39.3 5800 

7.0 68.7 10 100 
1.5 7.8 1570 

2 20.2 2.0 10.4 2100 
5.0 26.0 5250 

3 26.2 7.0 21.6 5670 

Fig. 1. The flow loop. The reservoir (bottom of figure) is placed far from 
the MR scanner, at the end of the patient table, to avoid any possible effects 
from the strong magnetic field on the pump and the rotameter. Fluid from the 
reservoir flows to the scanner using the submersible steady flow pump via PVC 
tubes. The test section is placed inside an acrylic container filled with water. 
The container is placed inside the MRI scanner with the location of interest at 
the center of the bore. The fluid follows the U-shaped tube and returns to the 
reservoir. The flow rate is controlled using a valve and is monitored using a pre-
calibrated rotameter. No metallic objects should be placed close to the scanner 
to avoid accidents and interaction. 

2.2. Imaging procedure 

The test section (water-filled container with submerged 
straight tubes) was connected to the flow loop, and the entire 
system was inserted into the bore of the scanner with the test-
section placed at the iso-center (Fig. 1). A phased-array receiver 
coil was used to cover the test section to improve image quality. 

Initial scout images showed the exact location of the 
tubes in the scanner. Then, for each tube and flow rate, two 
MR velocity acquisitions were planned: one for an in-plane 
velocity measurement and one for a through-plane velocity 
measurement (to be used as a reference for comparison). For 
the through-plane velocity measurement, an imaging slice was 
placed at the iso-center of the scanner, perpendicular to the 



Fig. 2. (a) Transverse and sagittal slice orientations for through-plane and 
in-plane velocity acquisitions, respectively. (b) Since the pixel size in the 
transverse image was 1 mm, five columns of pixels were selected to match 
the 5 mm sagittal slice thickness. 

long axis of the tube under study in the transverse orientation. 
For the in-plane velocity measurement, an imaging slice was 
placed at the iso-center of the scanner, parallel to the long axis 
of the tube in the vertical (sagittal) orientation. The two slice 
orientations are shown in Fig. 2(a). The slices intersected along 
the vertical centerline of the tube (in fact, the intersection region 
was 5 mm wide encompassing the vertical tube centerline). 
Therefore, comparisons between the vertical centerline velocity 
profiles from these two acquisitions were possible. 

Each through-plane and each in-plane velocity acquisition 
was performed three times using: (a) the conventional non-
segmented MR sequence with one k-space line per segment 
(non-seg); (b) a segmented MR sequence with seven k-space 
lines per segment (seg-7); and (c) a segmented MR sequence 
with nine k-space lines per segment (seg-9). The difference 
between non-segmented and segmented k-space sequences is 
in the way k-space is filled. With the non-segmented procedure, 
only one line of k-space is filled each time the imaging sequence 
is applied. For an image of N × N pixels, N k-space lines are 
normally needed. Thus, to obtain the necessary number N of 
k-space lines for image reconstruction, data must be acquired 
over N repetitions of the imaging sequence. This can be time-
consuming, and thus problematic, when the velocity has to be 
acquired at multiple locations, in all three spatial directions, 
or under unsteady flow conditions. With advancement in MR 
hardware and software, it has been possible to acquire multiple 
k-space lines per imaging sequence. Instead of acquiring only 
one k-space line per sequence (non-segmented), a segment of 
M k-space lines can be acquired per sequence. To fill all N 
k-space lines, data must be acquired over N/M sequences 
(instead of N for the non-segmented sequence). The larger the 
number (M) of lines per segment, the faster the acquisition. 
However, in unsteady flow cases, this leads to a decrease in the 
temporal resolution. 

All of the velocity acquisitions were performed using a flip 
angle of 30◦. The  slice thickness was 5 mm and the field of 
view was 250 × 250 mm2. A  75% rectangular field of view was 
used for the non-segmented acquisitions and a 56% rectangular 
field of view was used for the segmented acquisitions. The 
voxel size (after interpolation) was 1.0 × 1.0 × 5.0 mm3 

in all cases. The velocity encoding value was 20–140 cm/s, 
depending on the magnitude of the flow. The echo time was 
varied between 3.1 and 5.6 ms (shortest possible based on 

other imaging parameters). Under these imaging conditions and 
without gating, it takes 6 s for the non-segmented acquisitions 
and approximately 1 s for the segmented acquisitions. If the 
MR scanner is triggered and the data acquisition is gated in 
order to acquire several measurements throughout the flow 
cycle (necessary when the flow is pulsatile), it takes over 3 min 
for the non-segmented acquisitions and no more than 20 s 
for the non-segmented acquisitions. Considering the pulsatile 
nature of blood flow in the arteries, it is easy to appreciate 
the clinical importance of a reliable segmented k-space MR 
velocity imaging protocol. 

2.3. Image data analysis 

All (magnitude and phase) images were transferred to a 
work-station (Ultra-10, SUN Microsystems, Inc., Palo Alto, 
CA). The images were visualized using Transform (Version 3.4, 
Research Systems, Inc., Boulder, CO). A computer program 
converted the phase values of the phase images to velocity 
values based on the  linearity between signal phase and 
proton velocity. The phase images were corrected for eddy 
currents [18] and  for contributions due to Maxwell concomitant 
gradient terms [19]. The corrections were calculated from 
the known gradient waveforms. The lumen of the tubes was 
segmented manually in the transverse images. Then, the flow 
rate was calculated by summing up the products of “pixel 
velocity” and “pixel area”. The accuracy of these flow rate 
calculations is related to the accuracy of the velocity profiles 
in the transverse images. To evaluate the in-plane velocity 
measurements, the sagittal in-plane velocity profiles were 
compared to the transverse through-plane velocity profiles in 
the intersection region of the transverse and sagittal images 
(which included the vertical tube centerline). Since the pixel 
size in the transverse image was 1 mm, five columns of 
pixels (Fig. 2(b)) were selected (with the central column at 
the centerline) to match the 5 mm sagittal slice thickness. The 
velocities in these five columns were averaged to produce one 
column that covered the same portion of the tube as the sagittal 
slice. 

Regression analysis, correlation analysis, and t-tests were 
performed to compare (a) the calculated and true flow rates; 
(b) the in-plane velocity with the through-plane velocity; and 
(c) the in-plane velocity profiles obtained using segmented 
and non-segmented techniques. Minitab (Version 13, Minitab, 
Inc., State College, PA) was used for the statistical analysis. A 
p-value < 0.05 indicated significant difference. 

3. Results 

Fig. 3 shows magnitude and phase (velocity) images 
acquired with a transverse slice and a sagittal slice. The images 
were of sufficient quality to segment the lumen of the tube and 
perform quantitative analysis. 

The through-plane measurements provided accurate flow 
rate results for all sequences as shown from the small errors in 
the calculated flow rates compared to the true flow rates (errors 
of 7.5±3.8%, 5.1±5.1%, and 4.7±5.8% for the non-seg, seg-7, 



Fig. 3. (a) Magnitude transverse image; (b) phase transverse image; (c) 
magnitude sagittal image; and (d) phase sagittal image. 

Fig. 4. Comparison of the measured flow rates with the true flow rates. 

and seg-9 sequence, respectively), and from regression analysis 
(Fig. 4, r2 ≥ 0.99, p-values = 0.00). These errors were not 
statistically different from each other as shown through t-tests 
( p > 0.05). The  centerline velocity profiles in a single column 
of pixels in the transverse images showed the well-known 
features of laminar and non-laminar flow. Laminar flow cases 
exhibited parabolic-like profiles, with a centerline velocity 
approximately twice (average of 1.97 times) as large as the 
cross-sectional average velocity. Non-laminar flow exhibited 
flatter profiles with the centerline velocity significantly less than 
twice (between 1.3 and 1.7 times) the average velocity. 

Good agreement was found between the through-plane and 
the in-plane velocity profiles at various flow rates (Fig. 5). 
Fig. 5(a) corresponds to a true flow rate of 1.0 L/min 

Fig. 5. Comparison of through-plane with in-plane velocity profiles at: (a) 
1.0 L/min (tube #1, Re = 1450); (b) 4.0 L/min (tube #1, Re = 5800); and 
(c) 5.0 L/min (tube #2, Re = 5250). 

(Re = 1450). The profiles, both acquired with the seg-7 
sequence, agree closely. The difference (defined as [sagittal − 
transverse]/transverse×100 across the profiles except for pixels 
at r/R = ±1) is −5.0 ± 4.4% (mean ± standard deviation (SD) 
across the profiles). Fig. 5(b) shows the through-plane and in-
plane velocity profiles for a true flow rate of 4.0 L/min (Re = 
5800). Both profiles were measured with the seg-9 sequence. 
The profiles agree closely, with a difference of −4.2 ± 2.0% 
(mean ± SD across the profiles). A similar agreement can be 



Fig. 6. Comparison between in-plane velocity profiles for all sequences used at: 
(a) 2.0 L/min (tube #2, Re = 2100) and (b) 7.0 L/min (tube #1, Re = 10 100). 

seen in Fig. 5(c) that shows the through-plane and in-plane 
velocity profiles for  a  flow  rate of 5.0 L/min (Re = 5250) 
using the non-seg sequence. The average difference between the 
profiles is 0.3 ± 3.6% (mean ± SD across the profiles). Strong 
correlation between the through-plane and in-plane profiles was 
found in all cases (Pearson correlation coefficients of 0.99, 1.00, 
and 0.99 for the profiles in Fig. 5(a)–(c), respectively). Similar 
levels of agreement were found for the rest of the flow rates 
tested (absolute average difference of 6% between through-
plane and in-plane profiles). 

Comparison between the velocity profiles from the 
segmented and the non-segmented sequences showed close 
agreement. Fig. 6 shows the in-plane profiles from all three 
sequences, for a flow rate of 2.0 L/min (Re = 2100) and 
7.0 L/min (Re = 10 100). For the lower flow rate, the 
differences across the profiles were as follows: seg-7 vs. non
seg = 0.1 ± 5.2%; seg-9 vs. non-seg = −0.5 ± 5.2%; seg-9 
vs. seg-7 = −0.5 ± 4.0%. The Pearson correlation coefficients 
were 0.96 between the non-seg and the seg-7 profiles, 0.97 
between the non-seg and the seg-9 profiles, and 0.97 between 
the seg-9 and the seg-7 profiles. For the higher flow rate, the 
differences were: seg-7 vs. non-seg = 2.5 ± 2.5%; seg-9 vs. 
non-seg = 1.0 ± 4.3%; seg-9 vs. seg-7 = −1.5 ± 2.8%. The 
Pearson correlation coefficients were 0.98 between the non-seg 

Fig. 7. Left: a velocity vector plot constructed by measuring and combining the 
two in-plane velocity components of water as it flows through a curved tube; 
Right: magnification immediately downstream of the top of the arch. 

and the seg-7 profiles, 0.98 between the non-seg and the seg-9 
profiles, and 0.99 between the seg-9 and the seg-7 profiles. 

4. Discussion 

Acquisition of the in-plane velocity components can provide 
useful information about two- and three-directional flow fields. 
Fig. 7 shows an example of flow in a curved tube. This 
vector plot is a result of combining the two in-plane velocity 
measurements (superior–inferior and left–right directions). 
Although such velocity fields can also be obtained using laser 
Doppler anemometry or digital particle imaging velocimetry, 
MR is the only technique to assess two- and three-directional 
flow patterns in the human body, because it is currently the 
only clinical technique to provide all three spatial velocity 
components in an imaging slice. This unique clinical feature 
of MR has led to more sophisticated methodologies that 
include multi-slice schemes such as the recently-developed 
control volume method for the quantification of flows through 
orifices [20,21]. In such cases, having a rapid technique for 
velocity acquisitions is necessary. Otherwise, the long duration 
of scanning makes these applications impractical. 

Despite its established accuracy for through-plane velocity 
measurements, there have been only a few experimental 
studies evaluating MR velocity imaging for in-plane velocity 
measurements [22–24]. Because of the difficulty to apply 
another technique (such as laser Doppler anemometry, digital 
particle image velocimetry, or Doppler ultrasound) in the MR 
scanner, it is difficult to compare the MR in-plane velocity 
data with velocity data acquired during the same experiment 
with another experimental technique. The reliability of through-
plane MR velocity measurements has been extensively shown 
to be very high. This was confirmed in this study as well, 
by examining the through-plane velocity profiles in a single 
column along the tube centerline in  the  transverse images, 
showing the well-known features of laminar (parabolic-like 
profiles, with a centerline velocity approximately twice as 
large as the cross-sectional average velocity) and non-laminar 
flow (flatter profiles with the centerline velocity significantly 
less than twice the average velocity). Therefore, in this study 
we compared in-plane MR data with through-plane MR data 
(considered as the reference data), during the same experiment 
and at the same location, to obtain useful information about the 
reliability of MR for in-plane velocity measurements. 

It should be noted that the through-plane and in-plane 
velocity profiles compared in this study are not the true 



vertical tube centerline profiles. Although the region where the 
transverse and sagittal slices meet encompasses the vertical 
tube centerline, this region is 5 mm wide (Fig. 2). As previously 
reported [22,24], the thickness of the slice affects the measured 
in-plane velocity values. If it is of interest to measure the 
centerline velocity, use of a very thick slice may cause errors 
in the velocity as high as 33% [24]. This should not affect the 
importance of the findings of this study, since the aim was not 
to measure the centerline velocity but to compare the in-plane 
and through-plane velocity profiles in the same region. This is 
the reason for which there was a match between the sagittal 
slice thickness (5 mm) and the number of columns (five) of 
pixels in the transverse image. Despite any imperfections in the 
slice profiles, the agreement found between the velocity profiles 
provides useful information about the reliability of segmented 
k-space MR in measuring the in-plane velocity. 

This study evaluated MR velocity imaging in measuring 
in-plane velocity under steady flow conditions. Despite the 
fact that the majority of non-medical flow applications involve 
steady flow conditions, our next step will be to extend the 
investigation to unsteady flows and consider additional factors, 
such as the connection between k-space segmentation and 
temporal resolution. 

5. Conclusion 

Steady flow experiments in straight rigid tubes showed 
that magnetic resonance velocity imaging can provide in-
plane velocity measurements that agree closely with through-
plane velocity measurements at the same location. k-space 
segmentation provides ultra-fast acquisition of reliable in-plane 
velocity data, which is of importance considering the increasing 
need for faster, non-invasive, three-directional flow velocity 
measurements. 
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