333 research outputs found

    A STUDY ON THE PHYSICO-CHEMICAL PARAMETERS OF SOIL SAMPLES FROM GROUNDNUT AGRICULTURAL FIELDS IN KALWAKURTY, NAGARKURNOOL DISTRICT, TELANGANA STATE

    Get PDF
    Soil is a complex and dynamic mixture of organic and inorganic materials that supports the growth of plants and sustains life on Earth. This study seeks to collect soil samples from groundnut agricultural fields in Kalvakurthy Mandal, Nagarkurnool District, Telangana state and analyze their physico-chemical parameters. The phyico-chemical parameters like pH, electrical conductivity, soil organic Carbon, Nitrogen, Phosphorus, Potassium, Sulfur, Copper, Zinc and Manganese were analyzed from the collected soil samples. The analysis of the physico-chemical parameters reveals a soil environment conducive to groundnut cultivation in agricultural fields of Kalwakurthy. The moderate to good levels of available Nitrogen, Phosphorus, and Potassium, along with satisfactory levels of other essential nutrients, suggest that the soil can support healthy growth of groundnut crop. The results highlight the importance of balanced nutrient management practices to optimize the yield and quality of groundnut. However, it is important to note that while these results provide crucial insights, localized factors, such as irrigation practices and crop rotations, should also be considered for comprehensive soil health management. Continuous monitoring, precise nutrient application, and prudent soil management will be pivotal in maximizing groundnut yield and quality, ensuring long-term agricultural sustainability in the region

    O pior caso estático de otimização do tempo de execução utilizando dpso para arquitetura ASIP

    Get PDF
    Introduction: The application of specific instructions significantly improves energy, performance, and code size of configurable processors. The design of these instructions is performed by the conversion of patterns related to application-specific operations into effective complex instructions. This research was presented at the icitkm Conference, University of Delhi, India in 2017. Methods: Static analysis was a prominent research method during late the 1980’s. However, end-to-end measurements consist of a standard approach in industrial settings. Both static analysis tools perform at a high-level in order to determine the program structure, which works on source code, or is executable in a disassembled binary. It is possible to work at a low-level if the real hardware timing information for the executable task has the desired features. Results: We experimented, tested and evaluated using a H.264 encoder application that uses nine cis, covering most of the computation intensive kernels. Multimedia applications are frequently subject to hard real time constraints in the field of computer vision. The H.264 encoder consists of complicated control flow with more number of decisions and nested loops. The parameters evaluated were different numbers of A partitions (300 slices on a Xilinx Virtex 7each), reconfiguration bandwidths, as well as relations of cpu frequency and fabric frequency fCPU/ffabric. ffabric remains constant at 100MHz, and we selected a multiplicity of its values for fCPU that resemble realistic units. Note that while we anticipate the wcet in seconds (wcetcycles/ f CPU) to be lower (better) with higher fCPU, the wcet cycles increase (at a constant ffabric) because hardware cis perform less computations on the reconfigurable fabric within one cpu cycle.    Introducción: la aplicación de instrucciones específicas mejora significativamente la energía, el rendimiento y el tamaño del código de los procesadores configurables. El diseño de estas instrucciones se realiza mediante conversión de patrones relacionados con operaciones específicas de la aplicación con instrucciones complejas y efectivas. Esta investigación se presentó en la Conferencia icitkm, Universidad de Delhi, India en 2017. Métodos: el análisis estático fue un método de investigación prominente durante la década de 1980; sin embargo, las mediciones de extremo a extremo son un enfoque convencional en los entornos industriales. Ambas herramientas de análisis estático se desempeñan a un alto nivel para determinar la estructura del programa que funciona en el código fuente, o que se ejecuta en un binario desmontado. Es posible trabajar a bajo nivel si la información de tiempo de hardware real para la tarea ejecutable presenta las características deseadas.  Introdução: a aplicação de instruções específicas melhora significativamente a energia, o desempenho e o tamanho do código dos processadores configuráveis. O desenho dessas instruções é realizado mediante a conversão de padrões relacionados com operações específicas da aplicação com instruções complexas e efetivas. Esta pesquisa foi apresentada na Conferência icitkm, Universidade de Délhi, Índia em 2017.Métodos: a análise estática foi um método de pesquisa proeminente durante a década de 1980; contudo, as medições de extremo a extremo são uma abordagem convencional nos contextos industriais. Ambas as ferramentas de análise estática se desempenham a um alto nível para determinar a estrutura do programa que funciona no código fonte ou que se executa num binário desmontado. É possível trabalhar a baixo nível se a informação de tempo de hardware real para a tarefa executável apresentar as características desejadas.Resultados: experimentamos, testamos e avaliamos com uma aplicação de codificação H.264 que utiliza nove elementos de configuração e cobre a maioria dos núcleos de cálculo intensivo. As aplicações multimídias estão com frequência sujeitas a duras restrições em tempo real no campo da visão por computador. O codificador H.264 consiste num complicado fluxo de controle com mais número de decisões e circuitos aninhados. Os parâmetros avaliados foram de diferentes números de particiones A (300 cortes num Xilinx Virtex 7 cada um) e largos de banda de reconfiguração, bem como de relações de frequência de cpu e frequência de fabric fcpu/ffabric. ffabric permanece constante a 100MHz. Selecionamos vários de seus valores para fcpu que são semelhantes a unidades realistas. É importante considerar que, ainda quando antecipamos o wcet em segundos (ciclos wcet/ fcpu), para que fossem inferiores (melhores) com fcpu mais alta, os ciclos wcet aumentam (num tecido constante f) porque os ci de hardware realizam menos cálculos no tecido reconfigurável dentro de uma cpu de ciclo.Conclusões: o método é similar à hibridação de árvores e métodos baseados en rotas, os quais são menos precisos, e ao método I pet global, que é mais preciso. A otimização é avaliada com o algoritmo de otimização por enxame de partículas discretas (dpso) para wcet. Para várias aplicações do mundo real que envolvem processadores integrados, a técnica proposta desenvolve conjuntos de instruções melhoradas em comparação com os conjuntos de instruções nativas.Originalidade: para a estimativa de wcet, deve-se considerar a análise de fluxo, a análise de baixo nível e as fases de cálculo do programa. A fase de análise de fluxo ou alto nível de análise ajuda a extrair o comportamento dinâmico do programa que proporciona informação sobre as funções invocadas, sobre o número de iterações de circuito, as dependências entre sentenças if, etc. Isso se deve a que a análise desconhece a rota de execução correspondente ao tempo de execução mais longo.Limitações: essa rota é executada dentro de uma iteração do núcleo que depende da natureza de mb, seja i-mb, seja p-mb, determinada pelo núcleo de estimativa de movimento, quer dizer que sua entrada depende das rotas i-mb e p-mb, que também contêm elementos de configuração separados que conduzem à instabilidade da rota do pior dos casos; em outras palavras, adicionar mais partições à rota atual do pior dos casos pode fazer com que a outra rota se converta no pior dos casos. A tubulação se detém pela demora de reconfiguração e continua ao ingressar no núcleo assim que finaliza o processo de reconfiguraçã

    Local Neighborhood Features for 3D Classification

    Full text link
    With advances in deep learning model training strategies, the training of Point cloud classification methods is significantly improving. For example, PointNeXt, which adopts prominent training techniques and InvResNet layers into PointNet++, achieves over 7% improvement on the real-world ScanObjectNN dataset. However, most of these models use point coordinates features of neighborhood points mapped to higher dimensional space while ignoring the neighborhood point features computed before feeding to the network layers. In this paper, we revisit the PointNeXt model to study the usage and benefit of such neighborhood point features. We train and evaluate PointNeXt on ModelNet40 (synthetic), ScanObjectNN (real-world), and a recent large-scale, real-world grocery dataset, i.e., 3DGrocery100. In addition, we provide an additional inference strategy of weight averaging the top two checkpoints of PointNeXt to improve classification accuracy. Together with the abovementioned ideas, we gain 0.5%, 1%, 4.8%, 3.4%, and 1.6% overall accuracy on the PointNeXt model with real-world datasets, ScanObjectNN (hardest variant), 3DGrocery100's Apple10, Fruits, Vegetables, and Packages subsets, respectively. We also achieve a comparable 0.2% accuracy gain on ModelNet40

    IN VITRO TOTAL PHENOLICS, FLAVONOIDS CONTENTS, ANTIOXIDANT AND ANTIMICROBIAL ACTIVITES OF VARIOUS SOLVENT EXTRACTS FROM THE MEDICINAL PLANT PHYSALIS MINIMA LINN

    Get PDF
    Objective: To estimate the in vitro total phenolics, flavonoids contents, antioxidant and antimicrobial activities of various solvent extracts from the medicinal plant Physalis minima Linn.Methods: The crude bioactive were extracted from the dried powder of Physalis minima using methanol, ethyl acetate, chloroform and hexane solvents. Total phenolic content (TPC) and total flavonoid content (TFC) were estimated using Folin-Ciocalteu and aluminium chloride colorimetric methods respectively. 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assays were used to determine the in vitro antioxidant capacity. The antimicrobial assay was done through agar well diffusion; minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using broth microdilution methods against the Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris) and Gram-positive bacteria (Staphylococcus aureus).Results: TPC expressed as gallic acid equivalents (GAE) ranged from 60.27±1.73-151.25±2.50 mg GAE/g dry weight, and TFC expressed as quercetin equivalents (QE) ranged from 56.66±0.80-158.84±2.30 mg QE/g dry weight. Methanol extract showed the highest antioxidant activity followed by ethyl acetate, chloroform, hexane extract and the IC50 values of methanol extract for scavenging DPPH and ABTS free radicals were 280.23±5.75-173.40±0.38µg/ml, respectively. All the extracts have shown potent antimicrobial activity for the zone of inhibition ranged from 9-35 mm; MICs and MBCs values ranged from 0.125-4.0 and 0.25-8.0 mg/ml, respectively towards tested pathogenic species.Conclusion: The comprehensive analysis of the present results demonstrated that Physalis minima possess high potential antioxidant properties which could be used as a viable source of natural antioxidants in treating infections caused by above-mentioned pathogens

    Synthetic rewiring of Chlamydomonas reinhardtii to improve biological H2 production

    Get PDF
    Venkanna D. Synthetic rewiring of Chlamydomonas reinhardtii to improve biological H2 production. Bielefeld: Universität Bielefeld; 2018.The green algae, Chlamydomonas reinhardtii is capable of harvesting sunlight to synthesize energy needs and also evolve hydrogen under stress conditions. Photolysis of water giving rise to protons and electrons as substrates for hydrogen producing enzyme (hydrogenase) backed by cellular respiration ensures establishment of anaerobiosis, which is a pre-requisite for hydrogen production. Due to the properties of hydrogen, it has gained widespread attention as a clean fuel which has also set forth a development in the Chlamydomonas community. Photobiological hydrogen production from green algae is currently not economically viable due to low efficeincy of light to H2 conversion. It has been shown that using a systematic approach towards genetically engineering strains can improve hydrogen yields. The aim of the following work was to improve hydrogen production via strain egineering. A previous study of transcriptome and metabolome of hydrogen producing culture served as a basis for the following work. In the following study C. reinhardtii wild type CC124, mutant stm6 and stm6glc4 were used. CC124 is routinely used as a hydrogen producing wild type strain whereas stm6 is a high hydrogen producing mutant with a manipulated state transition. stm6glc4 is a derivative of stm6 which is capable of taking up glucose and synthesize more starch that can fuel indirect pathway of hydrogen production. Hydrogen production was induced in air tight cultures of Chlamydomonas via sulfur deprivation. Potential target genes such as isoflavone reductase like protein (IFR1) and sulfite reductase (SIR1) were identified to be upregulated during H2 production. A comparison between a high hydrogen producer (stm6glc4) and its parental (low hydrogen producing wild type, CC406) showed that the expression of IFR1 was higher in the wild type. The role of IFR1 has been associated with stress tolerance in maize, rice, etc. but its function in Chlamydomonas is still unknown. SIR1 helps in sulfur assimilation process but by doing so it poses a competition for hydrogenase under sulfur deprived anaerobic hydrogen production conditions. Hence, a reverse genetic approach was adapted to counter these potential target genes. Artificial microRNA (amiRNA) was used to create IFR1 and SIR1 knockdowns. The phenotype of the knockdowns was studied and their positive implication on H2 production was established. IFR1 knockdown was first created in CC124 wild type strain. Two knockdown mutants IFR1-1 and IFR1-6 with 35% and 5% of control level proteins were identified and confirmed by western blots. The phenotype of IFR1 knockdown mutants was analyzed by performing growth studies such as sulfur and nitrogen starvation, high light stress, ROS and RES stress. An electrophile response element was found in the promoter region of IFR1 which is believed to be under the control of singlet oxygen resistant (sor1) protein. IFR1::YFP fusion protein was done to confirm the cytosolic localization of IFR1. The knockdown mutants were found to be sensitive to RES due to a perturbed RES homeostasis but interestingly showed a prolonged PSII activity (Fv/Fm) under sulfur depletion. The sustained PSII activity resulted in a prolonged phase of hydrogen production (~2fold more hydrogen). The contribution of electrons (~80%) for a direct pathway of hydrogen production from a sustained PSII activity was confirmed by applying a PSII inhibitor (DCMU). Based on these findings, benefits of IFR1 knockdown was extended to the mutant strain stm6. This again resulted in a sustained PSII activity which translated to ~70% more hydrogen production. The competition for electrons between hydrogenase and SIR1 was overcome by applying amiRNAs in the mutant stm6glc4. The amiRNAs were fused to a luciferase reporter to influence the knockdown screening. Two knockdown mutants sgh2 and sgh3 with ~20-30% reduced levels of SIR1 transcript were identified via RTqPCR and later confirmed by westernblot. The growth phenotype of the mutants were analyzed under photoautotrophic and photomixotrophic growths. The knockdown mutants were found to be slightly retarded in growth as compared to parental strain due to perturbed sulfur assimilation. Analysis of the hydrogen production phase showed that the knockdown mutants attained anaerobiosis faster than the parental strain and also had an increased rate of H2 production (~17-35% higher rates compared to parental strain). The mutants retained the ability to take up glucose which contributed to an increase in hydrogen produced via indirect pathway. Though the mutants were more susceptible to sulfur starvation, the higher H2 production rates boosted the overall H2 productivity by ~35-55%. This study showed that molecular target such as IFR1 and SIR1 could be manipulated genetically to improve biohydrogen production
    corecore