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Summary 

 The green algae, Chlamydomonas reinhardtii is capable of harvesting sunlight 

to synthesize energy needs and also evolve hydrogen under stress conditions. 

Photolysis of water giving rise to protons and electrons as substrates for hydrogen 

producing enzyme (hydrogenase) backed by cellular respiration ensures 

establishment of anaerobiosis, which is a pre-requisite for hydrogen production. Due 

to the properties of hydrogen, it has gained widespread attention as a clean fuel which 

has also set forth a development in the Chlamydomonas community. Photobiological 

hydrogen production from green algae is currently not economically viable due to low 

efficeincy of light to H2 conversion. It has been shown that using a systematic approach 

towards genetically engineering strains can improve hydrogen yields. The aim of the 

following work was to improve hydrogen production via strain egineering. A previous 

study of transcriptome and metabolome of hydrogen producing culture served as a 

basis for the following work.   

In the following study C. reinhardtii wild type CC124, mutant stm6 and stm6glc4 

were used. CC124 is routinely used as a hydrogen producing wild type strain whereas 

stm6 is a high hydrogen producing mutant with a manipulated state transition. stm6glc4 

is a derivative of stm6 which is capable of taking up glucose and synthesize more 

starch that can fuel indirect pathway of hydrogen production. Hydrogen production was 

induced in air tight cultures of Chlamydomonas via sulfur deprivation. Potential target 

genes such as isoflavone reductase like protein (IFR1) and sulfite reductase (SIR1) 

were identified to be upregulated during H2 production. A comparison between a high 

hydrogen producer (stm6glc4) and its parental (low hydrogen producing wild type, 

CC406) showed that the expression of IFR1 was higher in the wild type. The role of 

IFR1 has been associated with stress tolerance in maize, rice, etc. but its function in 

Chlamydomonas is still unknown. SIR1 helps in sulfur assimilation process but by 

doing so it poses a competition for hydrogenase under sulfur deprived anaerobic 

hydrogen production conditions. Hence, a reverse genetic approach was adapted to 

counter these potential target genes. 

Artificial microRNA (amiRNA) was used to create IFR1 and SIR1 knockdowns. 

The phenotype of the knockdowns was studied and their positive implication on H2 

production was established. IFR1 knockdown was first created in CC124 wild type 

strain. Two knockdown mutants IFR1-1 and IFR1-6 with 35% and 5% of control level 

proteins were identified and confirmed by western blots. The phenotype of IFR1 
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knockdown mutants was analyzed by performing growth studies such as sulfur and 

nitrogen starvation, high light stress, ROS and RES stress. An electrophile response 

element was found in the promoter region of IFR1 which is believed to be under the 

control of singlet oxygen resistant (sor1) protein. IFR1::YFP fusion protein was done to 

confirm the cytosolic localization of IFR1. The knockdown mutants were found to be 

sensitive to RES due to a perturbed RES homeostasis but interestingly showed a 

prolonged PSII activity (Fv/Fm) under sulfur depletion. The sustained PSII activity 

resulted in a prolonged phase of hydrogen production (~2fold more hydrogen). The 

contribution of electrons (~80%) for a direct pathway of hydrogen production from a 

sustained PSII activity was confirmed by applying a PSII inhibitor (DCMU). Based on 

these findings, benefits of IFR1 knockdown was extended to the mutant strain stm6. 

This again resulted in a sustained PSII activity which translated to ~70% more 

hydrogen production. 

The competition for electrons between hydrogenase and SIR1 was overcome 

by applying amiRNAs in the mutant stm6glc4. The amiRNAs were fused to a luciferase 

reporter to influence the knockdown screening. Two knockdown mutants sgh2 and 

sgh3 with ~20-30% reduced levels of SIR1 transcript were identified via RTqPCR and 

later confirmed by westernblot. The growth phenotype of the mutants were analyzed 

under photoautotrophic and photomixotrophic growths. The knockdown mutants were 

found to be slightly retarded in growth as compared to parental strain due to perturbed 

sulfur assimilation. Analysis of the hydrogen production phase showed that the 

knockdown mutants attained anaerobiosis faster than the parental strain and also had 

an increased rate of H2 production (~17-35% higher rates compared to parental strain). 

The mutants retained the ability to take up glucose which contributed to an increase in 

hydrogen produced via indirect pathway. Though the mutants were more susceptible 

to sulfur starvation, the higher H2 production rates boosted the overall H2 productivity 

by ~35-55%. This study showed that molecular target such as IFR1 and SIR1 could be 

manipulated genetically to improve biohydrogen production.   
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1.0  Introduction 

The following chapter will provide a brief history on “algae bio-hydrogen”, followed 

by an introduction to the eukaryotic green algae, C. reinhardtii. An overview of 

hydrogen production in the model organism and the underlining significance of sulfur 

deprivation will be discussed. Cellular acclimatization to sulfur depletion and changes 

in transcriptome serve as a foundation for the following study. Putative hydrogen 

enhancing target gene and a reliable scheme to tackle them with a knockdown strategy 

is covered. The potential of immobilization to improve robustness of hydrogen 

production and influence of RES/ROS homeostasis in cellular function will be 

highlighted. 

 

1.1 General Introduction 

 The current scenario of global warming is an outcome of a growing global energy 

demand which is extensively fueled by fossil fuels (Adler et al. 2017; Frame et al. 2017). 

Usage of fossil fuels is not a sustainable solution due to the rising discrepancy between 

depleting resource and growing needs. Development of alternative renewable fuels 

such as solar, wind and hydro energy, biodiesel (Patel et al. 2012), hydrogen (T K Antal 

et al. 2011), etc is required to meet the energy demands of the future and also improve 

earth’s climate. Of the several alternative fuels being developed, hydrogen constitutes 

one of the most promising high energy carrier fuels whose combustion yields water. 

However, the applicability of H2 as a fuel gravely depends on the economics of its 

sustainable large scale production. 

Solar energy is an infinite source of renewable energy which could be readily 

harvested for sustainable production of microalgal biofuels (Norsker et al. 2011). 

Microalgae are known to effectively harvest and convert light energy into energy of 

chemical bonds which can be stored as fuels (T K Antal et al. 2011). One of the most 

direct means of obtaining a clean and promising fuel is production of biohydrogen 

(Allakhverdiev et al. 2009). Solar driven hydrogen production by microalgae is 

considered as a green process and a feasible alternative (Allakhverdiev et al. 2009; 

Ghirardi et al. 2009; Rupprecht et al. 2006) to the conventional method of hydrogen 

production i.e. steam reforming of natural gas (Kothari et al. 2008). 

Hydrogen photoproduction by microalgae is coupled to photosynthesis and 

involves hydrogen catalyzing enzymes such as [FeFe]-hydrogenase in eukaryotes 

(Happe et al. 1993) and nitrogenase in prokaryotes (Howarth et al. 1985). Only few 
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species have evolved the ability to produce hydrogen from sunlight by recombining the 

protons and electrons generated from photolysis of water (Gaffron et al. 1942; Melis et 

al. 2000). However, the present means of hydrogen production is not efficient for a 

sustainable production process, partly because H2 production is plagued by 

competition from metabolic processes like photosynthesis, respiration and 

fermentation (Kruse et al. 2005). The major challenge hindering H2 process is the 

inactivation of the hydrogen catalyzing enzymes in presence of oxygen (Ghirardi et al. 

2000). A visionary method was applied with eukaryotic green algae (C. reinhardtii) to 

create a temporal separation of water splitting and hydrogen evolution by subjecting 

cells to sulfur starvation in a sealed environment (Melis et al. 2000). Further 

improvements in biohydrogen production is required to meet sustainable large scale 

production which can be realized by tweaking the metabolic pathways via molecular 

biology (refer to chapters 4 and 5). 

 
1.2 A look back on time: Algae hydrogen production 

Hydrogen metabolism is predominantly observed in microorganisms belonging 

to domains of bacteria, archaea and eukaryotes (Ghirardi et al. 2000). Species 

belonging to the aforementioned domains can either use hydrogen to reduce certain 

reactions or synthesize hydrogen via fine-tuned biochemical pathways that are 

accompanied with physiological changes (Gfeller et al. 1984; Zhang et al. 2002). Few 

microalgae can utilize protons and electrons generated by photolysis of water and 

combine the substrates to give molecular hydrogen. Hydrogen production is catalyzed 

by enzymes that function under hypoxia such as hydrogenase (Happe et al. 1993) or 

ATP requiring nitrogenase (Berchtold et al. 1979). Hydrogenase have a higher turnover 

number compared to nitrogenase and do not require energy derived from ATP to 

catalyze the reaction. The following chapter will brief about the history and latest 

reports of molecular biology mediated enhancement of hydrogen production in 

eukaryotic green algae. 

Hydrogen metabolism was first detected in the eukaryotic green algae 

Scenedesmus, where CO2 was photo-reduced with the consumption of hydrogen 

(Gaffron 1939). It was not until 1942, when a landmark in the area of biological 

hydrogen was attained with the first evidence of photobiological hydrogen production 

from Scenedesmus obliqus (Gaffron et al. 1942). H2 production was found distributed 

in several algae such as fresh water Chlamydomonas reinhardtii (Melis et al. 2000), 

Chlorella vulgaris (Hwang et al. 2014), marine green algae Chlorococcum littorale 
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(Ueno et al. 1999), Lobochlamys culleus (Meuser et al. 2009), etc. The ease of growth 

and readily available molecular tools favored C. reinhardtii to be chosen as a model 

organism to further pursue hydrogen production. However, the enzyme catalyzing 

hydrogen production (hydrogenase, HydA1) was reported to be irreversibility inhibited 

in the presence of molecular oxygen (Happe et al. 1993). Unless photosynthetic 

oxygen could be spatially entangled from hydrogen production, sustainable H2 

production could not be achieved. Scientists worked on various procedures to establish 

hydrogen production, eg. dark adaptation followed by illumination yielded 0.02-0.34 

mlH2 l-1 h-1 (Brand et al. 1989), flushing dark adapted cultures with argon to create 

anaerobic environment for H2 production (Happe et al. 1994) and adapting cells to 

dark/light cycles with an aim to establish a two phase biophotolysis yielded ~0.65-0.85 

mlH2 (Miura et al. 1982). A breakthrough was achieved by Melis and co-workers where 

for the first time a two stage H2 production process with rates of 2.05 mlH2 l-1 h-1 was 

established by depriving the cells of sulfur (Melis et al. 2000). 

Development of sulfur deprived hydrogen production under continuous 

illumination served as a platform for future studies. However, the prolonged lack of 

sulfur limited the operation time to ~120 h because the algal cells could not generate 

enough energy to sustain (refer to Chapter 1.6). The issue of limited H2 production 

phase was addressed by micro feeding sulfur leading to a prolongation of 20-100 days 

(Kim et al. 2010; Laurinavichene et al. 2006; Oncel et al. 2009). Careful consideration 

of process parameters such as pH (Kosourov et al. 2003), partial pressure of H2 

(Kosourov et al. 2012), temperature, culture mixing, light regime and intensity 

(Tamburic et al. 2012) have all shown to play a vital role in improving H2 production 

(Wang et al. 2009). Of the several methods available the most direct way to improve 

hydrogen production is by genetic engineering (Dubini et al. 2014). Significant 

hydrogen producing mutants developed since 2000 are shown in Table 1. 
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Table 1: Hydrogen production of genetically engineered eukaryotic green algae 

 

Species / Strain Description Total vol. 

of H2 [ml/l] 

Chlorophyll 

[µg/ml] 

Reference 

C. reinhardtii 

pgr5 

Knockout of proton gradient 

regulation like protein 5 

850 15 (Steinbeck 

et al. 2015) 

C. reinhardtii 

pgr5/pgr1 

Double knockout of PGR1 

and PGR5 

610 15 (Steinbeck 

et al. 2015) 

C. reinhardtii 

Fnr 

Knockdown of Ferredoxin-

NADP reductase 

588 25 (Sun et al. 

2013) 

Chlorella sp. DT 

antiPSBO 

Knockdown of PSBO 350 -NA- (Lin et al. 

2013) 

C. reinhardtii 

stm6glc4L01 

Simultaneous knockdown of 

LHCBM 1, 2 and 3 

390 14.5 (Oey et al. 

2013) 

C. reinhardtii 

L159I-N230Y 

Double point mutation of D1 

protein 

700 18 (Scoma et 

al. 2012) 

C. reinhardtii 

pgrl1 

Knockout of proton gradient 

regulation like protein 1 

580 15 (Tolleter et 

al. 2011) 

C. reinhardtii 

stm6glc4 

Integration of hexose 

uptake protein 1 to stm6 

150% 

stm6 

26 (Doebbe et 

al. 2007) 

C. reinhardtii 

stm6 

DNA insertional 

mutagenesis blocks state 

transition 

540 26 (Kruse et al. 

2005) 

C. reinhardtii 

Y67A 

Site directed mutagenesis 

reduces activity of RuBisCo  

16  8 (Pinto et al. 

2013) 

C. reinhardtii 

tla1 

Truncated antenna ~4 folds 

higher 

than 

CC4169 

-NA- (Kosourov 

et al. 2011) 

C. reinhardtii 

antiSulp 

Repression of Sulp gene 

impairs sulfate uptake 

~4 folds 

higher 

than 

CW15 

-NA- (Chen et al. 

2005) 

 
NA: Not Applicable 
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1.3 Chlamydomonas reinhardtii as a model organism 

Chlamydomonas reinhardtii (C. reinhardtii), is a unicellular, eukaryotic green 

algae that can grow in light (autotrophic) or in dark (heterotrophic) in presence of 

acetate (Harris 2009). Chlamydomonas is classified under the kingdom of viridiplantae 

into class chlorophyceae with several species isolated from many common sources 

like soil, fresh water, sea, etc. The model organism C. reinhardtii, is microscopic 

~10 µm in size whose motility is assisted by two apical flagella (fig.1). The cell 

encompasses a predominant cup-shaped chloroplast which houses the photosynthetic 

machinery and the chloroplast genome. Several vital metabolic processes such as 

biosynthesis of starch, lipids, carotenoids and anaerobic process like hydrogen 

production occur within the chloroplast (Ball 1998; Ghirardi et al. 2000; Libessart et al. 

1995; Lohr et al. 2005; Work et al. 2010). Mitochondria, chloroplast and nucleus house 

their respective genomes. An eyespot helps in phototaxis (Stavis et al. 1973). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A schematic representation of C. reinhardtii cell derived from transmission 

electron micrograph as shown by (Merchant et al. 2007). A distinct nucleus housing the 

nuclear genome, mictochondria, eye spot and cup-shaped chloroplast with pyrenoid are 

shown. Flagella anchored to the basal body along with a cross section of the flagellar axoneme 

showing nine outer doublets and central pair microtubules is depicted. 

  

Over a billion years ago, green algae belonging to chlorophyceae diverged from 

land plants with cell walls composed of hydroxyproline-rich glycoproteins (Merchant et 

al. 2007). The cell wall is associated with sugars such as arabinose, galactose, glucose 
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and mannose (Ferris et al. 2001; Woessner et al. 1992). Chlamydomonas can 

reproduce asexually and nitrogen limitation triggers sexual reproduction. In vegetative 

form the genome of C. reinhardtii is haploid, making it a “hot target” for gene 

manipulation. The genome was successfully sequenced and identified to be ~120 Mb 

in size, carrying over 15000 genes on 17 chromosomes (Merchant et al. 2007). 

C. reinhardtii has served as a model organism for several studies because of 

the ease with which it can be grown either photoautotrophically, heterotrophically or 

mixotrophically. The presence of a large chloroplast ensures efficient harvest of solar 

energy resulting in superior biohydrogen production compared to other chlorophycean 

algae (Meuser et al. 2009). The availability of well annotated mitochondrial (Vahrenholz 

et al. 1993), chloroplast (Maul et al. 2002) and nuclear (Merchant et al. 2007) genome, 

along with transcriptome (Nguyen et al. 2011; Toepel et al. 2013), metabolome 

(Doebbe et al. 2010; Matthew et al. 2009) and proteome (Chen et al. 2010; Wienkoop 

et al. 2010) makes chlamydomonas a suitable host for genetic manipulation. These 

advancements have paved way to genetically improve strains and use them as an 

industrial biotechnological host (Scaife et al. 2015).  

Genetic manipulation of mitochondria (Randolph-Anderson et al. 1993) and 

chloroplast (Boynton et al. 1988) genomes occur via homologous recombination which 

has led to C. reinhardtii being termed as photosynthetic yeast (Rochaix 1995). 

However, nuclear transformation is a tedious task as it does not comply by the rules of 

homologous recombination (Zorin et al. 2005), making random insertional mutagenesis 

(Dent 2005) or UV mutagenesis (Schierenbeck et al. 2015) as preferred means for 

developing knockout mutants. Genetic transformations can be accomplished by 

particle bombardment (Boynton et al. 1988), electroporation (Shimogawara et al. 1998; 

Yamano et al. 2013), glass bead (Kindle 1990) or  agrobacterium mediated 

transformation (Kumar et al. 2004). Distinct selection markers are available to aid 

selection of transformants with desired phenotype (Debuchy et al. 1989; Goldschmidt-

Clermont 1991; Lumbreras et al. 1998; Mayfield et al. 1990). Codon optimized reporter 

genes such as GFP (Fuhrmann et al. 1999) and luciferase (Fuhrmann et al. 2004) have 

been shown to assist nuclear gene expression. Numerous native promoters are 

established and routinely used for expression studies. Frequently used constitutive 

promoters include HSP70A (Schroda et al. 2000), RBCS2 (Lumbreras et al. 1998) and 

PSAD (Fischer et al. 2001) whereas inducible promoters such as ammonium 

responsive NIT1 (Ohresser et al. 1997), CO2 responsive CA1 (Villand et al. 1997) and 
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iron responsive ATX1 (Fei and Deng 2007) are also available. Knockout mutants have 

been created for genetic analysis by random insertional mutagenesis (Gonzalez-

Ballester et al. 2011; Li et al. 2016; Posewitz et al. 2005; Zhang et al. 2014) or TILLING 

(Targeting Induced Local Lesions In Genome) (Gilchrist et al. 2005). However, the 

mutants created need to be screened via PCR or phenotypic screening which is labor 

and time intensive. The only other alternative presently available for a targeted 

manipulation of genome is by RNA knockdown (Molnar et al. 2009). This method has 

been successfully proven to downregulate target pathways in C. reinhardtii (Burgess 

et al. 2012; Li et al. 2015; Sun et al. 2013). With such a bulk information and molecular 

tools, C. reinhardtii could be made a work horse for industrial biotechnology. 

 

1.4 Hydrogen production by C. reinhardtii 

 Hydrogen production by microalgae was first reported in the anaerobic adapted 

green algae Scenedesmus (Gaffron 1939; Gaffron et al. 1942). It was shown that green 

algae possess special enzymes termed hydrogenase which combine protons arising 

from water photolysis with electrons to yield molecular hydrogen. After several decades 

of research, C. reinhardtii was found to have the highest hydrogen production rates 

among chlorophyceae (Timmins et al. 2009). Chlamydomonas generates ATP and 

synthesizes organic compounds during oxygenic photosynthesis. However, subjecting 

the algal cells to hypoxic conditions leads to the induction of oxygen sensitive FeFe-

hydrogenases (HydA1 and HydA2) that catalyze reversible reaction of hydrogen 

production (Happe et al. 1993). HydA1 is the most important of the two hydrogenases 

encoded by Chlamydomonas as shown by a HydA2 knockdown study (Godman et al. 

2010). HydA1 is highly sensitive to molecular oxygen causing irreversible inactivation 

within minutes of exposure (Stripp et al. 2009).  

Hydrogen production not only helps in generating ATP but also serves as a 

safety valve in releasing the reductant burden that has built up within the cell during 

anaerobic conditions (Rupprecht et al. 2006). Hydrogen production in C. reinhardtii is 

known to occur under anaerobic conditions via direct (PSII dependent) and indirect 

(PSII independent) pathways, where both these pathways require the photosynthetic 

electron transport chain (PETC) for efficient conduction of electrons through PSI to 

ferredoxin (Fdx) and finally hydrogenase (fig.2). The biggest difference between the 

two pathways is the source from which the electrons are generated. Direct pathway 

involves generation of electrons via photolysis of water whereas in the indirect pathway 
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reductant (NADH) arising from starch metabolism fuel electrons into the PETC via the 

enzyme NADPH-plastoquinone reductase (NPQR) (Ghirardi et al. 2009; Melis 2007). 

Another indirect pathway for hydrogen production involves the direct reduction of 

ferredoxin by pyruvate ferredoxin oxidoreductase (Grossman et al. 2011; Philipps et 

al. 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: A modified pictorial representation of hydrogen production pathways in 

C. reinhardtii as shown by (Grossman et al. 2011). PSII-dependent direct pathway (red 

dashed line) and PSII-independent indirect pathway via NADPH-plastoqunione reductase 

(NPQR) (purple dashed line) for hydrogen production is shown. Both pathways involve 

reduction of plastoquinone (PQ) pool and transfer of electrons through carriers such as 

cytochrome b6f complex (Cytb6f) and plastocyanin (PC) to PSI. At PSI, reduction of ferredoxin 

(FDX) and subsequent transfer of electrons to hydrogenase (H2ase) occurs. Another pathway 

fueling H2 production under dark anoxic conditions (green dashed line) involves coupling of 

pyruvate oxidation with FDX reduction by the enzyme pyruvate-FDX-oxidoreductase (PFR1). 

 

1.5 FeFe-hydrogenase drives hydrogen production in C. reinhardtii 

 The first finding of hydrogen production (Gaffron 1939) paved way for several 

milestones in the field of algae biohydrogen. Studies analyzing several unicellular 

green algae showed C. reinhardtii to be the most efficient of them all (Ben-Amotz et al. 

1975; Stuart et al. 1972). The enzyme hydrogenase catalyzes hydrogen production by 

combining two protons with two electrons to yield molecular hydrogen. 

Chlamydomonas hydrogenase was characterized (Happe et al. 1993) to comprise of 

PSII-dependent 
pathway 

PSII 
Independent 

pathway 

Dark anoxia pathway 
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an Fe metal ion core and the enzyme was reported to be localized in the chloroplast 

(Happe et al. 1994). Hydrogenase usually contain one or more FeS clusters that assist 

electron transfer (Armstrong 2004). Chlamydomonas genome encodes two 

hydrogenases (HydA1, HydA2) of which HydA1 is the predominant enzyme as shown 

by RNA silencing study (Godman et al. 2010). 

HydA1 is highly sensitive to oxygen (Stripp et al. 2009), hence the enzyme is 

induced and functional only under strict anaerobic conditions (Happe et al. 2002). The 

enzyme is about 53 kDa, comprising of a [4Fe4S] cluster connected to a [2Fe2S] 

cluster which is stabilized by a CO and CN ligand (fig.3) (Peters 1999; Posewitz et al. 

2009).  

 

 

 

 

 

 

 

 

Figure 3: Schematic representation of [FeFe]-hydrogenase core cluster or H-cluster in 

C. reinhardtii as shown by (Posewitz et al. 2009). [4Fe4S] cluster is connected to [2Fe2S] 

via dithiolate bridge. 

 

The [4Fe4S] cluster receives electrons from the reduced ferredoxin and 

transfers them to [2Fe2S] cluster resulting in reduction of a distal iron atom which later 

binds to a proton yielding a doubly reduced hydride ion. The hydride ion combines with 

another proton at the active site generating molecular hydrogen. FeFe-hydrogenase 

has a high turnover rate of ~9000 enzyme units per second (Ghirardi et al. 2009) but 

is highly susceptible to oxygen. The enzyme undergoes maturation which is carried out 

by gene products of HYDEF and HYDG (Posewitz et al. 2004). HYDEF and HYDG 

encode two radical S-adenosylmethionine (Radical SAM) proteins where HYDG and 

HYDE domain of HYDEF belong to the Radical-SAM superfamily and the HYDF carries 

a GTPase domain (Ghirardi et al. 2007). Radical-SAM proteins bring about the 

synthesis of active site precursors of [FeFe]-hydrogenase and catalyze the assembly 

of metallocluster. The exact maturation mechanism is yet unkown but the transit 
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peptide in the maturation protein helps in chloroplast targeting of the hydrogenase 

(Posewitz et al. 2009).  

The mechanism of oxygen attack and inactivation of the enzyme’s active site is 

well documented (Lee et al. 2003; Stripp et al. 2009). Oxygen can diffuse into the active 

site and irreversibly inactivate the H-cluster, which also results in inhibition of 

hydrogenase expression (Happe et al. 2002). The protein structure of the enzyme 

provides a certain degree of resistance to the diffusion of oxygen and enables the 

enzyme to function only under anaerobic conditions (Cohen et al. 2005). Traces of 

hydrogenase expression was reported as early as 15 min after the establishment of 

anaerobiosis which was confirmed by reporter gene assays (Stirnberg et al. 2004). A 

100-fold increase in the transcript of hydrogenase was observed under anoxic 

condition (Mus et al. 2007). The starch less mutants sta6 (Zabawinski et al. 2001) and 

sta7 (Posewitz et al. 2004) possess a relatively oxidized PQ pool which resulted in a 

very low hydrogenase induction compared to the control strain (Posewitz et al. 2009). 

This finding suggested the necessity of a reduced PQ pool for hydrogenase induction. 

This shows the stringent regulations governing H2 production in C. reinhardtii. The 

oxygen phobic hydrogenase makes the hydrogen production process a daunting task. 

However, this has been overcome by inducing anaerobiosis as a result of sulfur 

deprivation in cells (Melis et al. 2000) which will be discussed in detail in the next 

chapter (Chapter 1.6). 

  

1.6 Acclimation to sulfur starvation and H2 production 

 The oxygen susceptibility of hydrogenase enzyme makes it impossible to 

produce hydrogen in Chlamydomonas under aerobic conditions. Over ~80% of 

hydrogen production mainly arises by light driven PSII dependent direct pathway 

(Volgusheva et al. 2013) but the presence of light also results in photosynthetic oxygen 

evolution which causes irreversible inhibition of the enzyme and cessation of hydrogen 

production (Forestier et al. 2003; Happe et al. 2002; Mus et al. 2007). Several methods 

have been tested to make an anaerobic environment that can assist hydrogen 

production, ex. Incubation of cultures in dark, sparging cultures with inert gases 

(nitrogen, helium or argon) (Greenbaum 1988), using oxygen scavengers or absorbers 

(Benemann 1997; Hallenbeck et al. 2002), inactivating PSII with chemical inhibitors 

like DCMU (Bamberger et al. 1982; Healey 1970) and many more. However, the most 
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reproducible method currently in practice for lab scale H2 production involves 

subjecting the cells to sulfur deprivation (Melis et al. 2000).  

 In the year 2000, Melis and co-workers published their breakthrough results 

where they successfully separated photosynthetic oxygen evolution and anaerobic 

hydrogen production into a two-phase biophotolysis process which was induced by 

sulfur deprivation (Melis et al. 2000). The novel approach involved transferring 

Chlamydomonas cells into a completely sealed (air free) sulfur deficient environment. 

Under such conditions, respiration arising mainly due to mitochondria and also 

chlororespiration help in consumption of photosynthetically evolved oxygen. Over time 

the rate of respirational oxygen consumption would surpass oxygen evolution resulting 

in an anaerobic environment leading to induction of hydrogenase and the start of 

hydrogen production. The key attribute for switch in the algal metabolism from aerobic 

photosynthesis to an anaerobic hydrogen evolution is triggered by the absence of 

sulfur. 

 Sulfur is an essential micronutrient that doubles as a building block of several 

cellular biomolecules such as amino acids (methionine and cysteine), membrane lipids 

(sulfoquinovosyl diacylglycerides, SQDG), redox protectant glutathione pool, electron 

carriers (Fe-S clusters), coenzymes and many more. Chlamydomonas senses sulfur 

in its environment via sulfur acclimation gene (sac1) (Gonzalez-Ballester et al. 2008; 

Ravina et al. 2002; Takahashi et al. 2001) and sulfur depletion induces cascade of 

reactions involving upregulation of extracellular arylsulfatase that cleave sulfate from 

aromatic compounds (de Hostos et al. 1989) and overexpression of sulfate 

transporters (Davies et al. 1994; Yildiz et al. 1994). The sulfur economy in the cell 

changes by synthesizing sulfur free proteins or proteins with limited sulfur such as 

Isoflavone reductase like protein (IFR1) and Light Harvesting Complex (LHCBM9) 

(Grewe et al. 2014; Nguyen et al. 2008). Sulfur is also recycled from the degradation 

of sulfolipids or by depleting gluthathione pool (Petrucco et al. 1996). The first 24 hours 

of depletion results in cessation of cell doubling which is followed by an increased 

starch accumulation (up to 10-fold) (Tsygankov et al. 2006; Liping Zhang et al. 2002). 

Starch is metabolized during prolonged periods of sulfur starvation to derive energy 

and also fuel hydrogen production via NPQR mediated PSII independent pathway 

(Antal et al. 2003; Chochois et al. 2009) (fig.4). Photosynthetic machinery also 

undergoes modification with downregulation of several genes associated with carbon 

dioxide fixation. 
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Figure 4: A two-phase biophotolysis hydrogen production process in sulfur deprived 

C. reinhardtii as shown by (Happe et al. 2010). The first stage of decrease in sulfur 

concentration is represented in yellow (triangle) and the second hydrogen production stage is 

shown in blue (triangle). During the stage 1, electrons arising from photolysis of water at 

photosystem two (PS2) is transported through electron carriers plastoquinone (PQ), 

cytochrome b6f complex (Cytb6f) and plastocyanin (PC) to photosystem one (PS1). PS1 

transfers electrons to ferredoxin (PetF) which further donates it to generate NADPH by 

ferredoxin NADP+ reductase (FNR). NADPH is used up by ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RbC) to fix carbon dioxide via Calvin cycle. In stage 2, decrease in 

PS2 photosynthetic activity (light green color and dotted line) and migration of LHCII to PS1 is 

shown. Cellular respiration leads to anaerobiosis. Electrons arising from residual PS2 activity 

and degradation of starch are transferred to PetF which is the final electron donor to 

hydrogenase (HydA1). 

 

The levels of Rubisco decline over time and might be recycled to serve as a sulfur 

source as observed in L. minor (Ferreira et al. 1992). The reduction of Rubisco results 

in shutdown of CO2 fixation (Melis et al. 2000; Liping Zhang et al. 2002), thereby ending 

electron competition faced by hydrogen production (Cinco et al. 1993). Sulfur 

deprivation also causes a reduction in photosynthetic activity but the cellular respiration 

(mainly mitorespiration, Antal et al. 2003b) fueled by a carbon source such as acetate 
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(Endo et al. 1996; Fett et al. 1994) remains unaltered during the early hours (fig.4). The 

D1 protein of the PSII reaction core undergoes damage under illumination and unless 

adequately repaired (sulfur replete conditions), results in loss of PSII activity (Komenda 

et al. 2012; Nixon et al. 2010). The loss in PSII activity was confirmed by assessing the 

photosynthetic complexes (Volgusheva et al. 2013; Liping Zhang et al. 2002) and an 

increase of photo protection pigments such as antheraxanthin, and zeaxanthin was 

also observed (Wykoff et al. 1998). This results in decreased rate of photosynthetic 

oxygen evolution which is superseded by the rate of respirational oxygen consumption, 

thereby establishing anaerobiosis in a sealed environment. These conditions create a 

favorable environment for the induction of [FeFe]-hydrogeanses which catalyzes 

hydrogen production (Antal et al. 2003). The hydrogen production lasts anywhere 

between 4 to 5 days depending on the culture density, bioreactor size, light intensity, 

temperature, pH, etc (Tamburic et al. 2011). Over time, the rate of hydrogen production 

decreases and finally stops due to loss in cellular functions and accumulation of toxic 

fermentative products (Doebbe et al. 2010).  Micro feeding of sulfur or cycling between 

sulfur replete and deplete condition is proposed to have a continuous sustainable 

hydrogen production process (Ghirardi et al. 2000). To summarize, following types of 

metabolism occur simultaneously during sulfur deprivation: (a) Photosynthetic O2 

evolution, (b) Mitochondrial respiration (to consume oxygen and establish 

anaerobiosis), (c) H2 production and (d) Anaerobic starch degradation and generation 

of fermentative products. 

 

1.7 Improving hydrogen production by genetic engineering   

 Hydrogen production in C. reinhardtii occurs under anaerobic conditions which 

is driven by a connection between photosynthetic electron transport chain and 

plastidial hydrogenase (Weber et al. 2014). Hydrogen production functions as a safety 

valve to protect over reduced plastoquinone (PQ) pool (Tolleter et al. 2011). Research 

has been focused on optimizing this “hydrogen valve” to obtain a sustainable 

production process. The following section will provide a brief overview of potential 

genes or pathways that could be genetically modified to improve hydrogen production 

in C. reinhardtii. 

 Sulfur deprivation was applied to sealed cultures of Chlamydomonas to attain 

anaerobic condition which is a prerequisite for H2 production (Melis et al. 2000). 

Several key metabolic changes occur within the cells such as increase in starch 
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accumulation, onset of anaerobiosis, start of hydrogen production, degradation of 

starch and increase in fermentative metabolites (malate, formate, acetate, etc.) (Antal 

et al. 2003a; Happe et al. 2002; Zhang et al. 2002). Under anaerobiosis ferredoxin 

donates electrons not only to [FeFe]-hydrogenase but also to several other metabolic 

pathways (refer to chapter 5.1). Hydrogenase receives electrons directly from the 

photosynthetic pathway, indirectly from starch degradation and also form fermentation 

of pyruvate. The presence of several competing electron sinks hinders hydrogen 

productivity. One such immediate and extensive competition arising between 

ferredoxin-NADP reductase (FNR) and hydrogenase was overcome by knocking down 

FNR, which resulted in a 2.5-fold increase (Table 1) in hydrogen production (Sun et al. 

2013). In another approach the competition was countered by point mutation of 

ferredoxin which lead to a bias towards hydrogenase and yielded five-fold more 

hydrogen (Rumpel et al. 2014). Potential targets that are considered for improving H2 

production are: (a) Residual PSII activity (Volgusheva et al. 2013), (b) Acclimation to 

sulfur starvation (Antal et al. 2011; Ghysels et al. 2010), (c) Activity of PSI, 

(d) Improving cellular starch reserves (Doebbe et al. 2007), (e) Decreasing competitive 

pathways (Hemschemeier et al. 2011), (f) Decreasing antenna size (Oey et al. 2013), 

(g) Engineering O2 tolerant hydrogenase (Bingham et al. 2012) and (h) System biology 

approach. 

 Stability of PSII is important for a prolonged H2 production because it directly 

contributes to over ~80% of the total H2 yield (Antal et al. 2003). PSII activity was found 

to be higher in a state transition mutant stm6 (Kruse et al. 2005) because high rates of 

respiration resulted in faster anaerobiosis which helped in preservation of higher 

residual PSII activity (Volgusheva et al. 2013). The stm6 mutant was genetically 

modified further by integrating a membrane hexose uptake protein. The resulting 

mutant, stm6glc4 was able to synthesize more starch by metabolizing glucose and 

yielded 150% more H2 compared to the parental strain (Doebbe et al. 2007). Reducing 

antenna size in smt6glc4 resulted in a mutant stm6glc4L01, where a light green 

phenotype and reduced levels of LHCBM (LHCBM 1, 2 and 3) improved light to H2 

(180%) conversion efficiency (Oey et al. 2013). 

 Hydrogen production is plagued by competition from several pathways. For 

instance, competition arising from RuBisCo was overcome by engineering a RubisCo 

deficient strain Y67A which yielded 10-15fold higher H2 compared to the parental strain 

(Pinto et al. 2013). During sulfur deprivation, PQ pool over reduction and non-
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dissipation of proton gradient could also lead to electrons being directed towards cyclic 

electron flow (CEF) (Hankamer et al. 2007). Researchers were able to uncouple the 

proton gradient from photosynthetic electron transport (PGRL1 mutant, Table1) 

resulting in an increase in H2 production (Tolleter et al. 2011). Reductants for hydrogen 

production also come via the fermentation pathway through oxidation of pyruvate by 

pyruvate ferredoxin reductase (PFR) and subsequent electron transfer to hydrogenase 

(Grossman et al. 2011). Fermentation pathway that consume pyruvate such as 

pyruvate formate lyase (PFL), lactate dehydrogenase (LDH) and pyruvate 

decarboxylase (PDC) could be downregulated.  

 As the maximum efficiency of H2 production is achieved directly through 

photolysis, engineering an O2 tolerant enzyme could be a feasible option. Due to the 

complex nature of the hydrogenase enzyme and its maturation process, designing an 

oxygen tolerant enzyme and having it function in vivo has still been a daunting task. 

Some of the methods for modifying the O2 tolerance are (a) Random mutagenesis 

(Nagy et al. 2007), (b) Redesigning gas channels near the active site or H-cluster of 

the enzyme, (c) Searching for novel hydrogenases in other organism, ex. 

hydrogenases in Chlorella vulgaris YSL01 and YSL16 were reported to actively 

produce H2 under atmospheric conditions (Hwang et al. 2014). Oxygen sensitivity of 

hydrogenase could be bypassed with the following options, (a)  Overexpressing 

hydrogenases, (b) Creating a ferredoxin-hydrogenase fusion protein (Eilenberg et al. 

2016) or (c) Expressing oxygen sequestering heme proteins within chloroplast (Wu et 

al. 2011). 

 Information regarding the transcriptomic, proteomic and metabolomic changes 

occurring during sulfur deprived hydrogen production is well documented (Chen et al. 

2010; Doebbe et al. 2010; Matthew et al. 2009; Nguyen et al. 2011; Toepel et al. 2013). 

Information from “Omics” can be integrated to create a biological model which would 

facilitate systematic analysis of bottleneck pathways or target genes. For example, 

cells undergo stress during hydrogen production which requires acclimatization to 

reactive oxygen species (ROS) and also maintain cellular energy requirements (Weber 

et al. 2014). Transcriptomic data (Toepel et al. 2013) reveal stress related genes that 

could be overexpressed to counter ROS stress ex. Glutathione peroxidase 

homologous gene (GPXH/GPX5) or Glutathione-S-transferase (GSTS1). Based on the 

“Omics” data, the role of sulfite reductase (SIR1) and isoflavone reductase like protein 

(IFR1) on hydrogen production have been investigated in the following study (refer to 



Introduction  32 
 

 

chapter 4 and 5). To conclude, improving H2 production by genetic engineering is not 

limited to the aforementioned targets but a systematic approach is required to achieve 

a sustainable process.  

 

1.8 Immobilized hydrogen production 

 Immobilized enzyme or immobilized cells are routinely used in large scale 

activities which have also been extended to algal systems. Application of immobilized 

algae (IA) is so far only extended to areas like pollutant removal (de-Bashan et al. 

2010; Mallick 2002) and bioremediation of heavy metals (Wilde et al. 1993). However, 

since the 20th century IA have also gained interest in the area of hydrogen production 

(Das et al. 2001; Laurinavichene et al. 2006). The following chapter reviews the 

applicability of immobilized algae system for hydrogen production. 

 The process of immobilization involves physical confinement of cells within a 

specific matrix such that the viability is retained to perform the desired catalytic 

process, ex. hydrogen production. Some of the materials commonly used for 

immobilizing cells are calcium alginate (Smidsrød et al. 1990), hydrogels (Jen et al. 

1996), poly (vinyl alcohol) cryogels (Lozinsky et al. 1998), agarose, polyacrylamide, 

polyurethane, etc. Among the various materials, Ca-alginate is by far the most 

frequently used entrapment material. The benefit of entrapment is the use of whole 

cells instead of purified enzymes and in case of processes dealing with free cells, 

substitution of free cells with immobilized cells helps in improving process robustness. 

Use of whole cells is recommended when the enzyme is intracellular (ex. [FeFe]-

hydrogenase, see chapter 1.5) as enzymes retain better activity within the cells. 

Viability quotient of the immobilized cells is very crucial for a successful process 

because a loss in viability results in a decreased volumetric yield of the product. Hence, 

the viability of the cells could be better sustained in an entrapped environment by 

simply replenishing the environment with desired growth medium. The advantages of 

using immobilized cells against free cells are: (a) Obtain higher cell density (better 

product yields), (b) Immobilization makes the cells more stable compared to free cells 

(protection against shear forces), (c) Immobilized cells can be subjected to hostile 

conditions such as nutrient depletion (sulfur deprived hydrogen production, see chapter 

1.6) and then revived easily by exchanging media. Some of the constraints of applying 

immobilized system include: (a) Hindrance to mass transfer (CO2 gas or nutrients 
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supply could be limited), (b) Limitation to light supply (c) pH shifts arising as a result of 

fermentation could be difficult to control. 

 The rates of hydrogen production achievable by sulfur deprived process is still 

significantly lower and could be improved by enhancing process parameters (Tamburic 

et al. 2011). The current process of hydrogen production involves free cells which are 

cycled between growth phase and sulfur deplete hydrogen production phase (Melis et 

al. 2000) making it laborious and cost intensive. This could be overcome by 

immobilizing the cells which would help in rapid exchange of media without the 

requirement of energy intensive centrifugation steps. Hydrogen production has been 

previously reported from immobilized cells of cyanobacteria and purple photosynthetic 

bacteria (Lambert et al. 1979; Tsygankov et al. 1994). A successful immobilized 

hydrogen production from C. reinhardtii was also reported (Laurinavichene et al. 2006), 

where cells were immobilized in modified glass matrix (Al-borosilicate). The authors 

confirmed a prolonged H2 production phase which lasted for up to 4 weeks and also 

showed that the algal cells retained specific rate of H2 which were comparable to those 

from suspension culture. Hydrogen production was also reported from 

Chlamydomonas cells immobilized in thin alginate sheets where a light to H2 

conversion efficiency of 1% and a great tolerance to atmospheric oxygen was observed 

(Kosourov et al. 2008). Another study reported a light to H2 conversion of 4% at 

optimized conditions in Chlamydomonas immobilized in TiO2 shells (Stojkovic et al. 

2015). These outcomes highlight the ease of performing a biphasic H2 production with 

immobilized cells and also show that an enhanced stability and viability of cells results 

in a prolonged H2 production phase. Hence, in the following study a glass like novel 

silica gel material will be tested for its applicability in immobilized hydrogen production.   
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1.9 Artificial microRNA 

 Chlamydomonas is often used as a model organism but lack of targeted nuclear 

genetic manipulation limits its application. Tools available for reverse genetic analysis 

such as Tilling, insertional mutagenesis and transposon tagging have not yet been 

successfully implemented in Chlamydomonas as compared to gene silencing by 

microRNAs (Molnar et al. 2009). Chlamydomonas encodes endogenous microRNAs 

(miRNAs) which are 21-22 nucleotide long regulatory elements that are involved in 

regulating the expression of target genes (Molnár et al. 2007; Zhao et al. 2009). The 

availability of a highly curated Chlamydomonas genome (Merchant et al. 2007) enables 

successful application of miRNAs for reverse genetic analysis (Jinkerson et al. 2015). 

 miRNAs are small RNAs that are processed from long RNA molecules. Two 

variations of small RNAs routinely used are microRNA and small interfering RNAs 

(siRNAs). miRNAs are produced as 21-24 nucleotide duplex molecules as a result of 

the RNAse like enzyme (Dicer) hydrolyzing an imperfectly folded double stranded 

RNA, whereas siRNAs are produced from a perfectly folded double stranded RNA 

(Molnar et al. 2009). An argonaute protein complex (AGO) is formed that retains the 5’ 

miRNA strand with low thermodynamic stability (Mi et al. 2008) and the other strand 

(passenger) is degraded. The resulting RNA-induced silencing complex (RISC) is 

guided to its target gene and silenced through RNA-RNA interaction. Silencing occurs 

either at transcriptional level i.e. cleavage of transcribed mRNA or at post-

transcriptional level which involves inhibition of translation (Bartel 2004). A partial 

match between the microRNA and target gene most likely results in translational 

inhibition, whereas a higher match results in degradation of the target mRNA. In 

animals, endogenous miRNAs have short complementarity to their target genes 

(positions 2 to 8) allowing each miRNA to target multiple mRNAs (Brennecke et al. 

2005; Farh et al. 2005; Lim et al. 2005; Molnar et al. 2009), whereas in plants miRNAs 

have very few mismatches resulting in silencing of only few targets (Llave et al. 2002). 

Artificial miRNAs (amiRNAs) have been successfully applied to enhance hydrogen 

production by knocking down light harvesting complex (Oey et al. 2013), eliminating 

competition (Sun et al. 2013), reducing photosynthetic oxygen evolution to aid faster 

induction of H2 (Li et al. 2015) and many more. 
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1.10 Reactive oxygen (ROS) and electrophile species (RES) 

ROS and RES are byproducts of oxygenic photosynthesis. ROS, as the name 

suggests is a hyper-active form of excited state oxygen generated from biotic or abiotic 

stress and comprise of  hydroxyl radical (OH◦), hydrogen peroxide (H2O2), singlet 

oxygen (1O2) and superoxide anion (O2
-). These reactive species can either serve as 

messenger molecules (Alboresi et al. 2011) or under lethal concentrations bring about 

degradation of proteins, nucleic acids, lipids and more (Schmitt et al. 2014). ROS can 

cause spontaneous uncatalyzed reactions leading to the formation of new species eg. 

non enzymatic oxygenation of α-linolenic acid (ALA) to form α,β-unsaturated carbonyl 

groups or other reactive electrophilic groups known as reactive electrophile species 

(Farmer et al. 2007). RES can be generated either non-enzymatically from ROS or 

enzymatically such as jasmonic acid (JA), oxophytodienoic acid (OPDA) and 2-E-

hexenal (Matsui 2006; Taki et al. 2005). Chemical reactivity of RES with nucleophilic 

actoms can directly affect cell contents or RES may indirectly damage cells by affecting 

the cellular reductant pools (Oberschall et al. 2000).  

  ROS and RES generation within the cells depends on biotic and abiotic factors 

such as high light, heat, infection from pathogens, etc. (Schmitt et al. 2014). Both the 

species are also known to function as messenger molecules. It has been proposed that 

RES liberated from dying cells could activate protection genes in leaves of 

neighbouring cells (Vollenweider et al. 2000). It was shown that syringolin A (a 

virulence factor containing α,β-unsaturated carbonyl group) produced by the pathogen 

P. syringae, triggers genes required for the viability of wheat and Arabidopsis (Michel 

et al. 2006). Depending on the site of origin, ROS species can also function as 

signalling molecules and either activate responses required for acclimation to stress 

tolerance or trigger programmed cell death (Galvez-Valdivieso et al. 2010). 

Acclimatization of C. reinhardtii to ROS species such as H2O2 and singlet oxygen was 

shown to activate specific promoters (Shao et al. 2007). ROS activated complex signal 

pathway in rice and Arabidopsis mediated by mitogen-activated protein kinase (MAPK) 

(Kovtun et al. 2000). The presence of ROS and RES is mainly controlled by the activity 

of antioxidant enzymes or antioxidant molecules like glutathione, α/β-tocopherols, 

carotenoids, flavonoids and ascorbic acid (Apel et al. 2004). Detailed mechanism of 

ROS and RES detoxification has been previously reviewed (Apel et al. 2004; Farmer 

et al. 2007) and will not be discussed here. 
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2.0 Aim and Objectives 

C. reinhardtii can use sunlight and water as substrates for the production of 

biohydrogen. In the following work, genetic manipulation will be employed to further 

improve H2 production. The availability of transcriptome, metabolome and proteome 

data of hydrogen producing Chlamydomonas culture served as a platform for the 

following work and facilitated the determination of target genes (Chen et al. 2010; 

Doebbe et al. 2010; Matthew et al. 2009; Nguyen et al. 2011; Toepel et al. 2013). The 

aim of the following work was to improve the conversion efficiency of light energy to 

hydrogen by targeting bottleneck or competing pathways or genes. This was achieved 

by addressing the following objectives. 

 

Objective 1: Knocking down isoflavone reductase like protein (IFR1) to improve 

hydrogen production 

 The first objective was to consider a target gene that is upregulated during 

hydrogen production in a bad hydrogen producer strain as against to a good producer 

strain. IFR1 knockdowns will be created by artificial microRNA strategy in CC124 wild 

type strain. The knockdowns will be analyzed for their phenotype and hydrogen 

production. On the basis of results obtained from a wild type IFR1 knockdown, the 

knockdown strategy will be further extended to a good hydrogen producer mutant strain 

like stm6 to boost its hydrogen production. 

 

Objective 2: Redirecting electron flux towards hydrogenase by knocking down 

sulfite reductase (SIR1) 

 Transcriptome and proteome data show a competition for electrons between 

sulfite reductase and hydrogen production enzyme (hydrogenase) under sulfur deplete 

anaerobic H2 production conditions. To further enhance H2 production, SIR1 

knockdowns will be created in high H2 producing stm6glc4 mutant strain with the help 

of artificial microRNA. The H2 phenotype of the knockdown mutants will be analyzed.  
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3. Materials and Methods 

3.1 Chemicals and equipment 

All the chemicals such as general chemicals (acids, bases), chemicals for 

growth medium, Reactive Oxygen Species (ROS) and Reactive Electrophile Species 

(RES) inducing agents were purchased from either of the following companies: Carl 

Roth (Karlsruhe, Germany), Sigma Aldrich (Taufkirchen, Germany), VWR (Langenfeld, 

Germany), Applichem (Darmstadt, Germany) and Merck (Darmstadt, Germany). 

Equipment used in the following study along with their manufacturers is outlined in the 

table below. 

Table 2:  List of all the instruments used in the following study is reported below 

 

Instrument (manufacturer) Application 

96 well polystyrene microplate 

(Greiner Bio-One, Germany) 

Lowry protein assay 

6, 12 and 24 well polystyrene microplate 

(Greiner Bio-One, Germany) 

Algae cultivation and screening 

Acculab ALC-210.4 and VIC-3103 

(Sartorius, Germany) 

Weighing and media preparation 

Agilent 3000 Micro FC (Agilent 

Technologies, Germany) 

Hydrogen gas analysis 

Autoclave V-150 (Systec, Germany) Sterilization of media and glassware 

BA310 binocular microscope 

(Motic, Germany) 

Microscopic observation of cells 

Disposable polystyrene semi-micro 

cuvettes (Sarstedt, Germany) 

Absorption analysis 

Disposable vials: 0.5 to 50 ml 

(Sarstedt, Germany) 

PCR reaction, DNA/RNA extraction, 

solutions 

Eppendorf pipette (Eppendorf, 

Germany) 

Pipetting 

Filtropur S 0.2 syringe filters 

(Sarstedt, Germany) 

Membrane filtration, sterile inlet of gases 

FluorCam (PSI, Czech Republic) Chlorophyll fluorescence 

Genesys 10S UV-Vis spectrophotometer 

(Thermo Fischer Scientific, Germany) 

OD measurement 
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Glassware (VWR, Germany) Media preparation 

Haemocytometer 

(Marienfeld-Superior, Germany) 

Manual cell count 

Infinite M200 multimode microplate 

reader (Tecan, Germany) 

Reading protein absorption (Lowry 

assay) and bioluminescence (luciferase 

assay) 

LSM780 (Carl Zeiss, Germany) Confocal laser scanning microscopy 

Magnetic stirrer RO 10  (IKA, Germany) Mixing 

Mini PAM (Heinz Walz, Germany) Photosynthesis yield analysis 

Multi-Cultivator MC1000 (Photon 

System Instruments, Czech Republic) 

Parallel air-lift cultivation 

Orbital shaker 3017, VKS (GFL, 

Germany) 

Culture growth 

Osram Lumilux warm white and cool 

daylight (Osram, Germany) 

Light source 

Oxyg1 plus, Clark-type O2 electrode 

(Hansatech Instruments, UK) 

Photosynthetic oxygen evolution and 

respiration oxygen consumption rates 

pH electrode (VWR, Germany) pH measurement 

Photobioreactor FMT-150 

(PSI, Czech Republic) 

Algae cultivation 

Quartz cuvette 6040-UV 

(Hellma Analytics, Germany) 

Absorption measurement 

SIGMA 6-16KS (Sigma, Germany) Sulfur deprivation 

Single channel pipettes (VWR, 

Germany) 

Pipetting 

TipOne RPT filter tips (Starlab, 

Germany) 

Sterile work and RNA extraction 

Ultratip (Greiner Bio-One, Germany) Pipetting activities 

Z2 cell and particle counter 

(Beckman Coulter, Germany) 

Automatic cell count 
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3.2 Algae strain and growth conditions 

Various wild type (wt) and mutants (mt) of unicellular green algae C. reinhardtii, 

were used in this work. The strains and their description are listed in table 3. All the 

strains were primarily maintained photoheterotrophically on tris acetate phosphate 

(TAP) (Gorman et al. 1966; Harris 1989) agar plates under continuous illumination of 

white light ~40 μEm-2s-1. Prior to use in any experiments, strains were always 

transferred from TAP agar plates to TAP liquid medium and grown under similar light 

intensity at 25°C with 110 rpm of constant shaking. For studies requiring 

photoautotrophic growth, the strains were first grown in TAP and then transferred to 

high salt medium (HSM) (Sueoka 1960) and grown with 3% CO2 to a required cell 

density. Modified Hutner’s trace solution completed TAP and HSM mediums (Kropat 

et al. 2011). 

All the media used in this study were made according to the protocols available 

at Chlamydomonas resource center. A liter of TAP medium was made by dissolving, 

2.42 g Tris salt, 25 ml TAP salt solution (15 g NH4Cl, 4 g MgSO4.7H2O, 2 g CaCl2.2H2O 

dissolved in 1 L), 0.375 ml P-solution (28.8 g K2HPO4, 14.4 g KH2PO4 dissolved in 

100 ml), 1 ml each of Hutner’s trace elements and 1 ml of glacial acetic acid. The final 

pH was adjusted to 7.2 with 1M HCl. TAP medium is a complete source of micro and 

macro nutrients along with expensive elements like acetate, phosphate and 

ammonium. Sulfur free TAP medium (TAP-S) was made by exchanging the ZnSO4 in 

Hutner’s trace solution with an equal concentration of ZnCl2 and by using MgCl2 in 

place of MgSO4. Nitrogen free TAP medium (TAP-N) was prepared as earlier by 

replacing NH4Cl with KCl.  

HSM medium is an acetate lacking version of TAP medium, which is primarily 

phosphate buffered. For photoautotrophic cultivation, 1 L of HSM medium was made 

by dissolving, 25 ml of TAP salt solution and 1 ml each of Hutner’s trace elements in 

water. The pH was adjusted to 6.8 and 5 ml of sterile P-solution was added to the 

media after sterilization. Hutner’s trace elements used to complete TAP and HSM 

media were made on the basis of the composition available at the repository of 

Chlamydomonas resource center (Hutner et al. 1950).  
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Table 3: All the C. reinhardtii strains used in this work are listed below 

 

Strain Description Purpose Reference 

CC-124 Wild type (wt), mating type 

minus (mt-), nit1 and nit2 

mutation 

IFR1 knockdown 

mutant 

generation 

Chlamydomonas 

Resource Center 

(CRC) 

CC-406 wt, cell wall deficient (cw15) Control strain CRC 

CC-1690 Sager’s basic wt, mt+ Control strain CRC 

CC-3491 wt, cw15 obtained from CC-

125 (mt+) and CC-406 

Control strain CRC 

CC-2931 wt, mt-, capable of growing on 

nitrate 

Control strain CRC 

CC-4603 4A 137c background derived 

from CC-2191 and CC-4051 

Control strain (Dent et al. 

2005) 

sor1 UV mutant of 4A+ IFR1 expression 

analysis 

(Fischer et al. 

2012) 

UVM4 A UV mutant generated from 

CC4350 (cw15, arg7-8, mt+) 

Expression of 

IFR1:YFP fusion 

(Neupert et al. 

2009) 

stm6 MOC1 knockout derived from 

CC-1618 

Generation of 

IFR1 knockdown 

(Schönfeld et al. 

2004) 

stm6glc4 stm6 strain with an integrated 

glucose transporter HUP1 

Generating SIR1 

knockdown 

(Doebbe et al. 

2007) 

IFR1-1 

IFR1-6 

knockdown mutants of IFR1 

derived from CC-124 

Assessing IFR1 

knockdown 

This work 

stm6_IFR1kd knockdown mutants of IFR1 

derived from stm6 

Assessing IFR1 

knockdown 

This work 

sgh2 

sgh3 

knockdown mutants of SIR1 

derived from stm6glc4 

Assessing SIR1 

knockdown 

This work 
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3.2.1 Growth under nutrient depletion 

With an aim to improve hydrogen (H2) production, all the wt strains and their 

respective mt derivates were initially analyzed under aerobic TAP-S growth conditions. 

The strain to be analyzed was always propagated from TAP agar plates (Section 3.2) 

to a mid-log phase in TAP medium. The cells were harvested (2500g at room 

temperature for 4 min) and washed (minimum of 3 x 2500g for 4 min) with TAP-S to 

eliminate sulfur. After the washing, the cells were re-suspended in TAP-S medium to 

the tune of, optical density (OD750) ~0.8 and placed under continuous illumination of 

light. Growth was monitored by OD750, OD680, total chlorophyll and cell count. Samples 

were drawn at defined time points for analytics. 

 

3.3 Bacteria and growth conditions 

All the plasmids used in this work were constructed and maintained in E. coli 

strains of DH5α and KRX cells (table 4, single step KRX competent cells from 

Promega). DH5α strains served as cloning and maintenance host whereas expression 

of C. Reinhardtii Isoflavone reductase like protein (IFR1) was realized in KRX cells. 

KRX cells were transformed with desired plasmid and cultivated under continuous 

shaking (180 rpm) at 37ºC in lysogeny broth (LB medium, 10 g/l Tryptone, 5 g/l yeast 

extract and 10 g/l NaCl). The mutants were selected on LB agar plates supplemented 

with 50 μg/ml kanamycin. The positive clones were confirmed by colony PCR and the 

plasmid integrity was assessed by sequencing (Sequencing core facility, CeBiTec, 

University of Bielefeld, Germany). 

Table 4: E. coli strains used in the following work 

 

Strain Description Reference 

DH5α Cloning host: F’, end A1, hsdR17 (rk- 

mk+), sup E44, thi-1, rec A1, ΔlacU169 

(Hanahan 1983) 

KRX Expression host: F’, traD36, proA+B+, 

lacIq, Δ(lacZ)M15, ΔompT, endA1, 

recA1, gyrA96, supE44, Δ(lac-proAB), 

Δ(rhaBAD)::T7 RNA polymerase 

Promega, Germany 
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3.4 DNA and RNA techniques 

This section provides information on plasmids, primers, methods of DNA and 

RNA isolation, Polymerase chain reaction (PCR) and Quantitative PCR (qPCR). 

3.4.1 Plasmids and primers 

All the plasmids created and used in this study were checked by sanger 

sequencing before use.  

Table 5: Following are the plasmids used in this work 

 

plasmid Description 

pGEM-T Easy Cloning vector (Promega, Germany), ampR 

pChlamiRNA3int Artificial mRNAi construction vector, ampR and APHVIII for 

bacteria and algae selection, respectively (Molnar et al. 

2009) 

pET-24 a (+) Bacterial expression vector, kanR 

pOpt_mVenus_Paro pOptimized vector for Chlamydomonas expression, 

(Lauersen et al. 2015) 

pOpt_cCA_gLuc_Paro Chlamydomonas pOptimized vector with Gaussia princeps 

luciferase reporter (Lauersen et al. 2013) 

 

Table 6: Primers used in this work are tabulated below 

 

Primer Sequence Purpose 

IFR-NdeI-F 

 

IFR-BglII-R 

GGCCCATATGGCGACTAAGAAGCACACCGTT-

GCGGTGATTGGAGGCT 

GGCCAGATCTGGCGTCAGCGAACTGCCAGG-

AGGC 

 

IFR1:YFP C 

terminus fusion 

IFR-EcoRV-

F 

 

IFR-EcoRV-

R 

 

GGCCGATATCGCGACTAAGAAGCACACCGTT-

GCGGTGATTGGAGGCT 

GGCCGATATCCTAGGCGTCAGCGAACTGCCA-

GGAGGCG 

 

IFR1:YFP N 

terminus fusion 

IFR-RTQ2-F 

IFR-RTQ2-

R 

ATGGCGACTAAGAAGCACAC 

CGAAGCCTGCTCATTGTAGT 

IFR1 RTqPCR 
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S1-F1 

S1-R1 

CTCCCCCGCAAGTTCAAGAT 

AAGGTGTCTGCGTCTCTGTG 

SIR1 RTqPCR 

S3-F1 

S3-F2 

CACGGACATCGATGCCTTCT 

GTTGCCGACCAGGAAGCTAT 

SIR3 RTqPCR 

RACK1-F 

RACK1-R 

TCAACATCACCAGCAAGAAGG 

CTGGGCATTTACAGGGAGTG 

RTqPCR 

internal control 

RPL13-F 

RPL13-R 

ATTCTTGCCGGGCAGCAGATTGTG 

TTGCGCAGGAAGCGGTCATACTTC 

RTqPCR 

internal control 

Actin-F 

Actin-R 

CGCTGGAGAAGACCTACGAG 

GGAGTTGAAGGTGGTGTCGT 

RTqPCR 

internal control 

 
 

3.4.2 Construction of microRNA (miRNA) 

Small microRNAs (miRNAs) of 21 to 22 nucleotides in length were constructed 

to knockdown C. reinhardtii genes like IFR1 and sulfite reductase (SIR1). The miRNAs 

were designed over a web based tool WMD3 (http://wmd3.weigelworld.org). The 

miRNAs targeting the exons 2 or 4 of the IFR1 coding region (table 7), were cloned 

into pChlamiRNA3int (Molnar et al. 2009). For generating SIR1 knockdowns, miRNAs 

targeting exon 5 located closer to the 5ʹ UTR or the last exon 13 towards the 3ʹ UTR 

(table 7) were constructed by assembling sequences S1 to S8 as reported earlier (Hu 

et al. 2014)  and cloned into pOpt_cCA_gLuc_Paro (Lauersen et al. 2013). Fermentas 

Fastdigest restriction enzymes were used according to the manufacturers protocol for 

all the cloning work. The vector systems were linearized by restriction digestion and 

dephosphorylated. Forward and reverse single stranded oligonucleotides were 

annealed to obtain double strand. The phosphorylated double-stranded 

oligonucleotides were ligated to the dephosphorylated, linearized vectors. The ligation 

mixture was transformed into KRX competent E. coli cells and clones were selected 

on LB agar plates with kanamycin. The positive clones were checked via colony PCR 

and their plasmids extracted by mini prep (peqGold plasmid Miniprep Kit I) and 

sequenced. After verifying the correct sequence, the plasmids were prepared on a 

large scale and used for nuclear transformation. Two plasmids targeting IFR1 were 

constructed and named according to the proximity of the exon to UTRs as IFR1(3) and 

IFR1(5). Similarly, two plasmids SIR1(3) and SIR1(5) targeting SIR1 were also used. 
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Table 7: Sequences used to construct amiRNA targeting IFR1 and SIR1 

 

amiRNA Sequence Target 

5-amiIFR-F 

 

 

5-amiIFR-R 

ctagtCAGGTCCAGGAGATTGATATAtctcgctgatcg-

gcaccatgggggtggtggtgatcagcgctaTATAACAATC-

TCCTGGACCTGg 

ctagcCAGGTCCAGGAGATTGTTATAtagcgctgatc-

accaccacccccatggtgccgatcagcgagaTATATCAAT-

CTCCTGGACCTGa 

 

 

 

IFR1 exon 2 

3-amiIFR-F 

 

 

3-amiIFR-R 

ctagtGAGCACGCTATTAAGGTCGTAtctcgctgatcg-

gcaccatgggggtggtggtgatcagcgctaTACGGTCTTA-

ATAGCGTGCTCg 

ctagcGAGCACGCTATTAAGACCGTAtagcgctgatc-

accaccacccccatggtgccgatcagcgagaTACGACCT-

TAATAGCGTGCTCa 

 

 

 

IFR1 exon 4 

S1_NdeI 

S2_NdeI 

 

S1_SmaI 

S2_SmaI 

 

S5 

 

S8_EcoRI 

aattcatatgAGGAAACCAAGGCGCGCTAG 

GTACTGCAGCTGGAACACTGCGCCCAGGAAGC-

TAGCGCGCCTTGGTTTCCTcatatgaatt 

aattcccgggAGGAAACCAAGGCGCGCTAG 

GTACTGCAGCTGGAACACTGCGCCCAGGAAGC-

TAGCGCGCCTTGGTTTCCTcccgggaatt 

TCTCGCTGATCGGCACCATGGGGGTGGTGGTG-

ATCAGCGCTA 

aattgaattcTCCTGGCAGTGTTCCGGCTGCAGTA  

 

 

 

Universal 

primers for SIR1 

amiRNA 

construction 

S3_SIR1_5’ 

 

S4_SIR1_5’ 

 

 

S6_SIR1_5’ 

 

S7_SIR1_5’ 

 

TCCTGGGCGCAGTGTTCCAGCTGCAGTACTCG-

AAATTGGTTCCGAACCCG 

CCATGGTGCCGATCAGCGAGACGGGTTCGGA-

ACCAATTTCGA 

TCGAAATTGGTTCCGAACCCGTAGCGCTGATC-

ACCACCACCC 

CGGGTTCGGAACCAATTTCGATACTGCAGCCG-

GAACACTGCCAGGAgaattcaatt 

 

 

 

SIR1 exon 5 

S3_SIR1_3’ 

 

TCCTGGGCGCAGTGTTCCAGCTGCAGTACTAC-

CCAATCTCCAAAGCCCTA 
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S4_SIR1_3’ 

 

S6_SIR1_3’ 

 

S7_SIR1_3’ 

 

CCATGGTGCCGATCAGCGAGATAGGGCTTTG-

GAGATTGGGTA 

TACCCAATCTCCAAAGCCCTATAGCGCTGATC-

ACCACCACCC 

TAGGGCTTTGGAGATTGGGTATACTGCAGCCG-

GAACACTGCCAGGAgaattcaatt 

 

SIR1 exon 13 

 

 

3.4.3 Isolation of genomic DNA 

Genomic DNA was isolated from C. reinhardtii cells grown to a logarithmic 

phase of optical density (OD750) 0.6-0.8. 5-10 ml culture was harvested by 

centrifugation (3000 g for 5 min) and the pellet obtained was lysed with 350 µl of CTAB-

buffer (table 8), 100 µl Protienase K and 50 µl 20% SDS. The mixture was incubated 

for 2 h in a water bath at 55 ºC. After cooling on ice, 50 µl of 5 M potassium acetate 

was added to the sample and further incubated on ice for 30 min. Supernatant obtained 

after centrifugation of the sample (13000g for 15 min) was subjected to an equal 

volume of phenol/chloroform/isoamyl alcohol extraction. The samples were mixed and 

the resulting supernatant (centrifugation 16000g for 5 min) was transferred to a new 

tube and incubated with 1 ml of -20 ºC cold ethanol until precipitation of DNA. The DNA 

was pelleted (16000g for 5 min) and washed with 500 µl of 70% ethanol. The sample 

was centrifuged twice (10000g for 5 min) to remove any traces of ethanol and finally 

suspended in 50 µl of TE buffer. DNA concentrations were quantified with a NanoDrop 

(ND-1000 spectrophotometer) and stored at -20°C until use. 
 

Table 8: Composition of CTAB-buffer 

 

Solution Composition 

CTAB buffer of pH 8 100 mM Tris-HCl 

20 mM EDTA 

1.4 M NaCl 

2% CTAB 

 
 

3.4.4 Polymerase chain reaction (PCR) 

Samples such as plasmid or genomic DNA were used for amplification of 

required targets via PCR. PCR was performed with Q5 high fidelity DNA polymerase 

(NEB) and the reaction performed according to the manufacturers protocol. All the 
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primers required were generated by Primer3plus (Untergasser et al. 2007) and 

synthesized by Sigma Aldrich. The PCR program comprised of the following cycling 

conditions: Initial denaturation (98°C for 30 seconds or longer depending on the 

template size), 35 cycles of denaturation (98°C for 15 seconds) annealing (58-65°C 

depending on the primers for 10-15 seconds) and elongation (72°C at 30 seconds per 

kb), followed by a final elongation (72°C for 2 minutes). Based on the PCR product 

size, the product was analyzed on a 1-2% TAE (tris-acetate-EDTA) agarose gel. 

 

3.4.5 Isolation of total RNA 

Total RNA was isolated from Chlamydomonas strains by acid guanidinium 

thiocyanate-phenol-chloroform extraction method (Chomczynski 1987). All the steps 

were performed on ice unless otherwise mentioned. The cells were pelleted (3000g for 

2 min) and lysed in 900 μl denaturation solution (table 9, supplemented with fresh β-

mercaptoethanol). The lysate was acidified with 90 μl sodium-acetate buffer and then 

mixed with 900 μl phenol and 180 μl chloroform. The mixture was incubated (15 min 

on ice) and later centrifuged (16000g at 4°C for 20 min) to collect 800 μl of aqueous 

phase. Equal volume of isopropanol was added and the mixture incubated overnight 

at -20°C. RNA was pelleted (16000g at 4°C for 20 min) and re-suspended in 300 μl 

each of denaturation solution (with fresh β-mercaptoethanol) and isopropanol.  

Samples were incubated (-20°C for 30 min) and later centrifuged (16000g at room 

temperature for 10 min) to obtain the RNA pellet. The pellet was washed with 500 µl of 

70 % ethanol and incubated for 15 min at room temperature. The suspension was 

centrifuged (16000g for 5 min) and the RNA pellet re-suspended in 50 µl DMDC/DEPC 

treated water. The concentration of RNA was measured by nanodrop and its integrity 

checked on a denaturizing formaldehyde gel.   

Table 9: Composition of denaturation solution 

 

Solution Composition 

RNA denaturation 

solution of pH 7 

4 M Guanidinthiocyanate 

25 mM Sodium citrate 

0.5% (w/v) N-laurylsarcosin 
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3.4.6 Quantitative real time PCR (qPCR) 

Quantitative real time PCR allowed assessment of the abundance of target 

mRNA like IFR-1 (Phytozome locus name Cre11.g477200; C. reinhardtii v5.5), SIR1 

(Phytozome locus name Cre16.g693202; C. reinhardtii v5.5) and sulfite oxidase (SO, 

Phytozome locus name Cre04.g217929; C. reinhardtii v5.5). Total RNA was extracted 

at specific time from cells grown in TAP and TAP-S medium. DNA contamination was 

overcome by DNase digestion of the samples (as per manufacturer, Promega). The 

qPCR was done with a SensiFAST SYBR Hi-ROX One step kit (Bioline) and performed 

in StepOne Real-Time PCR system (Applied Biosystems). qPCR reaction volume was 

set to 20 μl, which comprised of 10 μl 2x SensiFAST SYBR Hi-ROX One Step Mix 

(heat activated DNA polymerase, dNTPs, SYBR Green and MgCl2), 0.8 μl each of 

forward and reverse primers (10 μM), 0.2 μl Reverse transcriptase, 0.4 μl RNase 

inhibitor and 7.8 μl of 300 ng RNA. The cycling conditions of qPCR were: first cycle of 

reverse transcription at 45°C for 10 min, which was followed by one cycle of 

polymerase activation at 95°C for 2 min and finally 40 cycles of 95°C for 15 s: 60°C for 

10 s: 72°C for 20 s. The final step of melting curve was performed at 60-90°C for 30 s. 

cDNA synthesis by reverse transcriptase followed by PCR were completed in one 

reaction. SYBR Green was the fluorescent dye used for real time monitoring of the 

reaction. To ensure meaningful results, intron spanning primers and negative controls 

without reverse transcriptase were also used. The abundance of the target mRNA was 

calculated by comparing its fluorescence signal to that of an internal control e.g. 

RACK1 (Receptor of activated protein kinase C 1), RPL13 (60s ribosomal protein L13), 

Actin or 18s (ribosomal RNA). The relative variances in transcript abundance to control 

conditions were assessed via 2-ΔΔC
T method (Livak and Schmittgen 2001). 

 

3.5 Generation of IFR1 and SIR1 knockdown strains 

IFR1 knockdowns were generated in CC124 and stm6 strains (Kruse et al. 

2005) whereas SIR1 knockdown was generated only in stm6glc4 (Doebbe et al. 2007). 

Nuclear transformation of the wild type (wt) strain CC124 was achieved by 

electrophoresis (Jaeger et al. 2017) and for Stm6 and Stm6glc4 it was realized by glass 

bead transformation (Kindle 1990). 80 μl of a mid-log phase (4 x 108 cells/ml) CC124 

strain was transformed with 1 μg DNA (pChlamiRNA3int vector carrying the miRNA 

targeting IFR1) in an electroporation cuvette (Biorad) subjected to a single rectangular 

wave protocol (1 x 1500 V cm-1 with 8 ms length, GenePulser X cell, Biorad). The cells 
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were regenerated overnight in ToS (tris-acetate-phosphate medium supplemented 

with 40 mM sucrose) medium, at low light ~30 μE m-2 s-1 and selected on TAP agar 

plates with 10 mg/l paromomycin. stm6 IFR1 knockdowns were generated by glass 

bead transformation and also selected on TAP agar plates with 10 mg/l paromomycin. 

Positive clones (CC124 and stm6 IFR1 knockdown) were screened by growing them 

in TAP-S and assessing the IFR1 mRNA and protein levels.  

SIR1 knockdowns were created in stm6glc4 via glass bead transformation. The 

clones were selected on TAP agar plates supplemented with two antibiotics (TAP-PH) 

i.e paromomycin (P) and hygromycin (H), (P,10 µg/ml and H, 5 µg/ml). The mutants 

that survived the double antibiotic selection were screened further on the basis of 

luciferase activity. 

 

3.6 IFR1 antibody and recombinant protein production 

Anti IFR1 polyclonal antibody (αIFR1) was raised in rabbits by an antibody 

production company (Agrisera, Sweden). 17 aa polypeptide ((NH2)- 

CRGRTVPLDKAWKSKAH), synthesized de-novo was used as an antigen. Prior to 

use, the antibody was assessed for cross reactivity against total protein extracted from 

a C. reinhardtii wild type. 

Full length IFR1 cDNA was codon optimized, de novo synthesized (Genscript, 

USA) and cloned into a pET-24a expression vector. To assist easy purification, the c-

terminus was strep-tagged. pET systems were developed primarily for recombinant 

protein production in E. coli (Rocco et al. 2008; Studier et al. 1990). IFR1 cDNA was 

cloned under the control of a T7 transcription signal with enzymes NdeI, XhoI and 

transformed into competent KRX E. coli cells. A 20 ml pre-culture was propagated 

overnight at 37ºC (180 rpm) in LB medium supplemented with 50 µg/ml kanamycin.  A 

1 l production culture of OD 0.6 was achieved starting from an inoculum size of 5%. 

The KRX cells were induced with 0.1% (w/v) L-Rhamnose (Sigma) and the protein 

production was done overnight (37ºC at 180 rpm). The resulting culture broth was 

centrifuged (10000 g for 3 min) and the pellet re-suspended in 100 ml Strep washing 

buffer (100 mM Tris, 150 mM NaCl, 1 mM EDTA, Roche complete protease inhibitor 

tablet). Cells were lysed by 3 consecutive steps of ultra sonification (30 s) on ice 

followed by 3 freeze thaw cycles. The sample were centrifuged (14000 g at 4ºC for 20 

min) and the clear supernatant loaded to a Strep-Tag Superflow high capacity (HC) 
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chromatography column (Iba Life Science). The washing and elution steps were done 

as per manufacturer.  

 

3.7 Analysis of knockdown at protein level 

The IFR1 and SIR1 knockdowns generated in this study were confirmed by 

western blot analysis. Cells were harvested (10000 g for 2 min) and lysed with the lysis 

buffer (60 mM Tris pH 6.8, 2% SDS, 10% glycerol and freshly added 1 mM Pefabloc). 

The mixture was immediately frozen in liquid nitrogen and thawed on ice. The cell debri 

was separated by centrifuging at 8ºC (20000 g for 2 min). The total protein was 

collected into a fresh vial and stored at -80ºC until use. Protein concentration of the 

samples were measured by a Bio-Rad DC protein assay (BioRad), which works on the 

principle of Lowry assay. Prior to electrophoretic separation, the protein samples were 

diluted to required concentrations with a loading dye and denatured for 7 min at 65ºC.  

Sodium Dodecyl Sulfate Poly Acrylamide Gel Electrophoresis (SDS-PAGE) was 

performed as mentioned before (Laemmli and Favre 1973) with a 12 % resolving gel 

[40% acrylamide/bisacrylamide, 12.5 % glycerol, 0.95 M Tris-HCl (pH 8), 0.09 % (w/v) 

SDS, 0.5 % (w/v) AMPS and 0.05 % (v/v) TEMED]  and a 4% stacking gel [40% 

acrylamide/bisacrylamide, 0.7 M Tris-HCl (pH 6.8), 0.07% (w/v) SDS, 1.1 % (w/v) 

AMPS and 0.05% (v/v) TEMED]. The gels were placed in the electrophoresis chamber 

(Mini-Protean-II chamber,BioRad) and filled with running buffer [0.2 M Tris-HCl (pH 8), 

0.1% SDS]. The gels were visualized by colloidal coomassie staining (CCB) (Candiano 

et al. 2004). A pre-stained protein ladder (PageRuler, ThermoFisher Scientific) 

assisted in the analysis of separated proteins.  

Samples to be immunodetected were seperated by SDS-PAGE and blotted on 

to nitrocellulose membranes. After SDS-PAGE, the gel was placed in a “sandwich” in 

the following order: a layer of sponge, Whatman filter paper, nitrocellulose membrance, 

gel, Whatman filter paper, sponge layer. All the layers used for sandwiching the gel 

and membrane were presoaked in transfer buffer. The blot sandwich was placed into 

the blot chamber (Mini-Protean, BioRad) with the membrane facing the anode and filled 

with 4°C transfer Buffer. Following the blotting, the membrane was blocked overnight 

at 4°C with blocking solution [5% Milk powder in TBS with 0.1% tween, where TBS 

(Tris Buffered Saline i.e 50 mM Tris-HCl, 150 mM NaCl)]. The membrane was 

incubated at room temperature for 1.5 h with the desired primary antibody, washed and 

incubated for 1 h with secondary antibody (antibodies used are listed in table 10). 
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Immunodetection was performed by using an enhanced chemiluminescence kit (Pierce 

ECL Westernblot substrate: ThermoScientific) as per the manufacturer and 

fluorescence signal was detected by Fusion-FX7 system (Vilber Lourmat). The bands 

were analyzed and quantified with MyImageAnalysis software (ThermoScientific). 

 

Table 10: Antibodies used in the following work 

 

Antibody Detection Dilution in TBST Source 

Anti-IFR1 (αIFR1) Isoflavone reductase 

like protein (IFR1) 

1:2500 This work 

Anti-SIR1 (αSIR1) Sulfite reductase 

(SIR1) 

1:2500 (Khan et al. 

2010) 

Anti-D1 (αD1) D1 protein of PSII 1:10000 Agrisera 

(AS05084A) 

Anti-Rabbit (2º Ab) Primary Ab (1º Ab) 1:10000 to 

1:15000 

Agrisera 

(AS10845) 

 
 

3.8 Construction of IFR1:YFP fusion protein 

Intracellular localization of IFR1 was analyzed by tagging it to a YFP protein. 

The de novo synthesized IFR1 cDNA (Genscript, USA) was cloned into pOpt-

mVenus_paro vector (Lauersen et al. 2015). C-terminal and N-terminal fusion of the 

cDNA was done by cloning between NdeI::BglII and EcoRV::EcoRI of the vector, 

respectively. Fluorescence imaging was done as before (Lauersen et al. 2016, 2015) 

with a confocal laser scanning microscope (LSM780, Carl Zeiss GmbH, Germany) 

fitted with filters for chlorophyll and mVenus. 

 

3.9 Hydrogen production 

Hydrogen production was done by the successful sulfur deprivation method 

(Melis et al. 2000; L Zhang et al. 2002). The desired strains were propagated in TAP 

medium to a logarithmic phase OD750 ~ 0.7, harvested (2500g at room temperature for 

4 min) and washed (3 x 2500g at room temperature for 4 min) with sulfur free (TAP-S) 

medium. The cells were re-suspended in TAP-S to the tune of ~25 µg/ml chlorophyll 

and filled into unique bioreactors (Doebbe et al. 2007; Nguyen et al. 2011). The 

bioreactors were continuously illuminated on both sides with cool white light (300 μEm-

2s-1). Samples were harvested at defined time intervals for further analytics.  
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3.10 Analytical techniques 

3.10.1 Gas chromatography (GC) for hydrogen gas analysis 

The total amount of H2 produced was measured volumetrically and the gas 

quality was analyzed by GC. The unique H2 bioreactors carried a gas collection 

column, where the gas produced by the culture were collected by displacement of 

water. The gas was sampled through a gas tight Hamilton syringe and injected into a 

gas chromatograph (Micro GC 3000, Agilent). The chromatograph was fitted with a 

PlotU pre-column (3 cm x 0.32 mm) followed by a MolSieve 5APlot column 

(10 cm x 0.32 mm). The injected samples were carried by argon gas, which was 

maintained at 32.5 psi. 

 

3.10.2 Chlorophyll fluorescence measurement 

Chlorophyll fluorescence was assessed by monitoring the photosynthetic 

quantum yield (Fv/Fm of dark adapted cells or ΦPSII in presence of light) of cells by 

using a MINI-PAM (Waltz). The intensity of measuring, actinic and saturation light was 

varied according to the experimental conditions. During H2 production, ΦPSII was 

measured with the optical sensor by directly applying a saturation pulse of 

15000 μmol photons m-2 s-1 on the surface of the bioreactor. Culture harvested from 

H2 bioreactors or TAP-S cultivation were dark adapted for 20 min under continuous 

bubbling of air prior to Fv/Fm measurement.  1 ml of dark adapted culture was carefully 

placed in a quartz cuvette (10 x 10 mm base) and mixed at 30 rpm. Ground state 

fluorescence (FO) and maximal fluorescence (Fm) were recorded and used for 

calculation as follows: 

𝐹𝑣 =
(𝐹𝑚 − 𝐹𝑜)

𝐹𝑚
 

 

3.10.3 Measuring total chlorophyll  

Total chlorophyll content of the samples were quantified by extracting with 

acetone as reported before (Arnon 1945). 200 µl of sample was mixed with 800 µl of 

acetone (100%) and vortexed vigorously. The samples were incubated in dark for a 

minimum of 5 min and centrifuged (20000 g for 2 min) to remove cell debris. The 

maximum absorbance of the samples was read at 645 and 663 nm. The chlorophyll 

content was calculated from the following equations:  

𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝑎 = ((0.0127 × 𝐴663) − (0.00269 × 𝐴645)) × 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟  
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𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝑏 = ((0.0029 × 𝐴645) − (0.00468 × 𝐴663)) × 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟  

 

𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 = 𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝑎 + 𝐶ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝑏  
 

3.10.4 Optical density and cell count 

Optical density (OD) and cell count were measured at defined times for 

monitoring cell growth. OD750 and OD680, were measured with a spectrophotometer 

(Genesys 10S UV-Vis spectrophotometer, Thermo Fischer Scientific, Germany) and 

disposable cuvettes (path length of 1 cm, VWR). Cell count was done with a 

hemocytometer (Neubauer, Hawksley) and automated cell counter (Z2 cell and particle 

counter, Beckman Coulter). 

 

3.10.5 Analysis of photosynthetic O2 evolution with a Clark-type electrode 

The photosynthetic rate of oxygen evolution and respirational rate of oxygen 

consumption were measured with a Clark-type oxygen electrode (Hansatech). The 

electrode was calibrated at 25ºC with air saturated water (100% O2) and sodium 

dithionite treated water (0% O2). 2 ml of cell suspension supplemented with 5 mM 

NaHCO3 was placed in the measuring cuvette. The suspension was incubated in dark 

for 2 min, followed by measuring the rate of oxygen evolution under growth light 

conditions. The rate of oxygen consumption due to respiration was measured under 

dark. The kinetics were recorded for a minimum of 4 min and finally normalized to 

chlorophyll content. 

 

3.11 Influence of ROS and RES stress on growth of IFR1 knockdown mutants 

ROS inducing agents like Rose Bengal (RB, 4 µM), Neutral Red (NR, 15 µM) 

Methyl Viologen (MV, 0.5 µM), Hydrogen peroxide (H2O2, 7 mM) and RES inducing 

agents such as DBMIB (5 µM) and 2E-Hexenal (500 µM), were used for a quantitative 

assessment of IFR1 knockdown on cell growth. Cells grown to a mid-log phase in TAP 

medium were harvested and re-suspended in fresh TAP medium to the tune of 

2 x 106 cells/ml. The cells were supplemented with a respective ROS or RES agent 

and their growth monitored (OD750, OD680 and cell count). The variations in growth were 

analyzed in relative to control conditions. At the end of growth analysis, the cells were 

spotted on TAP agar plates and their recovery monitored. 
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3.12 Immobilization of C. reinhardtii in novel silica gel 

 C. reinhardtii wild type CC124 and cell wall less MOC1 mutant stm6 were 

immobilized in a novel sodium silicate gel. The sodium silicate precursor (2.5 g) was 

mixed with water (7.5 g) resulting in formation of a 3D network of silica gel with sodium 

hydroxide as byproduct. The toxicity arising due to sodium hydroxide was overcome 

by an ion exchanger. The pH of the gel was stabilized to 7.2 with the help of Tris buffer. 

After attaining the desired pH, known concentration of cells were added to the gelation 

mixture. The mixture was pipetted on to a non-adhesive surface and allowed to take 

the form of a lens (gelation time ~ 5 min). The solidified lenses were later transferred 

to TAP and TAP-S medium and grown under continuous illumination of light 300 μEm-

2s-1. Viability of the immobilized cells were assessed by monitoring their photosynthetic 

activity (Fv/Fm).  

 

3.13 Qualitative and quantitative bioluminescence analysis  

Luciferase activity (gLuc reporter) was qualitatively and quantitatively measured 

by measuring the extracellular bioluminescence. For qualitative analysis, the substrate 

was sprayed on TAP agar plates with SIR1 knockdown mutants and bioluminescence 

recorded (exposure time of 300 s, NightSHADE LB 985, Berthold Technologies). 

Supernatant harvested at specific time interval of TAP-S growth was used for 

qunatitative analysis via a micro-titer plate (MTP) assay (50 µl supernatant, 130 µl 

assay buffer and 20 µl of substrate). The MTP assay comprises of an assay buffer 

(0.5 M NaCl, 1 mM EDTA and 0.1 M K2HPO4, pH 7.6) containing 10 µM coelenterazine 

(substrate), to which 50 µl of extracellular supernatant is added and the 

bioluminescence instantly recorded (Shao et al. 2008).  

 

3.14 In silico and statistical analysis 

Information about the gene and their respective accession numbers were 

obtained from Phytozome (C. reinhardtii genome v 5.5), Uniprot and NCBI. 

Homologues of IFR-1 were searched by BLAST (NCBI) and in-silico protein analysis 

were done with tools available at Expasy. SWISSMODEL and I-TASSER were used 

for modelling the protein structure of IFR-1. Significance of all the results obtained in 

the following study was evaluated with a student’s two-tailed t-test. The significance 

threshold (p) was set between 0.05 to 0.1. All the error bars represent standard error 

(SE). In box plots, whiskers represent variability within the first and third quartile. 
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4.0 Identification and characterization of IFR1 knockdown mutants 

4.1 Introduction 

 Carbon neutral fuels are traversing from being a myth of the past to the fuels of 

the present. Of the several fields explored to meet the ceaseless energy demands of 

mankind, solar energy seems promising (Lewis 2007). Algae trap solar energy by 

photosynthesizing to yield biomass, fatty acids, pigments, antioxidant (Vigani et al. 

2015) and are also capable of producing hydrogen under specific conditions (Melis et 

al. 2000). However, the potential of hydrogen as a fuel is poised on the sustainable 

and economical large scale production. C. reinhardtii belongs to an elite group of 

unicellular eukaryotes capable of solar-driven hydrogen production.  

C. reinhardtii possess an efficient [Fe-Fe]-hydrogenase (Happe et al. 1994) that 

catalyzes the recombination of protons (H+) and electrons (e-) to molecular H2. The 

substrates for H2 production come either directly via PSII (~80%,Volgusheva et al. 

2013) or indirectly via fermentation of stored reserves (Doebbe et al. 2010). Since H2 

production is not a main metabolic process, direct light to H2 conversion efficiency is 

very low and the oxygen susceptibility of hydrogenase makes it a very tricky process. 

A quintessential progress was achieved by Melis and coworkers where they brought 

about a separation between O2 and H2 evolution by sulfur (S) deprivation (Melis et al. 

2000). Illumination of sealed algae cultures in S deprived media lead to anaerobiosis 

and light driven hydrogen production. Sulphur deprivation slows down D1 repair, 

resulting in downregulation of O2 evolution rates below that of respirational 

consumption followed by anaerobiosis and induction of hydrogen production. Due to 

the sulfur stress, cells undergo a major metabolic reshuffling (Matthew et al. 2009) and 

significant changes at transcriptome (Nguyen et al. 2011), proteome (Terashima et al. 

2010) and metabolome (Doebbe et al. 2010). The cells show morphological changes 

and several reactions including photosynthesis are down-regulated causing changes 

to PSII complex.  

Several strategies have been exploited to improve photobiological H2 production 

such as, generating mutants locked in state transition (stm6) (Kruse et al. 2005), 

improving starch reserves (stm6glc4) (Doebbe et al. 2007), knocking down potential 

targets (Oey et al. 2013; Sun et al. 2013), improving electron transfer from PETF 

towards HYDA1 (Rumpel et al. 2014) and many more. Very few reports have 

highlighted the importance of PSII activity on H2 production (Antal et al. 2003; 

Volgusheva et al. 2016, 2013). A repository of genes regulated in C. reinhardtii during 
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H2 production emphasize the interplay of various pathways and also highlight the 

potential targets for improving H2 production (Mus et al. 2007; Nguyen et al. 2008; 

Terashima et al. 2010; Toepel et al. 2013). 

Based on transcriptomic analysis of a H2 production culture (Nguyen et al. 2011; 

Toepel et al. 2013), the role of an unreported novel gene, Isoflavone reductase like 

protein (IFR1) was investigated. IFR1 belongs to the classical family of short chain 

dehydrogenases/reductases (SDR’s) with a requirement of an NADPH coenzyme 

(Kallberg et al. 2002) and was shown to be strongly upregulated under hydrogen 

production conditions (Nguyen et al. 2011). IFR1 has been reported to be induced 

under biotic and abiotic stress. It was found to accumulate under UV irradiation in 

grapefruit (Lers et al. 1998), overexpression of IFR1 led to ROS tolerance in O. sativa 

(S. G. Kim et al. 2010) and IRL in maize was reported to be expressed under S 

starvation (Petrucco et al. 1996). IFR1 shares homology with leguminous Isoflavone 

reductases (IFRs) which have been involved in isoflavonoid phytoalexin biosynthesis 

and medicarpin biosynthetic pathway (Guo, Dixon, and Paiva 1994). However, IFR1s 

from tobacco and maize could not produce isoflavonoids when assayed with IFRs 

substrates, indicating that they may be more stress related genes (Shoji et al. 2002). 

Therefore, artificial microRNAs (amiRNA) (Molnar et al. 2009) were applied in  the 

following study to elucidate the phenotype and hydrogen producibility of an IFR1 

knockdown.
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4.2 Results 

4.2.1 IFR1 belongs to short chain dehydrogenase/reductase (SDR) superfamily 

A similarity search (BLAST) with the IFR1 protein sequence (Phytozome, locus 

Cre11.g477200; C. reinhardtii v5.5) followed by a multiple sequence alignment of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Multiple sequence alignment (MSA) of amino acids of various Isoflavone 

reductase like protein and atypical SDRs. The conserved glycine rich NADPH binding motif 

is highlighted in red, whereas other conserved amino acids are highlighted based on the 

degree of conservation with light or dark blue color. Sequence aligned are as follows: 

Chlamydomonas reinhardtii IFR1, Zea mays IRL, Arabidopsis thaliana IFR, Pinus taeda 

PCBER (DDCBER1), Ocimum basilicum EGS and Emericella nidulans nMRA. 
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homologs were done (fig. 5) to gain functional and structural insights. IFR1 was found 

to share high similarities with pinoresinol-lariciresinol reductase of western red-cedar 

(PLR, T. plicata, UniProtKB Q9LD14, 30% identity, Min et al. 2003), phenylcoumaran 

benzylic ether reductase (PCBER, e.g. P. taeda DDCBER1, UniProtKB O81651, 30% 

identity, Min et al. 2003), isoflavone reductase like protein in maize (Z. mays IRL, 

UniProtKB P52580, 28.8% identity, Petrucco et al. 1996), isoflavone reductases in 

Arabidopsis (A. thaliana IFR, UniProtKB P52577, 28.6% identity, Babiychuk et al. 

1995), eugenol synthases (e.g. O. basilicum EGS, UniProtKB A0A1B2U6R8, 24.5% 

identity, Louie et al. 2007) and NmrA-like family of proteins that are responsible for 

nitrogen metabolite repression in fungus (A. nidulans NmrA, UniProtKB Q5AU62, 

Andrianopoulos et al. 1998, 19.8% identity) . All these homologs belong to SDR super 

family and possess a glycine rich NADPH binding motif (GXGXXG or G[GA]XGXXG) 

at the N terminal and a small substrate binding domain at the C terminal. 

IFR1 gene is translated to a 32 kDa monomer and similar to other IFR1 

homologs (Babiychuk et al. 1995; Hua et al. 2013; Min et al. 2003; Petrucco et al. 1996; 

Wang et al. 2006) it was predicted to be localized in the cytoplasm (LocTree2: Goldberg 

et al. 2012 and PredAlgo: Tardif et al. 2012). To confirm the cytosolic prediction of IFR1 

and understand its cellular localization, IFR1 was C- and N- terminally fused with YFP 

(mVenus variant, Kremers et al. 2006) and expressed in C. reinhardtii cell line UVM4 

(Neupert et al. 2009). Two mutants showing stable expression of either full length 

(~58 kDa) IFR1:YFP (N) or IFR1:YFP (C) were confirmed via immunoblotting (fig. 6).  
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YFP accumulation in the cytoplasm was observed in both the mutants by 

confocal laser-scanning microscopy (fig. 7), whereas the parental control strain (PCS) 

emitted only red signal due to chlorophyll auto fluorescence. Signal from a control strain 

Figure 6: Immunodetection of IFR1:YFP 

fusion expressing mutants, which were 

observed by confocal laser scan-

ning microscopy. (40 µg) Total protein 

extracted from TAP grown parental control 

strain (PCS, UVM4), mutants with C- or N-

terminal IFR1:YFP fusion (C/N) and 

recombinant IFR1 (R, 32 kDa) were 

analyzed with anti IFR1 antibody (1:2500). 
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(Cyto, Lauersen et al. 2015) expressing YFP in the cytoplasm was similar to the 

superimposed signal of chlorophyll and YFP obtained from mutants expressing C-

terminal and N-terminal fusions. This proved that IFR1 localization was indeed 

cytosolic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Cytosolic localization of IFR1 as observed by confocal laser-scanning 

microscopy. Subcellular localization of mVenus reporter fused to C- or N-terminal of IFR1 

(C/N) as observed by confocal laser scanning microscopy. Parental control strain (PCS, 

UVM4), showing no fluorescence signal served as a negative control, while a UVM4 mutant 

showing cytosolic expression of YFP (Cyto, Lauersen et al. 2015) served as a positive control. 

The yellow fluorescence signals (YFP) are shown in the first column and autofluorescene of 

chlorophyll is shown as a red signal. An overlay (YFP and chlorophyll overlay) of the signals 

are shown indicating cytosolic localization. DIC: Differential Interference Contrast, where the 

scale bar represent 5 μm. 

 

A 3D structure of the IFR1 protein was modelled with Phyre2 (Kelley et al. 2015) 

(fig. 8). The protein structure did not possess any transmembrane motif or localization 

signal peptides. The 3D structure was compared with other homologs and also utilized 

for a substrate prediction (ETA: http://mammoth.bcm.tmc.edu/AminErdinetalPNAS/et-
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a/) (Amin et al. 2013). However, ETA substrate prediction analysis did not result in 

prediction of any potential substrates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 8: Model of C. reinhardtii Isoflavone reductase like protein (IFR1) as generated 

by the tool Phyre2.  

 

 

 

 

 

 

 

 

 

 

 

 



Results: IFR1 knockdown analysis  60 
 

 

4.2.2 Abiotic stress induces IFR1 accumulation 

Transcriptome from sulfur deprived (Melis et al. 2000) H2 producing cultures of 

wild type (wt) CC406 and high H2 producer mutant stm6glc4 (Doebbe et al. 2007) were 

analyzed (Nguyen et al. 2011). The transcriptome data showed the accumulation of 

IFR1 transcript (~10-40 fold) in both the strains during peak H2 production phase. 

Protein samples were extracted at specific time points from H2 producing culture of wt 

CC124 and validated if IFR1 transcript is indeed translated to protein. IFR1 

accumulation was detectable (fig.9) even before the onset of anaerobiosis (within 24 h) 

which became prominent thereafter. This showed that IFR1 induction was triggered 

not by anaerobiosis but because of sulfur depletion which also correlates to the 

previously reported RNAseq data (~8-fold induction, 6h after sulfur depletion, 

González-Ballester et al. 2010, gene expression omnibus (GEO) series GSE17970).  

 

 

 

 

 

 

 
 

 

Figure 9: IFR1 expression during sulfur starved hydrogen production. Samples harvested 

before (0h, Sulfur replete) and during hydrogen production (16 h to 48 h, Sulfur deplete) from 

CC124 wt are shown. The protein accumulation was detected with an anti IFR1 antibody 

(αIFR1) and equal protein load was confirmed by colloidal coomassie staining (CCB). 

 

The AlgaePath (Zheng et al. 2014) portal was used to asses IFR1 RNAseq data  

derived from various abiotic conditions like carbon dioxide limitation (~2 fold, Fang et 

al. 2012, GSE33927), nitrogen starvation (~46 fold after 48 h, Miller et al. 2010, 

GSE24367) and studies reporting hydrogen peroxide stress (~19 fold within 1 h, Blaby 

et al. 2015, GSE34826). Based on the previous reports, we assessed the impact of 

macronutrient limitation by growing the wt CC124 under nitrogen depletion. Unlike 

sulfur starvation (fig. 9), IFR1 protein expression could not be detected (fig. 10) under 

nitrogen depleted conditions which suggested that IFR1 accumulation could be 

independent of macronutrient limitation. 
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Figure 10: IFR1 expression during nitrogen starvation. Samples taken before (0h, nitrogen 

starvation) and after (16 h to 48 h) nitrogen starvation. IFR1 protein accumulation cannot be 

detected. Recombinant protein (R) served as a control and equal protein load is represented 

by colloidal Coomassie staining (CCB). 

 

IFR1 was also reported as belonging to a certain set of genes that are constantly 

overexpressed in the singlet oxygen resistant 1 (sor1) mutant (~9 fold in sor1 and 

undetectable in parental (4A+), Fischer et al. 2012, GSE33548). In the following study, 

we confirmed the previously observed high expression of IFR1 in sor1 via RTqPCR 

(fig.11A) and later verified if high mRNA level was translated into protein (fig. 11B). 

 

 

 

 

 

 

 

 

 

Figure 11: IFR1 expression is driven by SOR1 pathway. (A) RTqPCR analysis showing 

IFR1 transcript during early stationary phase (40 h) of TAP grown sor1 and 4A+. In the plot, 

IFR1 transcript level obtained from 4A+ is normalized to 1. Quartile range and median of the 

box-whisker plot were derived from two biological replicates with nine technical replicates each 

(n = 18). Asterisk show statistical significance according to a two-tailed student’s t-test 

(p<0.05). (B) Immunoblot showing the accumulation of IFR1 in sor1 and 4A+ grown in TAP. 

The numbers 3, 12, 1 and 2.8 represent denistometric values of IFR1 expression relative to 

4A+, where IFR1 expression in 4A+ at 48 h is set to 1. Lower panel represent colloidal 

coomassie stained gel as a loading control. 
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Analysis of IFR1 promoter revealed the presence of an 8 bp palindromic motif 

(CAACGTTG) (fig. 12A), reported to be an electrophile response element (ERE) that 

responds to the presence of a reactive electrophile species (RES) via the singlet 

oxygen resistance (SOR1) pathway (Fischer et al. 2012). Hence, the responsiveness 

of IFR1 expression in sulfur replete TAP culture of wt CC124 was assessed by adding 

a RES compound such as DBMIB (2,5-Dibromo-6-isopropyl-3-methyl-1,4-

benzoquinone). To rule out the impact of photosynthetic inhibitory effects, the 

experiment was repeated with DCMU [(3-(3,4-Dichlorophenyl)-1,1-dimethylurea, 

inhibits PSII forward electron transfer, Metz et al. 1986] and also with DBMIB 

supplemented cultures grown in dark. IFR1 protein accumulated independent of light 

in cultures supplemented with DBMIB (fig. 12B), whereas no IFR1 expression could be 

observed in cultures supplemented with 0.1 µM DCMU (Appendix: fig. S1). This 

suggested that the IFR1 accumulation was indeed due to DBMIB’s action as a reactive 

electrophile species.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 12: An Electrophile Responsive Element (ERE) drives the expression of IFR1.  

(A) Full length (4.87 kbp) IFR1 locus comprising of exons, introns and untranslated regions 

(UTR) are shown. An 8 bp palindromic sequence regarded as an ERE is shown 249 bp 

upstream of the start codon. (B) IFR1 accumulation in CC124 wt incubated in dark and grown 

in TAP supplemented with DBMIB or only solvent (Control).  
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4.2.3 Isolation of IFR1 knockdown strains 

The previously reported (Molnar et al. 2009) amiRNA approach was applied in 

this study for functional characterization of C. reinhardtii IFR1. The amiRNA targeting 

IFR1’s exon 2 or 4 were analyzed and cloned under the control of a PsaD constitutive 

promoter (Fischer and Rochaix 2001) into pChlamiRNA3int vector system (Molnar et 

al. 2009). Selection of paromomycin resistance lead to the isolation of 500 clones. 

CC124 derived knockdown strains, IFR1-1 and IFR1-6 with ~35% and ~5% of the 

control level protein (fig. 13), respectively were confirmed by immunoblotting. For 

unknown reasons, the knockdown strains appeared slightly smaller than the parental 

control strain (PCS).  These strains were used for further physiological analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Detection of IFR1 knockdown mutants. Immunodetection of IFR1 protein in 

CC124 (PCS) and IFR1 knockdown strains (IFR1-1 & IFR1-6) after 48 h of growth in TAP-S 

(sulfur depletion). 1x, 1.5x and 2x correspond to 20, 30 and 40 µg of total protein. Colloidal 

coomassie stained gel served as loading control and densitometric analysis is shown in the 

graph below (PCS 1x is set to 100%).  
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4.2.4 Knocking down IFR1 results in RES sensitivity 

IFR1 homologs have been reported to be expressed under various stress 

conditions (Brandalise et al. 2009; Kim et al. 2003; S. G. Kim et al. 2010; Lers et al. 

1998; Luo et al. 2010; Petrucco et al. 1996). Therefore, the growth characteristics of 

CC124 and its IFR1 knockdown strains were analyzed under various RES and ROS 

stress. The accumulation of IFR1 was found to be diminished in both the knockdown 

strains treated with RES compound DBMIB (artificial RES) and 2-(E)-hexenal (found 

in higher plants, Mosblech et al., 2009) (fig. 14A and 14B). However, of the two RES 

agents, 2-(E)-hexenal triggered a stronger IFR1 accumulation in the parental strain as 

compared to the knockdown strains, which was also evident by the RTqPCR analysis 

(Fig 14C).  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Accumulation of 

IFR1 in response to RES. 

Immunoblot analysis of IFR1 

expression in PCS and IFR1 

knockdown strains grown for 

24 h in TAP supplemented with 

(A) DBMIB (5 µM) or (B) 2E-

Hexenal (500 µM). Control 

refers to growth in TAP 

supplemented with solvent 

(95% ethanol). (C) RTqPCR 

analysis showing change in 

expression of IFR1 transcript in 

PCS grown in TAP with the 

aforementioned RES agents. 

IFR1 expression in absence of 

RES agents was set to 1. Data 

derived from two biological 

replicates with three technical 

replicates each (n = 6). Asterisk 

show statistical significance 

according to student’s t-test 

(p<0.05).  
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The growth of IFR1 knockdown strains in the presence of ROS or RES inducing 

compounds were analyzed (fig. 15) because of the observed IFR1 accumulation during 

RES stress (fig. 14) and reports that suggests its role in oxidative stress tolerance in 

higher plants (S. G. Kim et al. 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 15: Growth of IFR1 knockdown strains in presence of ROS and RES compunds. 

(A) Growth in presence of ROS inducing agents such as 4 μM rose Bengal (RB), 15 μM neutral 

red (NR), 0.5 μM methyl viologen (MV) or 7 mM hydrogen peroxide (H2O2) are shown. Optical 

densities (OD680 and OD750) and cell counts are shown relative to the control (solvent)  which 

is set to 1. Error bars indicate standard error derived from three biological replicates with 

technical duplicates (OD750; OD680 and cell counts: n=6). Growth in presence of RES agents 

A 

B 

C 
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such as 5 μM DBMIB (B) and 500 μM 2-(E)-hexenal (C) at 9h or 24h in TAP medium. Error 

bars indicate standard error obtained from two biological replicates with six technical duplicates 

(n=12). Asterisks represent statistically significant differences according to a two-tailed 

student`s t-test (p<0.05). 

 

The growth in TAP supplemented with defined concentration of RES (DBMIB 

and 2-(E)-hexenal) and ROS (Rose Bengal (RB), Neutral Red (NR), Methyl Viologen 

(MV) and Hydrogen peroxide (H2O2)) inducing agents was monitored over 24 h (OD680, 

OD750 and cell count) (fig. 15). Cell viability was assessed at the end of the cultivation 

by spotting 10 µl of culture on TAP agar plates (fig. 16). Significant growth differences 

did not arise between PCS and IFR1 knockdowns grown in presence of superoxide 

anion (Krieger-Liszkay et al. 2011) triggering agents such as MV or H2O2 (fig. 15A). 

Though growth differences were observable in presence of photosensitizers (Fischer 

et al. 2004) like RB and NR, the differences were not statistically significant according 

to two-tailed Student’s t-test (p < 0.05). However, statistically significant differences 

were observed in cells treated with RES (fig. 15 B and 15C), which caused a greater 

growth inhibition in knockdown strains. The high RES susceptibility of knockdown 

strains was already reflected in the cell count obtained after 9 h of growth, which 

showed that reduction in IFR1 hand rendered the knockdown strains sensitive to 

reactive electrophile species.  

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Quantitative growth analyses of CC124 (PCS) and IFR1 knockdown mutants. 

Cells grown for 24 h, in liquid TAP complemented with  specific concentrations of ROS (RB 

4 µM, NR 15 µM, MV 0.5 µM and H2O2 7 mM) or RES (DBMIB 5 µM, 2-(E)-hexenal 500 µM) 

agents were spotted on TAP agar plates for recovery. Cells recovered for 4 days in the 

presence of low light (100 µmol m-2 s-1) is shown.  
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4.2.5 Prolonged hydrogen production by IFR1 knockdown mutants 

IFR1 was observed to accumulate during sulfur deplete hydrogen production 

(fig. 9), suggesting its important role during acclimation to sulfur depletion. Hence, the 

impact of IFR1 knockdown was determined by looking at the H2 producibility of the 

knockdown strains (fig. 17A). Parental control strain (CC124), IFR1-1 and IFR1-6 were 

grown in sulfur-replete TAP medium to a mid-log phase (OD750 ~0.8) and transferred 

to sulfur-deplete TAP (TAP-S) medium adjusted to same chlorophyll content 

(~25 µg/ml). Hydrogen production was first detectable in PCS at 24 h but could only 

be detected after two-days of lag phase in IFR1 knockdowns. In the beginning (up to 

48 h) hydrogen yield by the PCS overtook knockdown strains by ~35 to 40% but 

beyond 48 h, the rate of H2 production declined in the PCS (fig. 17B). The H2 rates 

increased to a maximum of ~2.25 to 2.5 ml/lh at t72h in the knockdown strains, which 

declined significantly beyond t120h (fig. 17B). Hydrogen production stopped at 96 h in 

PCS which translates to a production phase (time between the first detection of H2 till 

the end of its production) of 3 days as compared to 5 days in IFR1 knockdowns. 

Though the highest rate of H2 production was reached by PCS, the prolonged phase 

of hydrogen production observed in the knockdowns led to H2 yields that were 68 ± 

10% (IFR1-1) and 93 ± 12% (IFR1-6) more than the PCS. 

 

 

 

 

 

 

 
 

 

 

Figure 17: Prolonged phase of hydrogen production by IFR1 knockdowns as compared 

to PCS. (A) Comparison of H2 production between wt CC124 (PCS) set to 100% and IFR1 

knockdowns. Each data curve is derived from an average of three biological with technical 

triplicates (n = 9), where error bars represent standard error. (B) Rate of H2 production. Error 

bars indicate standard error (n = 9) and asterisks represent statistically significant difference 

among the strains (** p < 0.05). 
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4.2.6 Sustained PSII activity drives prolonged hydrogen production 

The mechanism behind prolonged H2 production was deciphered by monitoring 

the photosynthetic activity (Fv/Fm) of strains grown under sulfur starvation (TAP-S) 

and hydrogen production conditions. IFR1 knockdown strains grown in TAP-S had 

higher residual PSII activity (fig. 18, t72-168h) as compared to the PCS. This finding 

correlated to the previous report (Steinbeck et al. 2015; Volgusheva et al. 2013) 

highlighting the contribution of residual PSII activity on the direct pathway of H2 

production.  

   

 

 

 

 

 

 

 
 

 

 
 

Figure 18: PSII activity of PCS and IFR1 knockdowns strain during sulfur depletion. 

Maximum quantum yield (Fv/Fm) of dark-adapted cells before (0 h) and after exposure to 

aerobic sulfur limitation (t24h-t168h). Error bars indicate standard error from three biological 

replicates (n = 3) and asterisks represent statistically significant differences (** p < 0.05). 

 

The knockdown strain IFR1-6 was chosen to further assess PSII differences 

observed between the knockdown and PCS under H2 production conditions (sulfur 

deprivation and anaerobic conditions). Similar to previous observation, PSII stability 

was higher in IFR1-6 as compared to PCS (fig. 19A, t29h and beyond) which was also 

reflected by the decrease in chlorophyll content/cell (fig. 19B, ~30% in IFR1-6 as 

against 50% in PCS). In accordance to the high PSII activity observed in IFR1-6 

knockdown, the decline of D1 (subunit of PSII core) protein was slower in the 

knockdown as compared to the PCS (fig. 19 C and 19 D).  
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Figure 19: PSII activity of PCS and IFR1 knockdown strain (IFR1-6) during hydrogen 

production. (A) Fv/Fm of dark acclimated cells obtained from hydrogen production. Error bars 

represent standard error derived from three biologicals with technical duplicates (n = 6) and 

asterisk show statistical significance (** p < 0.05). (B) Changes in chlorophyll content/cell of 

PCS and IFR1-6 during hydrogen production is shown. Chlorophyll content of PCS at t0 is set 

to 100%. Standard error is obtained from three biologicals (n = 3). (C) Immunoblot analysis of 

PSII subunit D1 (upper panel) of PCS and IFR1-6 obtained at specified time of hydrogen 

production cultures. Colloidal coomassie staining (lower panel) served as a loading control. 

(D) Densitometry analysis of D1 immunoblot. The intensity of D1 signal obtained at t0 is set to 

100%. Error bars indicate standard error from three biologicals (n = 3). 

 

The forward electron flow of PSII was inhibited with DCMU to assess the 

contribution of residual PSII activity on prolonged hydrogen production. 20 µM of 

DCMU was added directly into the H2 bioreactors 30 h after the onset of sulfur 

deprivation. DCMU blocks linear electron flow from electron carrier QA to QB, 

preventing any direct electron transfer towards hydrogenase which results in inhibition 

of H2 production as observed before (Kruse et al. 2005; Scoma et al. 2012; Volgusheva 

et al. 2013; Zhang et al., 2002). H2 production dropped in both the strains (fig. 20) and 

the effect of DCMU inhibition was stronger on IFR1 knockdown (~73% reduction in 

PCS as compared to ~163% reduction in IFR1-6). Hydrogen production was 16.6 ± 

3.2% in IFR1-6, which was lower compared to 27.1 ± 9.4% from PCS. Thus, it can be 
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concluded that the prolonged H2 production caused by IFR1 knockdown stems from a 

stabilized PSII fueling the PSII dependent hydrogen production pathway.  

 

 

 

 

 

 

 

 
 

 

 

 

Figure 20: Effect of DCMU on PSII dependent hydrogen production pathway. Total 

amount of H2 produced by control strain CC124 (PCS) in the absence of DCMU (solid black 

bar) is set to 100%. The amount of H2 produced by DCMU treated samples (PCS_DC and 

IFR1-6_DC) is shown. Error bars represent standard error derived from two biologicals with 

technical triplicates (n = 6) and asterisk show statistical significance of the data (** p < 0.05, * 

p < 0.1). 

 

4.2.7 Enhancing hydrogen production in stm6 by knocking down IFR1 

 C. reinhardtii strain stm6 (Kruse et al. 2005) was selected to test if 

knocking down IFR1 could further boost its hydrogen production capacity. The stm6 

IFR1 knockdown strain, stm6_IFR1kd showed ~20% IFR1 accumulation as compared 

to the parental strain (fig. 21A, parental strain 100%). Similar to previous observation 

(fig. 17A) knocking down IFR1 led to a prolonged hydrogen production phase in 

stm6_IFR1kd strain (fig. 21B). As compared to the PCS, a ~20 h lag phase preceded 

the hydrogen production phase in the knockdown mutant. Nevertheless, the H2 

production phase in the knockdown mutant lasted till t168h in comparison the H2 

production phase in PCS plateaued at t120h. A prolonged H2 production phase with its 

steep slope in stm6_IFR1kd, resulted in ~70% more hydrogen as compared to the 

PCS. In correlation to the previously observed PSII activity under sulfur limiting 

conditions (fig. 18), PSII activity of stm6_IFR1kd also declined slowly and at t96h 

reached 0.48 + 0.01 as compared to 0.35 + 0.02 in PCS (fig. 21C). These results show 

that lowering IFR1 results in a sustained PSII activity which significantly fuels 
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prolonged phase of hydrogen production in C. reinhardtii. The relation between cellular 

amounts of IFR1 and H2 production was further elucidated by observing low H2 yields 

from sor1 mutant (fig. 11) as compared to its parental strain 4A+ (fig. 21D) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21: Enhancing hydrogen production by knocking down IFR1 in stm6. 

(A) Immunoblot analysis of IFR1 accumulation in stm6 and stm6_IFR1kd grown in sulphur 

depletion. 1x, 1.5x and 2x represent 20, 30 and 40 µg of total protein. Colloidal coomassie 

staining served as a loading control. (B) Total H2 produced by stm6 (black curve) is set to 100% 

and H2 yield obtained from the knockdown strain (grey curve) is shown. Error bars show 

standard error obtained from three biologicals with technical triplicates each (n = 9). 

(C) Maximum quantum yield (Fv/Fm) of pSII obtained from cultures grown in sulphur deplete 

aerobic conditions. Error bars indicate standard error derived from three biological replicates 

with technical duplicates (n = 6) and asterisk represent statistical significant data (p < 0.05). 

(D) Hydrogen production in sor1 mutant is ~30% less compared to the parental strain (4A+) 

which is set to 100%. An average of six replicates is represented by each data curve and the 

error bars stand for standard error (two biological replicates with technical triplicates, n = 6).
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4.3 DISCUSSION 
 

In the following study, the role of Isoflavone reductase like protein (IFR1) in 

C. reinhardtii was investigated. Several studies reported IFR1 homologs to function in 

response to oxidative stress (Babiychuk et al. 1995), sulfur starvation (Petrucco et al. 

1996), reactive oxygen species (Kim et al. 2010) and more. However, there has been 

no reports regarding function of IFR1 in Chlamydomonas. In a previous study, 

deciphering the transcriptome of hydrogen producing cultures (Nguyen et al. 2011; 

Toepel et al. 2013) showed upregulation of IFR1 transcripts. In order to gain functional 

significance, IFR1 knockdown mutants were created in a wild type hydrogen producing 

strain (CC124) and further applied to a good hydrogen producing mutant (stm6, Kruse 

et al. 2005). In the following chapter, the physiology of IFR1 knockdowns will be 

discussed. 

  

4.3.1 Homologs of IFR1 

The C. reinhardtii isoflavone reductase like protein (IFR1) belongs to atypical 

short-chain dehydrogenase/reductases (SDR) family of proteins which constitute 

several enzymes typically sharing 15-30% residue identities (Jörnvall et al. 1995). They 

are characterized by the presence of an N-terminal Rossmann fold which harbors an 

NAD(P)H (coenzyme) binding motif and a substrate binding C-terminal (Filling et al. 

2002; Kavanagh et al. 2008). IFR1 lack the conserved tyrosine (Tyr152): lysine 

(Lys156) motif (Tyr-X-X-X-Lys) which is typical for SDR proteins. Hence, IFRs are 

proposed to use lysine residues at position 56 and 144 for interaction with NADPH and 

catalytic site, respectively (Min et al. 2003). Nonetheless, IFR1 possess glycine rich 

coenzyme binding motif G-X-G-X-X-G or G-[G-A]-X-G-X-X-G which is a characteristic 

of SDR’s which also highlights distant proteins (Borras et al., 1989). One of the study 

classified isoflavone reductase like proteins including the C. reinhardtii IFR1 into Nmra-

like family of proteins (SDR48A, Persson et al. 2009) whereas another suggested a 

separate classification belonging to SDR460A family (Moummou et al. 2012).  

Local sequence alignment (BLAST) and multiple sequence alignment (MSA) of 

IFR1 and its homologs were done to figure out structural and functional similarities. An 

NCBI-BLAST analysis of IFR1 amino acid (Phytozome: Locus Cre11.g477200; C. 

reinhardtii v5.5) identified a conserved phenylcoumaran benzylic ether reductase 

(PCBER) domain. PCBERs are NADPH dependent aromatic alcohol reductases 

belonging to SDR superfamily that catalyze lignin biosynthesis (Min et al. 2003).  
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IFR1 does not possess any signal peptide and the cytosolic prediction by PredAlgo 

(Tardif et al. 2012) was successfully proven by IFR1:YFP fusion expression (fig. 6 and 

7). IFR1 does not possess motifs typically present in sulfur assimilation proteins and 

carries just three sulfur containing amino acid (cysteine) which is typical for proteins 

expressed under sulfur limitation (Chen et al. 2010; Gonzalez et al. 2009).  

Multiple sequence alignment (fig. 5) showed that IFR1 shares 28.8% identity 

with isoflavone reductase like protein (IRL, UniProtKB P52580) observed in maize 

seedlings grown under sulfur deficient conditions (Petrucco et al. 1996). Similar to 

IFR1, maize IRL is reported to be a 33 kDa monomer localized in the cytoplasm. The 

lack of transmembrane motifs suggests its exclusion from the role of direct sulfur 

assimilation. The induction of maize IRL was observed to be inversely proportional to 

the glutathione pool which suggests that IFR1 may also be involved in restoring the 

thiol-independent state of the cell by regulating sulfur free antioxidants like carotenoids, 

α/β-tocopherols and more. IFR1 also shares an identity of 28.6% with isoflavone 

reductase homolog P3 (IFR, UniProtKB P52577) in A. thaliana, whose transcript was 

shown to be up-regulated under sulfur limiting conditions (Nikiforova et al. 2003). 

A. thaliana IFR was first reported from a study assessing the plants tolerance against 

oxidative stress and its expression in yeast conferred resistance against thiol-oxidizing 

drug diamide (Babiychuk et al. 1995). Phenylcoumaran benzylic ether reductase 

(PCBER) in P. taeda (UniProtKB O81651) is an aromatic alcohol reductase that 

catalyzes lignin biosynthesis and shares 30% identity with IFR1 (Min et al. 2003). There 

are over 30 residues that are highly conserved between IFR1 and PCBER, suggesting 

structural importance. Eugenol synthases (EGS) is an enzyme from basil that not only 

shares 24.5% identity (UniProtKB A0A1B2U6R8) with IFR1 but also possess an 

NADPH binding site that is homologous to other IFR or IRL proteins. EGS brings about 

reductive displacement of acetate from the propenyl side chain of substrate to produce 

phenylpropenes, which act as attractants for pollinator (Louie et al. 2007).  

Other important SDRs sharing identity with chlamydomonas IFR1 include 

Isoflavone reductase like protiens from tobacco (N. tobacum IRL, involved in 

biosynthesis of nicotine, UniProtKB P52579, 29% identity, Hibi et al. 1994), rice 

(O. sativa IRL, overexpression of IRL confers tolerance against ROS, UniProtKB 

Q8VYH7, 34% identity, Kim et al. 2010), grapefruit (C. Paradisi IRL, induced in 

response to UV irradiation, UniProtKB O49820, 26% identity, Lers et al. 1998) and 

potato (S. Tuberosum IRL, expression enhanced by pollen tube growth which creates 
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a ROS environment, UniProtKB P52578, 32% identity, van Eldik et al. 1997). Many 

IFR1 homologs possessing an NAD(P)H binding motif are reported to be expressed in 

cytosol under ROS stress or during glutathione depletion which is a common 

occurence under sulfur limiting conditions. In order to otain a correlation with the 

reported findings, IFR1 knockdown mutants were assessed under sulfur limitation and 

RES/ROS stress conditions. 

 

4.3.2 Expression of IFR1 under abiotic stress 

 A strong induction of IFR1 protein expression was observed in the wild type 

under sulfur deprived anaerobic H2 production conditions (fig. 9). The protein 

expression was not limited to H2 production conditions but was also detected under 

sulfur deprived aerobic conditions (data not shown) as reported in maize (Petrucco et 

al. 1996). Sulfur deprivation resulted in reduction of cellular glutathione pool and an 

induction of IRL expression in maize. In correlation to the observations in maize, IFR1 

induction in Chlamydomonas under sulfur deprived conditions could arise as a result 

of reduction in the activity of GSH dependent ROS and RES scavanging. IFR1 

expression has been reported under various stress conditions (Babiychuk et al. 1995; 

Brandalise et al. 2009; Kim et al. 2003; Lers et al. 1998; Luo et al. 2010) but no protein 

expression could be detected either under nitrogen deprivation (fig. 10) or under 

highlight stress (2000 µE m-2 s-1) (Appendix: fig. S2), suggesting IFR1 expression in 

Chlamydomonas to be exclusive to sulfur depletion. As observed in higher plants, 

sulfur deprivation affected the glutathione pool more drastically than nitrogen limitation 

(Koprivova et al. 2000). This could explain the absence of IFR1 accumulation in 

Chlamydomonas under nitrogen starvation. 

 Sulfur deprivation induces formation of reactive oxygen species (ROS) which 

lead to lipid peroxidation and indirect formation of reactive electrophile species (RES) 

(González-Ballester et al. 2010; Zhang et al. 2004). The presence of RES triggers the 

expression of IFR1 which is controlled by a cis regulatory electrophile response 

element (ERE, Fischer et al. 2012) located in the promoter (fig. 12A). ERE element is 

an 8 bp palindromic sequence (CAACGTTG), whose copy number and proximity 

(distance between ERE element and start codon) determines the expression or 

overexpression of a gene in the singlet oxygen resistant mutant (sor1) (Fischer et al. 

2012). Genes involved in detoxification such as glutathiose-S-transferase1 (GSTS1), 

glutathione peroxidase homologous gene (GPXH/GPX5) and genes involved in 
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synthesis of ascorbate were reported to be overexpressed in sor1. In the following 

study IFR1 was found to be heavily upregulated in sor1 mutant (fig. 11) and also in 

CC124 wild type strains treated with DBMIB and 2-E-hexenal (fig. 14). Additionally, 

IFR1 knockdown strains were found to be more sensitive to the presence of RES 

agents as reflected from the growth analysis (fig. 15 B, 15C and 16). These results 

suggest that IFR1 may be involved with the detoxification of RES or establish 

intracellular RES homeostasis similar to a SDR protein (cytosolic aldehyde reductases, 

CytADRs) involved in detoxification of reactive carbonyls in A. thaliana (Yamauchi et 

al. 2011). CytADRs bring about detoxification by reducing aldehyde groups whereas 

the mechanism of detoxification by IFR1 is yet to be established.  

 

4.3.3 IFR1 knockdown strains have a longer phase of hydrogen production 

 Anerobic conditions is a prerequisite for establishing hydrogen production and 

can be achieved in air tight Chlamydomonas cultures deprived of sulfur (Melis et al. 

2000). Hydrogen production is catalyzed by hydrogenases which receives electrons 

from the terminal electron donor, ferredoxin. Hydrogen production phase in IFR1 

knockdown mutants (IFR1-1 and IFR1-6 in fig. 17 and stm6_IFR1kd in fig. 21B) were 

found to be prolonged, yielding approximately 2fold more hydrogen compared to the 

parental strains. During H2 production several metabolic shifts occur to acclimatize the 

cell to sulfur starvation (Doebbe et al. 2010; Matthew et al. 2009; Takahashi et al. 

2001). RuBisCo is one of the major electron competitor for hydrogenase which is down 

regulated during sulfur depletion leading to ceasing of CO2 fixation by Calvin-Benson 

cycle and generation of ROS. Unless maintained within sublethal levels by scavanging 

activities (xanthophyll cycle), ROS can lead to the damage of biomoleucles  

photosynthetic apparatus, proteins, nucelic acids, lipids, etc (Ledford et al. 2007).  

Sulfur deprivation decreases the rate of repair cycle of PSII core D1 protein, 

resulting in a decrease of PSII activity and oxygen evolution. PSII activity of the IFR1 

knockdown mutants also declined but showed significant differences compared to 

parental strain. PSII activity (Fv/Fm) of IFR1 knockdowns strains was sustained for a 

prolonged period of time as reflected by higher Fv/Fm values (fig. 18, 19A and 21C) 

and slower delcine of D1 protein (fig. 19C and 19D). During sulfur starvation the pool 

size of PSII reaction centers unable to reduce Qb increase (Wykoff et al. 1998) but a 

reactivation of such nonreducing PSII centers is also known (Neale et al. 1990). 

Electrons origniating from the reconstitued or stablised PSII of IFR1 knockdown 
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mutants was the main contributor for hydrogen production as depicted by DCMU 

inhibitor studies (fig. 20). The present findings correlate with previous reports that 

highlight the importance and impact of residual PSII activity on H2 production 

(Volgusheva et al. 2013). These results show that manipulation of RES homoestatis 

can be used as a tool to improve hydrogen production in C. Reinhardtii. 

 

4.4 Conclusion 

 Isoflavone reductase like protein (IFR1) in Chlamydomonas was found to be a 

soluble, cytosol localized 32 kDa monomeric protein. IFR1 transcripts were previously 

reported to be upregulated in a bad hydrogen producer strain as against a good 

producer strain (Nguyen et al. 2011). This finding promoted the development of an 

IFR1 knockdown in CC124 wild type strain. Two knockdown mutants (IFR1-1 and 

IFR1-6) accumulating very low amounts of IFR1 protein under sulfur starvation were 

isolated. Just as observed for maize IRL, expression of IFR1 in Chlamydomonas 

appeared to be exclusive to sulfur stress. Nitrogen or high light stress did not induce 

any protein accumulation. Presence of an electrophile responsive element (ERE) in 

the promoter of IFR1 led to the investigation of RES stress. The knockdowon mutants 

showed higher sensitivity to RES stress as reflected by their retarded growth. Higher 

accumulation of IFR1 transcripts and protein in the singlet oxygen resitant 1 mutant 

(sor1) showed that the gene could be controlled by the sor1 protein to detoxify 

ROS/RES stress. Interestingly, PSII photosynthetic activity (Fv/Fm) of the knockdown 

mutants was condierably higher under sulfur starvation. Hydrogen production from the 

knockdown mutants was found to be 2fold higher than the parental strain. Further 

investigation of the H2 production cultures showed that the PSII activity of knockdown 

mutant IFR1-6 was more sustained compared to the control strain as evident from D1 

protein decay. H2 produced by the PSII independent pathway (PSII blocked with 

DCMU) proved that the prolonged H2 production by IFR1 knockdown strains indeed 

stem from a sustained PSII activity and perturbed RES homeostasis. The beneficial 

effect of IFR1 knockdown on enhanced H2 production was passed on to the good 

hydrogen producer strain stm6. Similar to previous observations, stm6 IFR1 

knockdown strain showed a sustained PSII activity leading to a prolonged phase of H2 

production. However, the question still remains regarding the connection between a 

cytosolic protein and PSII stability. Following experiments could be performed to 

decipher the underlying molecular function: 
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1) IRL levels in maize are linked to the concentration of cellular glutathione 

pools. Hence, a measurement of Chalmydomonas glutathione pools could provide new 

insights 

2) Quantification of PSII reaction centers by paramagnetic  resonance 

spectroscopy and measurement of fluorescence decay could help in better 

assessment of the prolonged H2 prodcution phase 

3) Substrate screen with the help of recombinant IFR1 protein and NADPH 

coenzyme  

4) A pull down assay via immunoprecipitation could assist in the detection of 

IFR1 interacting partners 

 

 

 

Contributions by other people 

  The production of recombinant IFR1 in E. Coli was done by Thomas Baier. The 

establishment of electoporation procedure and transformation of CC124 wild type 

strain with IFR1 amiRNA was done by Daniel Jaeger. Tranformation of stm6 mutant 

strain via glass bead method was done by Lisa Schierenbeck. 
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5.0 SIR1 knockdown improves hydrogen production in C. reinhardtii 

5.1 Introduction 

Hydrogen production in Chlamydomonas reinhardtii is catalyzed by the enzyme 

hydrogenase and can occur directly from the substrates (protons and electrons) 

generated via solar driven water photolysis. The enzyme is an [Fe-Fe]-hydrogenase 

(Hyda1) which derives electrons from ferredoxin and accomplishes the reversible task 

of hydrogen production under hypoxic conditions. Sulphur deficiency induces hypoxia 

(Melis et al. 2000) where H2 production serves as an alternative electron sink and 

protects the cell from oxidative damage and over-reduction of PQ pool. Ferredoxins 

are iron containing terminal proteins that serve as the backbone of reductive 

metabolism in chloroplast (Terauchi et al. 2009). C. reinhardtii genome encodes six 

plant type ferredoxins of which Fdx1 distributes electrons to various metabolic 

pathways including H2 production (fig. 22).  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 22: A modified representation of various metabolic pathways dependent on 

Ferredoxin as described by (Hemschemeier et al. 2011). Fdx1 receives electrons from PS1 

and transfers them to various enzymatic pathways such as sulfite reductase (SiR), Fdx-

thioredoxin reductase (FTR), Fdx-NADP+ reductase (FNR), glutamate synthase (GS), fatty 

acid desaturase (FAD), pyruvate ferredoxin reductase (PFR) and hydrogenase (HYD). Studies 

suggest that nitrite reductase (NiR) receives electrons from Fdx2 (Terauchi et al. 2009) but the 

role of Fdx1 cannot be undermined (dashed line). The cyclic electron flow (CEF) around PSI 

is also dependent on Fdx1 for electron flow. 

 

 

 

Fdx11 
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Among the various electron sinks, the electron competition arising in hydrogen 

production conditions between hydrogenase and FNR (Sun et al. 2013) or 

hydrogenase and PFR (Noth et al. 2013) have been reported. An increase in the 

transcript of sulfite reductase (SIR1) was observed during sulfur deprived hydrogen 

production (Nguyen et al. 2011; Toepel et al. 2013), which suggests the competition 

arising between SIR1 and hydrogenase cannot be ruled out. 

 Sulfur forms an essential constituent of various amino acids, cofactors, lipids, 

etc. and Chlamydomonas encodes several enzymes that work round the clock to 

accomplish the task of reductive sulfate assimilation. Sulfate (SO4 
2-) is first freed from 

its esters by arylsulfatase (ARS) and then transported into the cells via putative plasma 

membrane proton/sulfate transporters. Within the cell, SO4 
2- is adenylated by ATP 

sulfurylase (ATS) to adenosine 5-phosphosulfate (APS) which could either face further 

phosphorylation by APS kinase (APSK) or be reduced by adenosine 5-phosphosulfate 

reductase (APR) to give the toxic sulfite (SO3 
2-). Sulfite is further reduced to sulfide by 

sulfite reductase, which is then incorporated to cysteine biosynthesis catalyzed by O-

acetylserine(thiol) lyase. The reductive assimilation of sulfur from sulfite to sulfide 

requires 6 electrons (fig. 22) which is contributed by the formation of a transient 

electron transfer complex between reduced ferredoxin and sulfite reductase (Akashi et 

al. 1999).  

𝑆𝑢𝑙𝑓𝑖𝑡𝑒 + 6 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝐹𝑑𝑥1 + 6𝐻+ → 𝑆𝑢𝑙𝑓𝑖𝑑𝑒 + 6 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑑 𝐹𝑑𝑥1 + 3𝐻2𝑂 

The sulfide is then combined with O-acetylserine (OAS) catalyzed by O- 

acetylserine(thiol)lyase (OASTL) to generate cysteine. 

Sulfite reductase belongs to the “NIR_SIR superfamily” of protein which possess 

a characteristic siroheme (4Fe-4S) prosthetic group and catalyze assimilatory 

reduction of sulfite to sulfide by deriving electrons from reduced ferredoxin (Nakayama 

et al. 2000). Chlamydomonas genome encodes two ferredoxin type (SIR1 and SIR2) 

and one bacterial type (SIR3) SIR genes (Gonzalez-Ballester et al. 2009). Of the three 

SIR forms, only SIR1 and SIR3 transcripts were detected under sulfur deprivation, 

whereas only transcripts of SIR1 were found to be upregulated (Zhang et al. 2004). 

Chlamydomonas encodes a 68.6 kDa soluble SIR1 protein (Phytozome locus 

Cre16.g693202, C. reinhardtii v5.5; UniProtKB: A8JBI5) which not only shares 39% 

identity with SIR3 (Phytozome locus Cre03.g180300, C. reinhardtii v5.5; UniProtKB: 

A8IDE3) but also shares a higher degree of identity with ferredoxin dependent sulfite 

reductases from other species such as N. tabacum (SIR1, UniProtKB O82802, 58.3% 
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identity, Yonekura-Sakakibara et al. 1998), Z. mays (SIR, UniProtKB O23813m 57.6% 

identity, Schmutz et al. 1984), P. sativum (SIR, UniProtKB Q75NZ0, 56% identity, Arb 

et al. 1985) and A. thaliana (SiR, UniProtKB Q9LZ66, 54.7% identity, Bruhl et al. 1996). 

SIR1 also share considerable identity with sulfite reductase found in hydrogen 

producing cyanobacteria, S. elongatus (SIR, UniProtKB P30008, 54.5% identity, 

Gisselmann et al. 1993). It was observed that feeding O-acetyl serine to nitrogen 

starved Arabidopsis plants led to an increase in SiR transcripts (Koprivova et al. 2000) 

and an overexpression of SiR rendered the plants more tolerant to sulfite toxicity 

(Yarmolinsky et al. 2013). The important role of SiR in oxidative stress was also 

realized in Arabidopsis grown in presence of methyl viologen (Wang et al. 2016). SIR 

was reported to be involved in plastid nucleoid compacting (Sekine et al. 2002) in 

garden pea. Though sulfite reductase is reported to be involved in several vital 

functions, it has not yet gained attention in Chlamydomonas. In the following study, the 

impact of SIR1 knockdown on hydrogen producibility of a high hydrogen producing 

mutant, stm6glc4 (Doebbe et al. 2007) will be analyzed.
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5.2 Results  

An intricately designed enzymatic cascade catalyzes reactions from sulfur 

acquisition to its assimilation. The role of Sulfite reductase (SIR1) in C. reinhardtii, is of 

great important as it ensures sulfur homeostasis and cysteine metabolism (González-

Ballester et al. 2010; Gonzalez-Ballester and Grossman 2009; Zhang et al. 2004). SIR1 

catalyzes the final reduction step of sulfite to sulfide by deriving 6 electrons from 

reduced ferredoxin (Hemschemeier and Happe 2011) which results in a competition 

for electrons between SIR1 and hydrogenase. Hence, SIR1 knockdowns were created 

by using artificial microRNA (amiRNA) to improve the bias of electron flux toward 

hydrogenase leading to an increase in hydrogen production.  

 
5.2.1 Screening and selection of SIR1 knockdown mutants 

The  amiRNA to knockdown SIR1 were generated (Molnar et al. 2009) and 

assembled as reported before (Hu et al. 2014). The amiRNA was cloned into 

pOpt_cCA_gLuc_Paro vector, downstream of the luciferase reporter (gLuc) which 

allowed rapid screening of over 500 transformants. The stm6glc4 SIR1 knockdown 

mutants showing resistance to paromomycin (10 mg/l) and hygromycin (5 mg/l) were 

qualitatively screened for luciferase activity on the plate level (Appendix: fig. S3). 

Around 14 mutants with relatively high luciferase activities were obtained and based 

on relative luminescence signal two best mutants (sgh2 and sgh3) were quantitatively 

analyzed in liquid TAP medium. PCS showed no luminescence but the highest signal 

was obtained from the knockdown mutant sgh3 which was two folds more than sgh2 

(fig. 23A). The mutants were further analyzed by RTqPCR and were found to contain 

ca. 20% and 30% reduced levels of SIR1 transcripts relative to the PCS (fig. 23B). The 

SIR1 knockdown in sgh3 was highest at ca. 30% in correlation to the observed 

luciferase activity. As the SIR1 of C. reinhardtii and A. thaliana share ~55% protein 

identity, a polyclonal antibody produced against A. thaliana SIR1 (Khan et al. 2010) (a 

gift from Prof. Rüdiger Hell, COS Research group, Heidelberg) was used to 

substantiate the SIR1 protein knockdown. Protein densitometry confirmed the 

knockdown and showed that the mutants accumulated ca 25-30% lesser amounts of 

SIR1 protein (fig. 23C). 
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5.2.2 Knocking down SIR1 results in growth retardation 

The final step of sulfur assimilation is carried out by SIR1 with the help of 

reduced Ferredoxin (Fdx1), making SIR1 a vital enzyme for cell growth. The level of 

SIR1 knockdown (44% and 14% mRNA as compared to control) in A. thaliana, was 

detrimental  between plant viability and death (Khan et al. 2010). Therefore, the effect 

of SIR1 knockdown was analyzed in mutants grown under photomixotrophic (TAP) and 

photoautotrophic (HSM) cultivation. High growth rates with high cell densities were 

observed among all strains grown in TAP medium (fig. 24A) as compared to 

photoautotrophic conditions. The growth of knockdown mutants was reduced under 

both tested conditions and in comparison to PCS, reached ca. 19-22% lower cell 

growth after 48 h in TAP. Under photoautotrophic conditions, PCS grew better than the 

knockdown mutants (fig. 24B). However, at t48 reached only ca.32% cell growth of that 

Figure 23: Detection of SIR1 

knockdown mutants. (A) Extracellular 

luciferase activity of stm6glc4 (PCS) and 

SIR1 knockdowns sgh2 and sgh3. The 

activity is normalized to cell count and the 

data is derived from three biologicals with 

technical duplicates (n = 6), where asterisk 

indicate statistically significant difference 

based on a t-test (p < 0.05). (B) RTqPCR 

analysis of SIR1 transcript in TAP grown 

cultures where SIR1 expression from PCS 

is normalized to 1. Data is derived from 

three biologicals and two technical 

replicates (n = 6), where asterisk show 

statistical significance (p < 0.05). 

(C) Immunoblot analysis of SIR1 

accumulation in PCS and SIR1 knockdown 

strains. 60 µg of total protein was blotted 

and colloidal coomassie staining (lower 

panel) served as a loading control. 

Densitometry analysis of SIR1 immunoblot 

derived from three biological samples (n = 

3) is shown. 

αSIR1 

CCB 
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obtained under TAP conditions. This reduction in growth between mixotrophic and 

autotrophic conditions has been observed as an influence of readily available inorganic 

carbon. The growth rates of the knockdown mutants were again reduced by ca. 25-

28%, similar to the results obtained under TAP conditions. However, no remarkable 

growth differences could be observed between the knockdown mutants. The retarded 

growth of SIR1 knockdown mutants could be associated with perturbed sulfur 

assimilation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Growth phenotype of PCS and SIR1 knockdown mutants. PCS and SIR1 

knockdown strains, sgh2 and sgh3 grown under (A) photo-mixotrophic (TAP) and (B) photo-

autotrophic (HSM) conditions. All strains were grown under the illumination of continuous white 

light of 100 µE m-2 s-1. Error bars represents standard error obtained from three biologicals with 

technical duplicates (n = 6) and asterisk show statistically significant data (p < 0.05). 
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5.2.3 Sulfite oxidase is upregulated in SIR1 knockdown mutants 

A reduction in SIR1 protein resulting in higher sulfite accumulation and higher 

sulfite oxidase activity has been previously observed in the leaves of A. thaliana (Khan 

et al. 2010). In correlation to this observation, the transcript abundance of sulfite 

oxidase (SO) was analyzed in two SIR1 knockdown strains. The accumulation of SO 

transcript was 4 to 6 folds higher than the PCS in sgh2 and sgh3, respectively (fig. 

25A). This finding could suggest the possible re-oxidation of excess sulfite to sulfate to 

overcome sulfite toxicity. An expression of a bacterial type sulfite reductase (SIR3) 

(Gonzalez-Ballester and Grossman 2009) was also observed in C. reinhardtii under 

sulfur depletion. However, there is no evidence that describes if loss in SIR1 is 

compensated by SIR3. RTqPCR analysis showed that the amount of SIR3 did not vary 

significantly between PCS and knockdown mutants (fig. 25B). Hence, on the basis of 

transcript analysis it could be concluded that SIR3 does not compensate for SIR1 

knockdown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 25: Impact of reduced SIR1 on the expression of sulfur assimilation genes. 

Analysis of (A) sulfite oxidase (SO) and (B) sulfite reductase (SIR3) in PCS and SIR1 

knockdown strains grown in TAP medium. Error bars represent standard error derived from 

three biologicals with technical duplicates (n = 6) and asterisk show statistical significance (p 

< 0.1).  

 



Results: SIR1 knockdown analysis  85 
 

 

5.2.4 Rate of hydrogen production is increased in SIR1 kd mutants 

An increase in the level of SIR1 transcript during sulfur deprived H2 production 

has been previously shown (Toepel et al. 2013), which serves as a competing sink for 

electrons (Hemschemeier et al. 2011; Nguyen et al. 2011). H2 production between PCS 

and knockdown strains was done to elucidate the functional significance of SIR1 

knockdown, (fig. 26A). All strains were grown to a mid-log phase in TAP and 

subsequently transferred to sulfur deplete medium (TAP-S) to the tune of ~25 µg/ml 

chlorophyll. H2 production was detectable in both knockdown strains 24 h after sulfur 

depletion, whereas PCS took twelve additional hours (t36) before hydrogen could be 

measured (fig. 26B). The H2 phase (time between earliest detection to termination of 

H2 production) was highest in PCS lasting for 108 h whereas it lasted only 96 h in the 

knockdown mutants. Interestingly, the overall H2 production was found to be ~35% and 

~55% more than PCS in sgh2 and sgh3 mutant, respectively.  

Rate of H2 production (fig. 26B) was significantly higher in the knockdown strains 

until t96. The difference in rates of H2 production at t36 was remarkably ~2 fold higher in 

knockdown strains compared to PCS. All strains reached their maximum H2 production 

rates at t48. In SIR1 knockdowns, high rates of H2 production compensated for the 

reduced production phase leading to a higher volumetric productivity (table 11). It is 

known that stm6glc4 can take up glucose and increase internal starch reserves which 

contribute to PSII independent hydrogen production (Doebbe et al. 2007). Hence, 

glucose dependent hydrogen production by SIR1 knockdown mutants were measured. 

Addition of glucose led to ~145% more H2 production in PCS which is in agreement to 

the previous report (Doebbe et al. 2007), as compared to ~120% increase in the 

knockdown strains. Within t48, rates of H2 production did no significantly differ between 

presence or absence of glucose (fig. 26C) but the differences became significant at t72 

and beyond, which correlates to previous findings (Doebbe et al. 2010). In the presence 

of glucose, the H2 phase did not change in the knockdown mutants but prolonged for 

an additional day in PCS. These results show that knocking down SIR1 results in a 

significant improvement in rate of H2 production. 
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Figure 26: Analysis of hydrogen production from PCS and SIR1 knockdown strains. 

(A) Total amount of hydrogen produced under sulfur deprivation in the absence of glucose is 

shown, where PCS is set to 100% and sgh2, sgh3 produce ~135% and ~155% H2, respectively. 

Each data bar represents an average of six replicates (two biologicals with technical triplicates, 

n = 6), error bars represent standard error and asterisk show statistical significance (**, p < 

0.05; *, p < 0.1). (B) Rate of H2 production in the absence and (C) presence of glucose is 

shown. Under both conditions, H2 production can be noticed by 24 h in the knockdown strains. 

Error bars denote standard error (n = 6) with statistical significance (p < 0.05). 
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Table 11: Rate and volumetric productivity of H2 in the presence and absence of glucose 

 

*STY (Space Time Yield): Volumetric productivity calculated by considering operation of 120 h. 

 

5.2.5 Rapid decline in ɸ PSII and P/R causes early onset of H2 production 

Chlorophyll fluorescence and ratio of photosynthetic O2 evolution to respiratory 

consumption (P/R) were monitored to decipher the phases of hydrogen production in 

the absence of glucose between PCS and SIR1 knockdown mutants. ɸ PSII of all the 

strains were recorded in presence of experimental light conditions with notable 

differences at t12 (fig. 27A). The ɸ PSII of PCS distinctly declined at t24 which correlated 

to previous observation (Doebbe et al. 2010; Nguyen et al. 2011) but the decline was 

more pronounced in knockdown strains reaching ~8-10% the value of t24 PCS. Beyond 

t36 of sulfur starvation, ɸ PSII could no longer be significantly recorded by the PAM 

instrument. Chlorophyll content of the measured strains were found to decline over the 

period of H2 production with significant differences emerging at t18 (fig. 27B). By t72 

chlorophyll/cell in the knockdown mutants had decreased to ~22% of their initial value, 

whereas the decrease was a meager ~13% in PCS. The ratio of Chl a/b at the start of 

sulfur starvation was ~2.2 in knockdown strains as compared to ~2 in PCS. With time, 

the Chl a/b ratio remained stable in PCS but increased by ~18% to ~2.6 in knockdown 

strains, which could be due to a higher LHCII degradation as previously reported under 

similar conditions (Zhang et al. 2002). 

Photosynthesis to Respiration (P/R) ratio of samples were analyzed with a 

Clark-type electrode. At the beginning, rate of photosynthesis was lower in sgh2 and 

sgh3 by ~13% and ~19% of PCS, respectively, but rate of respiration in all strains stood 

at ~42 µM O2/mg Chl*h (fig. 27C). The onset of anaerobiosis occurred rapidly by t24 in 

knockdown mutants, reaching a P/R of 0.5:1 and 0.4:1 in sgh2 and sgh3, respectively 

Strain Glucose H2 rate [ml/lh] H2 STY* [ml/lh] H2 volume [ml/l] 

stm6glc4 - 3.62 + 0.25 1.14 + 0.04 146.26 + 3.14 

 + 3.88 + 0.24 1.45 + 0.1 203.92 + 12.86 

sgh2 - 4.25 + 0.31 1.65 + 0.03 197.51 + 4.67 

 + 4.37 + 0.12 1.94 + 0.06 232.65 + 7.71 

sgh3 - 4.86 + 0.12 1.89 + 0.04 226.21 + 5.2 

 + 5.14 + 0.24 2.23 + 0.02 267.39 + 3.37 
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as compared to PCS (P/R of 1.1:1). By t48, all strains had attained anaerobiosis and 

were producing H2 at maximum rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: ɸ PSII, chlorophyll and photosynthetic/respiration (P/R) rates of sulfur 

deprived hydrogen producing cultures. (A) ɸ PSII of strains before (t0) and after exposure 

to sulfur limitation (t5-t48), recorded under experimental light conditions (n = 6, two biologicals 

with technical triplicates). Error bars show standard error and asterisk show statistical 

significance (**, p < 0.05; *, p < 0.1). (B) The chlorophyll content of stm6glc4 (PCS) at t0 is set 

to 100%. Each data point was obtained from two biologicals with technical triplicates (n = 6) 

where error bars show standard error and asterisk show statistical significance (p < 0.05). 

(C) Comparison of P/R rates from H2 producing culture, where rate of respiration (striped bar) 

was measured in the dark followed by photosynthetic rate (solid bar) under experimental light 

of 350 µE m-2 s-1. Error bars represent standard error (n = 6) taken from two biologicals with 

technical triplicates. 
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5.3 Discussion 

Solar biohydrogen production from green algae is an efficient alternative to other 

chemical methods. Hydrogenases ([FeFe]-HydA1) found in C. reinhardtii can catalyze 

the reversible reaction of hydrogen production by combining the protons released from 

photolysis of water with electrons derived from reduced ferredoxin (FDx1/PetF), 

yielding molecular H2. The activity of Chlamydomonas hydrogenase has been shown 

to be over 100 times more than that of other hydrogen producers like cyanobacteria 

and photosynthetic bacteria but the enzyme faces a fierce competition for electrons 

from other pathways (fig. 22). Sulfite reductase (SIR1) is an essential enzyme 

participating in the crucial step of sulfur assimilation but by doing so competes with 

hydrogenase for electrons. Recent advancements in amiRNA technology combined 

with a luciferase reporter (Hu et al. 2014) was applied in the following study to 

knockdown the competition arising due to SIR1. The growth phenotype and changes 

observed in hydrogen production of stm6glc4 SIR1 knockdown strains sgh2 and sgh3 

will be discussed in this chapter. 

 

5.3.1 Chlamydomonas SIR1 knockdown mutants are affected in growth and have 

their sulfite oxidase transcripts upregulated 

 The SIR1 knockdown was generated in a high hydrogen producing C. reinhardtii 

strain stm6glc4 (Doebbe et al. 2007). The knockdown mutants were quantitatively 

assessed on the basis of luciferase reporter assay and later evaluated by measuring 

the level of SIR1 transcripts through quantitative real time reverse transcription PCR 

(RTqPCR) (fig. 23A and 23B). The mRNA levels in the SIR1 knockdown mutants sgh2 

and sgh3 were reduced by ca. 20% and 30%, respectively. The protein abundance 

was consequently reduced, suggesting the lack of any post-transcriptional or post-

translational mechanism governing SIR1 expression (fig. 23C).  

 Reduction in SIR1 resulted in a subnormal growth phenotype which correlated 

to a similar observation reported in an Arabidopsis SiR knockdown plant (Khan et al. 

2010). The growth differences between stm6glc4 parental control strain (PCS) and the 

knockdown mutants sgh2 and sgh3 was evident under the tested growth conditions 

(photomixotrophic-TAP and photoautotrophic-HSM) (fig. 24). All strains showed high 

cell growth when grown in TAP due to the readily available carbon (acetate). However, 

under both growth conditions the growth rates were significantly reduced in knockdown 

mutants which could be due to perturbed sulfur assimilation. Interestingly, highest 
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knockdown of SIR1 resulted in the highest growth retardation as observed in the 

mutant sgh3. This finding suggests the significance of SIR1 for cell viability. 

 An Arabidopsis sulfite reductase knockdown mutant showing growth retardation 

due to perturbed sulfate assimilation and rising sulfite toxicity was able to grow by 

countering the toxicity with increased activity of sulfite oxidase (SO) (Khan et al. 2010). 

The mechanism of sulfite toxicity and measures taken by the cell is well documented 

in plants (Brychkova et al. 2007; Yarmolinsky et al. 2013). Based on these reports, an 

investigation of SO transcript revealed an upregulation of sulfite oxidase in both SIR1 

knockdown mutants, suggesting the countermeasure taken by the mutant strains to 

overcome sulfite toxicity (fig. 25A). A question arises if sulfite reductase (SIR1) is 

indeed the only enzyme catalyzing sulfide production? Therefore, the transcripts of 

SIR3 were also analyzed via RTqPCR. SIR3 transcripts did not change significantly in 

the knockdown strains and appeared to be similar to that of the parental strain, 

portraying the importance of SIR1 in sulfate assimilation of C. reinhardtii (fig. 25B). 

 

5.3.3 Rate of hydrogen production is increased in SIR1 knockdown mutants 

Biohydrogen production in Chlamydomonas is catalyzed by hydrogenase which 

receives electrons from ferredoxin. Of the six ferredoxins encoded by the 

Chlamydomonas genome, Fdx1 is the predominant electron donor to hydrogenase 

among other pathways (fig. 22). A recent study with yeast-two hybrid library showed 

Fdx1 to be supplying electrons to over 18 interacting partners (confident score: 

moderate) (Peden et al. 2013), which results in a severe electron competition. 

Redirecting electrons from Fdx1 towards hydrogenase has been done by expressing 

Fdx1-hydrogenase fusion protein (Eilenberg et al. 2016), knocking down FNR (Fdx1-

NADPH Reductase) (Sun et al. 2013) and improving Fdx1 bias towards hydrogenase 

by site-directed mutagenesis (Rumpel et al. 2014), which have all resulted in an 

increase in hydrogen production. In the following study, SIR1 knockdown mutants were 

generated to decipher their impact on hydrogen production. Hydrogen produced by 

mutants were detectable as early as t24 (fig. 26) due to an early onset of anaerobiosis 

(fig. 27A and 27C). A closer look into the physiology of the mutants showed a significant 

increase in the rate of hydrogen production. All the strains reached their maximum H2 

production rates at t48 but the knockdown mutants showed a further increase of ~19-

26%, due to a decreased level of SIR1 (fig. 26B). It is known that an earlier induction 

in H2 production protects residual PSII activity resulting in a prolongation of H2 
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production phase (Volgusheva et al. 2013). However, in comparison to the parental 

strain the phase of H2 production was shorter by a day in the knockdown mutants 

lasting for 96 h. Though the reason behind earlier decline of hydrogen production in 

the SIR1 knockdown mutants is not clear, it may be because of the inability of the cells 

to assimilate sulfur and fine tune cellular metabolism under nutrient limited conditions. 

This in turn could elicit high stress conditions causing severe damage as evident by an 

increase in Chl a/b ratio from 2.2 (t0) to ~2.6 (t72). The increase in Chl a/b is known to 

occur due to an increase in preferential binding of “light harvesting complex stress 

related protein 3” (LHCSR3) to “chlorophyll a” and reduction of other light harvesting 

proteins (Bonente et al. 2011). However, an increased rate of H2 production contributed 

to an overall higher hydrogen productivity by the knockdown strains (table 11). The 

SIR1 knockdown mutants had also retained the ability of glucose uptake which was 

reflected by an improved hydrogen production rate beyond t72 (fig. 26C). 

The earlier onset of anaerobiosis in the knockdown mutants as seen by ɸPSII 

and Clark measurement was the reason behind the early start of hydrogen production 

(fig. 27A and 27C). Respirational oxygen consumption did not differ among the strains 

but the rate of photosynthetic oxygen evolution declined rapidly in the knockdown 

mutants leading to an earlier onset of hydrogen production (fig. 27C). Photosynthetic 

capacity (ɸPSII) of the mutants decreased more rapidly than the parental strain, which 

could be due to a decreased rate of PSII repair cycle arising because of a perturbed 

sulfur acquisition (fig. 27A). The chlorophyll content per cell was also lower in the 

knockdown mutants which further decreased by ~22% of their initial value at t72. This 

decay in chlorophyll content was accompanied by an increase in Chl a/b ratio, 

suggesting higher damage in knockdown mutants under sulfur deprived conditions. 

These analyses helped in understanding the physiology and adaptation of the SIR1 

knockdown mutants to sulfur deprivation, which resulted in an earlier onset and 

improved hydrogen production. 
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5.4 Conclusion 

 Hydrogen production can be enhanced by elimination of competing pathway to 

redirect the susbstrate flux towards hydrogenase (Burgess et al. 2012). The prime aim 

of the following work was to improve hydrogen production in C. Reinhardtii by 

redirecting the electron flux towards hydrogenase by knockdown of sulfite reductase 

(SIR1). With the help of artificial microRNA, competition arising due to SIR1 was 

successfully overcome by creating two knockdown mutants in stm6glc4. The 

knockdowns accumulated low levels of SIR1 protein resulting in a pertubed sulfur 

assimilation as reflected by retarded growth under photoautotrophic and 

photomixotrophic conditions. The knockdown mutants showed an increase in sulfite 

oxidase (SO) at the transcript level, hinting that SO upregulation might help the mutants 

tolerate sulfite toxicity. Upon sulfur deprivation of air tight cultures, the mutants reached 

anaerobicity faster than their parental strains and showed an earlier induction of 

hydrogen production. As postulated at the beginning of this work (Objective 2), SIR1 

knockdown mutants were able to yield more hydrogen due to a higher rate of hydrogen 

production as compared to their parental strain. However, following things have to be 

analyzed to elucidate the underlying mechansim of SIR1 competiton so that further 

improvement of H2 can be reached:  

1) Confirmation of increase in SO by enzyme activity assay or protein analysis 

2) Increase in H2 production of knockdown mutants needs to be confirmed by 

performing PSII independent H2 production (with DCMU) 

3) Reduction in the H2 production phase of SIR1 knockdowns has to be analyzed 

4) Eliminating SIR1 led to growth retardation due to perturbed sulfur assimilation. 

Hence, use of inducible promoters to selectively knockdown SIR1 could be a 

strategy to have a prolonged H2 production process 

 

Contributions by other people 

 The construction and generation of SIR1 knockdown mutants was equally 

shared by Thomas Baier. The SIR1 antibody used for the following analysis was a kind 

gift from Prof. Dr. Rüdiger Hell. 
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6.0 Viability assessment of C. reinhardtii cells immobilized in novel silica gel 

One of the aim of the following work was to improve robustness of hydrogen 

production process by immobilizing good hydrogen producing strains of C. reinhardtii 

in a novel silica gel system. A wild type CC124 and an stm6 mutant (Kruse et al. 2005) 

were immobilized in a sodium silicate transparent gel system. Additionally, cells 

immobilized within calcium-alginate and free cells served as controls as shown in 

(fig. 28). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Photosynthetic acti-

vity of free and immobilized 

cells of C. reinhardtii.  

(A) A picture showing free cells, 

Ca-alginate and silica gel 

immobilized cells of CC124 wild 

type and stm6 mutant. Strains 

grown to a late exponential phase 

were suspended in fresh TAP or 

TAP-S medium to the tune of 

~25 µg/ml chlorophyll. Photosyn-

thetic activity (Fv/Fm) was 

measured after 3 min of dark 

incubation. Plots (B) and (C) show 

changes in photosynthetic activity 

of CC124 and stm6 during TAP 

(sulfur replete, black) and TAP-S 

(red) growth, respectively. 

Legends denote the following: Fr: 

free cells, Si: Novel silica gel 

immobilized cells, Ag: Ca-alginate 

immobilized cells, +S: sulfur 

replete, -S: sulfur deplete. The 

data points denote average of two 

biologicals with technical 

triplicates each (n = 6).   
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The strains were grown to a mid-log phase and suspended in fresh sulfur replete 

TAP (+S) and sulfur deplete TAP (-S) medium, represented by black and red lines 

respectively (fig. 28). Following immobilization in ca-alginate (Fraser et al. 1997) and 

silica gel, the cells were suspended in +S and –S conditions. Photosynthetic capacity 

of all the strains were monitored by measuring Fv/Fm after 3 min of dark adaptation. 

Fv/Fm of free and immobilized CC124 did not differ significantly between the type of 

immobilization material used and remained high throughout the growth under sulfur 

replete conditions (fig. 28B). This showed that neither of the immobilization materials 

posed any toxicity to the cells. In correlation to the previous observation (Zhang et al. 

2002), photosynthetic capacity of free cells under –S decreased over time. The 

decrease in Fv/Fm of alginate immobilized cells was much slower compared to the free 

cells and could be due to the shading effect caused by the translucent nature of 

alginate gel (fig. 28B). CC124 immobilized in silica gel retained an Fv/Fm value of 0.47 

which was over 3fold and ~2fold higher than that of free and alginate immobilized cells, 

respectively. The retention of higher photosynthetic activity could help in the 

contribution of more electron substrate for the hydrogenase (Volgusheva et al. 2013). 

Similar to the result in wild type strain, the mutant stm6 immobilized in silica gel also 

retained higher photosynthetic capacity under –S conditions (fig. 28C). The advantage 

of immobilization in novel silica gel system is that (a) entrapped cells retain higher 

viability as seen (fig. 28B and 28C –S conditions) and (b) Immobilization assists in 

improving robustness of the hydrogen production process by reducing the time and 

energy requirements of a two-phase process. However, further studies are required to 

decipher the reason behind improved photosynthetic capacity of silica immobilized 

cells and test if immobilized cells can produce hydrogen.
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7.0 Future perspectives 

 Several process related parameters have already been tried to improve 

hydrogen yields but the true potential of light to H2 conversion efficiency can only be 

achieved by strain engineering, as shown by this work. The major contribution of PSII 

on H2 production has been acknowledged (Volgusheva et al. 2013), which necessitates 

enhancement of PSII stability or eliminate competing pathways to improve substrate 

flux for H2 production. Competition due to essential metabolic pathways like fatty acid 

desaturase (FAD, fig.22) could be eliminated with the help of a selectively inducible 

knockdown in order to improve electron flux towards hydrogenase. 

The presently used two-phase sulfur deprived hydrogen production process is 

time and energy intensive. An attractive option could be to have the strains immobilized 

in a glass like material (as shown by novel silica gel) that allows effective light and 

mass transfer. Another method could be to look for species that natively express an 

oxygen tolerant hydrogenase (Hwang et al. 2014). 

 The quantum efficiency of light conversion could be improved by co-cultivation 

of Chlamydomonas with other bacteria such as purple sulfur bacteria or purple 

cyanobacteria. At the present efficiency of hydrogen production (in wild type, light to 

H2 < 0.1%, Posten et al. 2012) the cost of recovering hydrogen gas is not profitable 

(Amos 2004). Therefore, operating an algal bio-refinery that could utilize byproducts of 

algal growth as animal feed or provide other valuable products such as biodiesel or 

bioethanol along with H2 could result in a profitable process. 



References  96 
 

 

Adler, Matthew et al. 2017. “Priority for the Worse-off and the Social Cost of Carbon.” Nature 

Clim. Change advance on. (http://dx.doi.org/10.1038/nclimate3298). 

Akashi, Tetsuyuki et al. 1999. “Comparison of the Electrostatic Binding Sites on the Surface of 

Ferredoxin for Two Ferredoxin-Dependent Enzymes, Ferredoxin-NADP+ Reductase and 

Sulfite Reductase.” Journal of Biological Chemistry 274(41):29399–405.  

(http://www.jbc.org/content/274/41/29399.long). 

Alboresi, Alessandro et al. 2011. “Reactive Oxygen Species and Transcript Analysis upon 

Excess Light Treatment in Wild-Type Arabidopsis Thaliana vs a Photosensitive Mutant 

Lacking Zeaxanthin and Lutein.” BMC Plant Biology 11(1):62. 

(http://dx.doi.org/10.1186/1471-2229-11-62). 

Allakhverdiev, Suleyman I., Vladimir D. Kreslavski, et al. 2009. “Hydrogen Photoproduction by 

Use of Photosynthetic Organisms and Biomimetic Systems.” Photochem. Photobiol. Sci. 

8(2):148–56. (http://dx.doi.org/10.1039/B814932A). 

Allakhverdiev, Suleyman I., Jorge J. Casal, and Toshi Nagata. 2009. “Photosynthesis from 

Molecular Perspectives: Towards Future Energy Production.” Photochemical & 

Photobiological Sciences 8(2):137–38. (http://dx.doi.org/10.1039/B823060A). 

Amin, Shivas R., Serkan Erdin, R.Matthew Ward, Rhonald C. Lua, and Olivier Lichtarge. 2013. 

“Prediction and Experimental Validation of Enzyme Substrate Specificity in Protein 

Structures.” Proceedings of the National Academy of Sciences 110:E4195–4202. 

(http://www.pnas.org/content/110/45/E4195.full.pdf). 

Amos, Wade A. 2004. “Updated Cost Analysis of Photobiological Hydrogen Production from 

Chlamydomonas Reinhardtii Green Algae Milestone Completion Report.” National 

Renewable Energy Laboratory, Golden, Colorado Report No.(January):29. 

(http://web.mit.edu/~pweigele/www/PBH2/cost_analysis_PBH2.pdf). 

Andrianopoulos, A., S. Kourambas, Julie A. Sharp, Meryl A. Davis, and Michael J. Hynes. 

1998. “Characterization of the Aspergillus Nidulans nmrA Gene Involved in Nitrogen 

Metabolite Repression.” Journal of Bacteriology 180(7):1973–77. 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC107119/pdf/jb001973.pdf). 

Antal, T. K. et al. 2003. “The Dependence of Algal H2 Production on Photosystem II and O2 

Consumption Activities in Sulfur-Deprived Chlamydomonas Reinhardtii Cells.” Biochimica 

et Biophysica Acta - Bioenergetics 1607(2–3):153–60. 

(http://www.sciencedirect.com/science/article/pii/S0005272803001427). 

Antal, T. K., T. E. Krendeleva, V. Z. Pashchenko, A. B. Rubin, and K. Stensjo. 2011. 

“Photosynthetic Hydrogen Production : Mechanisms and Approaches.” Pp. 25–53 in State 

of the Art and Progress in Production of Biohydrogen. 

(http://www.eurekaselect.com/99300/volume/1). 

Antal, Taras K., Tatyana E. Krendeleva, and Andrew B. Rubin. 2011. “Acclimation of Green 



References  97 
 

 

Algae to Sulfur Deficiency: Underlying Mechanisms and Application for Hydrogen 

Production.” Applied microbiology and biotechnology 89(1):3–15.  

(http://www.ncbi.nlm.nih.gov/pubmed/20878321). 

Apel, Klaus and Heribert Hirt. 2004. “REACTIVE OXYGEN SPECIES: Metabolism, Oxidative 

Stress, and Signal Transduction.” Annual Review of Plant Biology 55(1):373–99. 

(http://www.annualreviews.org/doi/10.1146/annurev.arplant.55.031903.141701). 

Arb, Christoph Von and Christian Bmnold. 1985. “Ferredoxin-Sulfite Reductase and 

Ferredoxin-Nitrite Reductase Activities in Leaves of Pisum Sativum : Changes during 

Ontogeny and in Vitro Regulation by Sulfide.” Physiologia Plantarum 64:290–94. 

(http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1985.tb03342.x/abstract). 

Armstrong, Fraser A. 2004. “Hydrogenases: Active Site Puzzles and Progress.” Current 

Opinion in Chemical Biology 8(2):133–40. 

(http://www.sciencedirect.com/science/article/pii/S1367593104000195). 

Arnon, Daniel I. 1945. “Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta 

Vulgaris.” Plant Physiology 20(2). 

(http://www.plantphysiol.org/content/24/1/1.full.pdf+html). 

Babiychuk, E., S. Kushnir, E. Belles-Boix, M. Van Montagu, and D. Inze. 1995. “Arabidopsis 

Thaliana NADPH Oxidoreductase Homologs Confer Tolerance of Yeasts toward the 

Thiol-Oxidizing Drug Diamide.” Journal of Biological Chemistry 270(44):26224–31. 

(http://www.jbc.org/content/270/44/26224.long). 

Ball, Steven G. 1998. “Regulation of Starch Biosynthesis.” Pp. 549–67 in The Molecular 

Biology of Chloroplasts and Mitochondria in Chlamydomonas, edited by J -D. Rochaix, M 

Goldschmidt-Clermont, and S Merchant. Dordrecht: Springer Netherlands. 

(http://dx.doi.org/10.1007/0-306-48204-5_29). 

Bamberger, E. S., D. King, D. L. Erbes, and M. Gibbs. 1982. “H(2) and CO(2) Evolution by 

Anaerobically Adapted Chlamydomonas Reinhardtii F-60.” Plant physiology 69:1268–73. 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC426399/). 

Bartel, David P. 2004. “MicroRNAs: Genomics, Biogenesis, Mechanism, and Function.” Cell 

116(2):281–97. (https://linkinghub.elsevier.com/retrieve/pii/S0092867404000455). 

Ben-Amotz, Ami and Martin Gibbs. 1975. “H2 Metabolism in Photosynthetic Organisms II. 

Light-Dependent H2 Evolution by Preparations from Chlamydomonas, Scenedesmus and 

Spinach.” Biochemical and Biophysical Research Communications 64(1):355–59. 

(http://www.sciencedirect.com/science/article/pii/0006291X75902612). 

Benemann, John R. 1997. “Feasibility Analysis of Photobiological Hydrogen Production.” 

International Journal of Hydrogen Energy 22(10–11):979–87. 

(http://www.sciencedirect.com/science/article/pii/S0360319996001899). 

Berchtold, Martin and Reinhard Bachofen. 1979. “Hydrogen Formation by Cyanobacteria 



References  98 
 

 

Cultures Selected for Nitrogen Fixation.” Archives of Microbiology 123(3):227–32. 

(http://dx.doi.org/10.1007/BF00406654). 

Bingham, Alyssa S., Phillip R. Smith, and James R. Swartz. 2012. “Evolution of an [FeFe] 

Hydrogenase with Decreased Oxygen Sensitivity.” International Journal of Hydrogen 

Energy 37(3):2965–76. (http://dx.doi.org/10.1016/j.ijhydene.2011.02.048). 

Blaby, Ian K. et al. 2015. “Genome-Wide Analysis on Chlamydomonas Reinhardtii Reveals the 

Impact of Hydrogen Peroxide on Protein Stress Responses and Overlap with Other Stress 

Transcriptomes.” Plant Journal 84(5):974–88. 

(http://onlinelibrary.wiley.com/doi/10.1111/tpj.13053/abstract). 

Bonente, Giulia et al. 2011. “Analysis of LHcSR3, a Protein Essential for Feedback de-

Excitation in the Green Alga Chlamydomonas Reinhardtii.” PLoS Biology 9(1). 

(http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1000577). 

Borras, Teresa, Bengt Persson, and Hans Jörnvall. 1989. “Eye Lens .zeta.-Crystallin 

Relationships to the Family Of ‘long-Chain’ alcohol/polyol Dehydrogenases. Protein 

Trimming and Conservation of Stable Parts.” Biochemistry 28(15):6133–39. 

(http://dx.doi.org/10.1021/bi00441a001). 

Boynton, J. E. et al. 1988. “Chloroplast Transformation in Chlamydomonas with High Velocity 

Microprojectiles.” Science (New York, N.Y.) 240(4858):1534–38. 

(http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=2897716). 

Brand, Jerry J., John N. Wright, and Stephen Lien. 1989. “Hydrogen Production by Eukaryotic 

Algae.” Biotechnology and Bioengineering 33(11):1482–88. 

(http://dx.doi.org/10.1002/bit.260331116). 

Brandalise, Marcos, Fabio E. Severino, Mirian P. Maluf, and Ivan G. Maia. 2009. “The Promoter 

of a Gene Encoding an Isoflavone Reductase-like Protein in Coffee (Coffea Arabica) 

Drives a Stress-Responsive Expression in Leaves.” Plant Cell Reports 28(11):1699. 

(http://dx.doi.org/10.1007/s00299-009-0769-0). 

Brennecke, Julius, Alexander Stark, Robert B. Russell, and Stephen M. Cohen. 2005. 

“Principles of microRNA-Target Recognition.” PLoS Biology 3(3):0404–18. 

(http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0030085). 

Bruhl, A., T. Haverkamp, G. Gisselmann, and J. D. Schwenn. 1996. “A cDNA Clone from 

Arabidopsis Thaliana Encoding Plastidic Ferredoxin:sulfite Reductase.” Biochimica et 

biophysica acta 1295(2):119–24. (https://www.ncbi.nlm.nih.gov/pubmed/8695637). 

Brychkova, Galina et al. 2007. “Sulfite Oxidase Protects Plants against Sulfur Dioxide Toxicity.” 

Plant Journal 50(4):696–709. (http://onlinelibrary.wiley.com/doi/10.1111/j.1365-

313X.2007.03080.x/abstract). 

Burgess, Steven J., Gregory Tredwell, Attila Molnàr, Jacob G. Bundy, and Peter J. Nixon. 2012. 

“Artificial microRNA-Mediated Knockdown of Pyruvate Formate Lyase (PFL1) Provides 



References  99 
 

 

Evidence for an Active 3-Hydroxybutyrate Production Pathway in the Green Alga 

Chlamydomonas Reinhardtii.” Journal of biotechnology 162(1):57–66. 

(http://www.ncbi.nlm.nih.gov/pubmed/22687249). 

Candiano, Giovanni et al. 2004. “Blue Silver: A Very Sensitive Colloidal Coomassie G-250 

Staining for Proteome Analysis.” Electrophoresis 25(9):1327–33. 

(http://www.ncbi.nlm.nih.gov/pubmed/15174055). 

Chen, Hsu Ching, A.Jamila Newton, and Anastasios Melis. 2005. “Role of SulP, a Nuclear-

Encoded Chloroplast Sulfate Permease, in Sulfate Transport and H2 Evolution in 

Chlamydomonas Reinhardtii.” Photosynthesis Research 84(1–3):289–96. 

(https://link.springer.com/article/10.1007%2Fs11120-004-7157-y). 

Chen, Mei et al. 2010. “Proteomic Analysis of Hydrogen Photoproduction in Sulfur-Deprived 

Chlamydomonas Cells.” Journal of Proteome Research 9(8):3854–66.  

(http://pubs.acs.org/doi/abs/10.1021/pr100076c). 

Chochois, Vincent et al. 2009. “Hydrogen Production in Chlamydomonas: Photosystem II-

Dependent and -Independent Pathways Differ in Their Requirement for Starch 

Metabolism.” Plant physiology 151(2):631–40. 

(http://www.plantphysiol.org/content/151/2/631.short). 

Chomczynski, Piotr. 1987. “Single-Step Method of RNA Isolation by Acid Guanidinium 

Extraction.” 159:156–59. 

(http://www.sciencedirect.com/science/article/pii/0003269787900212?via%3Dihub). 

Cinco, R. M., J. M. Macinnis, and E. Greenbaum. 1993. “The Role of Carbon-Dioxide in Light-

Activated Hydrogen-Production by Chlamydomonas-Reinhardtii.” Photosynthesis 

Research 38. (http://dx.doi.org/10.1007/BF00015058). 

Cohen, Jordi et al. 2005. “Molecular Dynamics and Experimental Investigation of H2 and O2 

Diffusion in [Fe]-Hydrogenase.” Biochemical Society Transactions 33(1):80–82. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2587414&tool=pmcentrez&r

endertype=abstract). 

Das, Debabrata and T.Nejat Veziroä. 2001. “Hydrogen Production by Biological Processes : A 

Survey of Literature.” 26:13–28. 

(http://www.sciencedirect.com/science/article/pii/S0360319900000586). 

Davies, J. P., F. Yildiz, and A. R. Grossman. 1994. “Mutants of Chlamydomonas with Aberrant 

Responses to Sulfur Deprivation.” Plant Cell 6. (http://dx.doi.org/10.1105/tpc.6.1.53). 

de-Bashan, Luz E. and Yoav Bashan. 2010. “Immobilized Microalgae for Removing Pollutants: 

Review of Practical Aspects.” Bioresource Technology 101(6):1611–27. 

(http://www.sciencedirect.com/science/article/pii/S0960852409012498). 

Debuchy, R., S. Purton, and J. D. Rochaix. 1989. “The Argininosuccinate Lyase Gene of 

Chlamydomonas Reinhardtii: An Important Tool for Nuclear Transformation and for 



References  100 
 

 

Correlating the Genetic and Molecular Maps of the ARG7 Locus.” The EMBO journal 

8(10):2803–9. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC401327/). 

Dent, R. M. 2005. “Functional Genomics of Eukaryotic Photosynthesis Using Insertional 

Mutagenesis of Chlamydomonas Reinhardtii.” Plant Physiology 137(2):545–56. 

(http://www.plantphysiol.org/cgi/doi/10.1104/pp.104.055244). 

Dent, Rachel M., Cat M. Haglund, Brian L. Chin, Marilyn C. Kobayashi, and Krishna K. Niyogi. 

2005. “Functional Genomics of Eukaryotic Photosynthesis Using Insertional Mutagenesis 

of Chlamydomonas Reinhardtii.” Plant Physiology 137(2):545–56. 

(http://www.plantphysiol.org/cgi/doi/10.1104/pp.104.055244). 

Doebbe, Anja et al. 2007. “Functional Integration of the HUP1 Hexose Symporter Gene into 

the Genome of C. Reinhardtii: Impacts on Biological H(2) Production.” Journal of 

biotechnology 131(1):27–33. (http://www.ncbi.nlm.nih.gov/pubmed/17624461). 

Doebbe, Anja et al. 2010. “The Interplay of Proton, Electron, and Metabolite Supply for 

Photosynthetic H2 Production in Chlamydomonas Reinhardtii.” The Journal of biological 

chemistry 285(39):30247–60. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2943295&tool=pmcentrez&r

endertype=abstract). 

Dubini, Alexandra and Maria L. Ghirardi. 2014. “Engineering Photosynthetic Organisms for the 

Production of Biohydrogen.” Photosynthesis research. 

(http://www.ncbi.nlm.nih.gov/pubmed/24671643). 

Eilenberg, Haviva et al. 2016. “The Dual Effect of a Ferredoxin-Hydrogenase Fusion Protein in 

Vivo: Successful Divergence of the Photosynthetic Electron Flux towards Hydrogen 

Production and Elevated Oxygen Tolerance.” Biotechnology for Biofuels 9(1):182. 

(http://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-016-0601-

3). 

van Eldik, G. J. et al. 1997. “Expression of an Isoflavone Reductase-like Gene Enhanced by 

Pollen Tube Growth in Pistils of Solanum Tuberosum.” Plant Molecular Biology 

33(5):923–29. (http://dx.doi.org/10.1023/A:1005749913203). 

Endo, T. and K. Asada. 1996. “Dark Induction of the Non-Photochemical Quenching of 

Chlorophyll Fluorescence by Acetate in Chlamydomonas Reinhardtii.” Plant and Cell 

Physiology 37(4):551–55. 

(http://pcp.oxfordjournals.org/cgi/doi/10.1093/oxfordjournals.pcp.a028979). 

Fang, Wei et al. 2012. “Transcriptome-Wide Changes in Chlamydomonas Reinhardtii Gene 

Expression Regulated by Carbon Dioxide and the CO2-Concentrating Mechanism 

Regulator CIA5/CCM1.” The Plant cell 24(5):1876–93. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3442575&tool=pmcentrez&r

endertype=abstract). 



References  101 
 

 

Farh, Kyle Kai-How et al. 2005. “The Widespread Impact of Mammalian MicroRNAs on mRNA 

Repression and Evolution.” Science 310(5755):1817 LP-1821. 

(http://science.sciencemag.org/content/310/5755/1817.abstract). 

Farmer, Edward E. and Céline Davoine. 2007. “Reactive Electrophile Species.” Current 

Opinion in Plant Biology 10(4):380–86. 

(http://www.sciencedirect.com/science/article/pii/S1369526607000714). 

Fei, Xiaowen and Xiaodong Deng. 2007. “A Novel Fe Deficiency-Responsive Element (FeRE) 

Regulates the Expression of atx1 in Chlamydomonas Reinharditii.” Plant & cell physiology 

48(10):1496–1503. 

(https://academic.oup.com/pcp/article-lookup/doi/10.1093/pcp/pcm110). 

Ferreira, R. M. B. and A. R. N. Teixeira. 1992. “Sulfur Starvation in Lemna Leads to 

Degradation of Ribulose-Bisphosphate Carboxylase without Plant Death.” Journal of 

Biological Chemistry 267(11):7253–57. 

(http://www.jbc.org/content/267/11/7253.abstract). 

Ferris, P. J. et al. 2001. “Glycosylated Polyproline II Rods with Kinks as a Structural Motif in 

Plant Hydroxyproline-Rich Glycoproteins.” Biochemistry 40(9):2978–87. 

(http://pubs.acs.org/doi/abs/10.1021/bi0023605). 

Fett, J. P. and J. R. Coleman. 1994. “Regulation of Periplasmic Carbonic Anhydrase 

Expression in Chlamydomonas Reinhardtii by Acetate and pH.” Plant physiology 

106:103–8. (http://www.plantphysiol.org/content/106/1/103.long). 

Filling, Charlotta et al. 2002. “Critical Residues for Structure and Catalysis in Short-Chain 

Dehydrogenases/reductases.” Journal of Biological Chemistry 277(28):25677–84. 

(http://www.jbc.org/content/277/28/25677.long). 

Fischer, B. B. et al. 2012. “PNAS Plus: SINGLET OXYGEN RESISTANT 1 Links Reactive 

Electrophile Signaling to Singlet Oxygen Acclimation in Chlamydomonas Reinhardtii.” 

Proceedings of the National Academy of Sciences 109(20):E1302–11. 

(http://www.pnas.org/content/109/20/E1302/1). 

Fischer, Beat B., Anja Krieger-Liszkay, and R. I. L. Eggen. 2004. “Photosensitizers Neutral 

Red (Type I) and Rose Bengal (Type II) Cause Light-Dependent Toxicity in 

Chlamydomonas Reinhardtii and Induce the Gpxh Gene via Increased Singlet Oxygen 

Formation.” Environmental Science and Technology 38(23):6307–13. 

(http://pubs.acs.org/doi/abs/10.1021/es049673y). 

Fischer, N. and J. D. Rochaix. 2001. “The Flanking Regions of PsaD Drive Efficient Gene 

Expression in the Nucleus of the Green Alga Chlamydomonas Reinhardtii.” Molecular 

genetics and genomics : MGG 265(5):888–94. 

(https://www.ncbi.nlm.nih.gov/pubmed/11523806). 

Forestier, M. et al. 2003. “Expression of Two [Fe]-Hydrogenases in Chlamydomonas 



References  102 
 

 

Reinhardtiiunder Anaerobic Conditions.” Eur J Biochem 270. 

(http://dx.doi.org/10.1046/j.1432-1033.2003.03656). 

Frame, Dave, Manoj Joshi, Ed Hawkins, Luke J. Harrington, and Mairead de Roiste. 2017. 

“Population-Based Emergence of Unfamiliar Climates.” Nature Clim. Change advance on. 

(http://dx.doi.org/10.1038/nclimate3297). 

Fraser, Jane E. and Gordon F. Bickerstaff. 1997. “Entrapment in Calcium Alginate.” Pp. 61–66 

in Immobilization of Enzymes and Cells, edited by Gordon F Bickerstaff. Totowa, NJ: 

Humana Press. (http://dx.doi.org/10.1385/0-89603-386-4:61). 

Fuhrmann, M., W. Oertel, and P. Hegemann. 1999. “A Synthetic Gene Coding for the Green 

Fluorescent Protein (GFP) Is a Versatile Reporter in Chlamydomonas Reinhardtii.” The 

Plant journal : for cell and molecular biology 19(3):353–61. 

(http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.1999.00526.x/abstract). 

Fuhrmann, Markus et al. 2004. “Monitoring Dynamic Expression of Nuclear Genes in 

Chlamydomonas Reinhardtii by Using a Synthetic Luciferase Reporter Gene.” Plant 

Molecular Biology 55(6):869–81. (http://dx.doi.org/10.1007/s11103-004-2150-6). 

Gaffron, H. 1939. “Reduction of Carbon Dioxide Coupled with the Oxyhydrogen Reaction in 

Algae.” J Gen Physiol 26. (http://dx.doi.org/10.1085/jgp.26.2.241). 

Gaffron, H. and J. Rubin. 1942. “Fermentative and Photochemical Production of Hydrogen in 

Algae.” J Gen Physiol 26. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142062/). 

Gaffron, Hans and Jack Rubin. 1942. “Fermentative and Photochemical Production of 

Hydrogen in Algae.” 219–40. 

Galvez-Valdivieso, Gregorio and Philip M. Mullineaux. 2010. “The Role of Reactive Oxygen 

Species in Signalling from Chloroplasts to the Nucleus.” Physiologia Plantarum 

138(4):430–39.  

(http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2009.01331.x/abstract). 

Gfeller, R. P. and M. Gibbs. 1984. “Fermentative Metabolism of Chlamydomonas Reinhardtii: 

I. Analysis of Fermentative Products from Starch in Dark and Light.” Plant Physiol 75. 

(http://dx.doi.org/10.1104/pp.75.1.212). 

Ghirardi, M. L. et al. 2000. “Microalgae: A Green Source of Renewable H(2).” Trends in 

biotechnology 18(12):506–11. (http://www.ncbi.nlm.nih.gov/pubmed/11102662). 

Ghirardi, Maria L. et al. 2007. “Hydrogenases and Hydrogen Photoproduction in Oxygenic 

Photosynthetic Organisms.” Annual Review of Plant Biology 58(1):71–91. 

(http://www.annualreviews.org/doi/10.1146/annurev.arplant.58.032806.103848). 

Ghirardi, Maria Lucia, Alexandra Dubini, Jianping Yu, and Pin-Ching Maness. 2009. 

“Photobiological Hydrogen-Producing Systems.” Chemical Society reviews 38(1):52–61. 

(http://www.ncbi.nlm.nih.gov/pubmed/19088964). 

Ghysels, Bart and Fabrice Franck. 2010. “Hydrogen Photo-Evolution upon S Deprivation 



References  103 
 

 

Stepwise: An Illustration of Microalgal Photosynthetic and Metabolic Flexibility and a Step 

Stone for Future Biotechnological Methods of Renewable H2 Production.” Photosynthesis 

Research 106(1–2):145–54. (http://link.springer.com/10.1007/s11120-010-9582-4). 

Gilchrist, Erin J. and George W. Haughn. 2005. “TILLING without a Plough: A New Method 

with Applications for Reverse Genetics.” Current opinion in plant biology 8(2):211–15. 

(http://www.sciencedirect.com/science/article/pii/S1369526605000087?via%3Dihub). 

Gisselmann, Günter, Peter Klausmeier, and Jens D. Schwenn. 1993. “The Ferredoxin: Sulphite 

Reductase Gene from Synechococcus PCC7942.” Biochimica et biophysica acta 

1144:102–6. 

(http://www.sciencedirect.com/science/article/pii/000527289390037G?via%3Dihub). 

Godman, James E., Attila Molnar, David C. Baulcombe, and Janneke Balk. 2010. “RNA 

Silencing of Hydrogenase(-like) Genes and Investigation of Their Physiological Roles in 

the Green Alga Chlamydomonas Reinhardtii.” The Biochemical journal 431(3):345–51. 

(http://www.biochemj.org/content/431/3/345.long). 

Goldberg, Tatyana, Tobias Hamp, and Burkhard Rost. 2012. “LocTree2 Predicts Localization 

for All Domains of Life.” Bioinformatics 28(18):458–65. 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3436817/). 

Goldschmidt-Clermont, M. 1991. “Transgenic Expression of Aminoglycoside Adenine 

Transferase in the Chloroplast: A Selectable Marker of Site-Directed Transformation of 

Chlamydomonas.” Nucleic Acids Research 19(15):4083–89. 

(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC328544/). 

Gonzalez-Ballester, David et al. 2011. “Reverse Genetics in Chlamydomonas: A Platform for 

Isolating Insertional Mutants.” Plant methods 7(1):24. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3161022&tool=pmcentrez&r

endertype=abstract). 

González-Ballester, David et al. 2010. “RNA-Seq Analysis of Sulfur-Deprived Chlamydomonas 

Cells Reveals Aspects of Acclimation Critical for Cell Survival.” The Plant cell 22(6):2058–

84. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2910963&tool=pmcentrez&r

endertype=abstract). 

Gonzalez-Ballester, David and Arthur R. Grossman. 2009. “Sulfur: From Acquisition to 

Assimilation.” The Chlamydomonas Sourcebook 3-Vol set 2:159–87. 

Gonzalez-Ballester, David, Steve V Pollock, Wirulda Pootakham, and Arthur R. Grossman. 

2008. “The Central Role of a SNRK2 Kinase in Sulfur Deprivation Responses.” Plant 

physiology 147(1):216–27. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2330293&tool=pmcentrez&r

endertype=abstract). 



References  104 
 

 

Gorman, D. S. and R. P. Levine. 1966. “Photosynthetic Electron Transport Chain of 

Chlamydomonas Reinhardi. V. Purification and Properties of Cytochrome 553 and 

Ferredoxin.” Plant Physiology 41(10):1643–47. 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC550587/). 

Greenbaum, E. 1988. “Energetic Efficiency of Hydrogen Photoevolution by Algal Water 

Splitting.” Biophysical journal 54(2):365–68. (http://dx.doi.org/10.1016/S0006-

3495(88)82968-0). 

Grewe, Sabrina et al. 2014. “Light-Harvesting Complex Protein LHCBM9 Is Critical for 

Photosystem II Activity and Hydrogen Production in Chlamydomonas Reinhardtii.” The 

Plant cell 26(4):1598–1611. (http://www.ncbi.nlm.nih.gov/pubmed/24706511). 

Grossman, Arthur R. et al. 2011. “Multiple Facets of Anoxic Metabolism and Hydrogen 

Production in the Unicellular Green Alga Chlamydomonas Reinhardtii.” New Phytologist 

190(2):279–88.  

(http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2010.03534.x/abstract). 

Guo, L., R. A. Dixon, and N. L. Paiva. 1994. “Conversion of Vestitone to Medicarpin in Alfalfa 

(Medicago Sativa L.) Is Catalyzed by Two Indenpendent Enzymes.” J. Biol. Chem. 

269:22372–78. (http://www.jbc.org/content/269/35/22372.long). 

Hallenbeck, Patrick C. and John R. Benemann. 2002. “Biological Hydrogen Production ; 

Fundamentals and Limiting Processes.” 27:1185–93. 

(http://www.sciencedirect.com/science/article/pii/S0360319902001313). 

Hanahan, D. 1983. “Studies on Transformation of Escherichia Coli with Plasmids.” Journal of 

molecular biology 166(4):557–80. 

(http://www.sciencedirect.com/science/article/pii/S0022283683802848). 

Hankamer, Ben et al. 2007. “Photosynthetic Biomass and H2 Production by Green Algae: From 

Bioengineering to Bioreactor Scale-Up.” Physiologia Plantarum 131(1):10–21. 

(http://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.2007.00924.x/abstract). 

Happe, T. and A. Kaminski. 2002. “Differential Regulation of the Fe-Hydrogenase during 

Anaerobic Adaptation in the Green Alga Chlamydomonas Reinhardtii.” Eur J Biochem 

269. (http://dx.doi.org/10.1046/j.0014-2956.2001.02743.x). 

Happe, T., B. Mosler, and J. D. Naber. 1994. “Induction, Localization and Metal Content of 

Hydrogenase in the Green Alga Chlamydomonas Reinhardtii.” European journal of 

biochemistry / FEBS 222(3):769–74. (http://www.ncbi.nlm.nih.gov/pubmed/8026490). 

Happe, T. and J. D. Naber. 1993. “Isolation, Characterization and N-Terminal Amino Acid 

Sequence of Hydrogenase from the Green Alga Chlamydomonas Reinhardtii.” European 

journal of biochemistry / FEBS 214(2):475–81. 

(http://www.ncbi.nlm.nih.gov/pubmed/8513797). 

Happe, Thomas, Camilla Lambertz, Jong-hee Kwon, Sascha Rexroth, and Matthias Rögner. 



References  105 
 

 

2010. “Hydrogen Production by Natural and Semiartificial Systmes.” 111–28. 

(https://doi.org/10.1515/9783110298321.111). 

Harris, E. H. 1989. “The Chlamydomonas Sourcebook. A Comprehensive Gudie to Biology 

and Labratory Use. San Diego: Academic Press.” (i). 

Harris, Elizabeth H. 2009. “Chapter 6 - The Life of an Acetate Flagellate A2 - Harris, Elizabeth 

H.” edited by David B Stern and George B B T - The Chlamydomonas Sourcebook 

(Second Edition) Witman. 159–210. 

(http://www.sciencedirect.com/science/article/pii/B978012370873100006X). 

Healey, F. P. 1970. “Hydrogen Evolution by Several Algae.” Planta 91(3):220–26. 

(http://dx.doi.org/10.1007/BF00385481). 

Hemschemeier, Anja and Thomas Happe. 2011. “Alternative Photosynthetic Electron 

Transport Pathways during Anaerobiosis in the Green Alga Chlamydomonas Reinhardtii.” 

Biochimica et biophysica acta 1807(8):919–26. 

(http://www.ncbi.nlm.nih.gov/pubmed/21376011). 

Hibi, N., S. Higashiguchi, T. Hashimoto, and Yamada Y. 1994. “Gene Expression in Tobacco 

Low-Nicotine Mutants.” The Plant cell 6(5):723–35. 

(http://www.plantcell.org/cgi/doi/10.1105/tpc.6.5.723). 

de Hostos, E. L., J. Schilling, and a R. Grossman. 1989. “Structure and Expression of the Gene 

Encoding the Periplasmic Arylsulfatase of Chlamydomonas Reinhardtii.” Molecular & 

general genetics : MGG 218(2):229–39. (http://www.ncbi.nlm.nih.gov/pubmed/2476654). 

Howarth, D. C. and G. a. Codd. 1985. “The Uptake and Production of Molecular Hydrogen by 

Unicellular Cyanobacteria.” Microbiology 131(1977):1561–69. 

(http://mic.microbiologyresearch.org/content/journal/micro/10.1099/00221287-131-7-

1561). 

Hu, Jinlu, Xuan Deng, Ning Shao, Gaohong Wang, and Kaiyao Huang. 2014. “Rapid 

Construction and Screening of Artificial microRNA Systems in Chlamydomonas 

Reinhardtii.” Plant Journal 1:1052–64. 

(http://onlinelibrary.wiley.com/doi/10.1111/tpj.12606/abstract). 

Hua, Cheng et al. 2013. “Expression Patterns of an Isoflavone Reductase-like Gene and Its 

Possible Roles in Secondary Metabolism in Ginkgo Biloba.” Plant Cell Reports 32(5):637–

50. (https://link.springer.com/article/10.1007%2Fs00299-013-1397-2). 

Hutner, S. H., L. Provasoli, Albert Schatz, and C. P. Haskins. 1950. “Some Approaches to the 

Study of the Role of Metals in the Metabolism of Microorganisms.” Proceedings of the 

American Philosophical Society 94(2):152–70. 

(https://www.jstor.org/stable/3143215?seq=1#page_scan_tab_contents). 

Hwang, Jae-Hoon et al. 2014. “Photoautotrophic Hydrogen Production by Eukaryotic 

Microalgae under Aerobic Conditions.” Nature communications 5:3234. 



References  106 
 

 

(http://www.ncbi.nlm.nih.gov/pubmed/24492668). 

Jaeger, Daniel, Wolfgang Hübner, Thomas Huser, Jan H. Mussgnug, and Olaf Kruse. 2017. 

“Nuclear Transformation and Functional Gene Expression in the Oleaginous Microalga 

Monoraphidium Neglectum.” Journal of Biotechnology 249:10–15. 

(http://linkinghub.elsevier.com/retrieve/pii/S0168165617301098). 

Jen, Anna C., M.Conley Wake, and Antonios G. Mikos. 1996. “Review: Hydrogels for Cell 

Immobilization.” Biotechnology and Bioengineering 50(4):357–64. 

(http://dx.doi.org/10.1002/(SICI)1097-0290(19960520)50:4%3C357::AID-

BIT2%3E3.0.CO). 

Jinkerson, Robert E. and Martin C. Jonikas. 2015. “Molecular Techniques to Interrogate and 

Edit the Chlamydomonas Nuclear Genome.” Plant Journal 82(3):393–412. 

(http://onlinelibrary.wiley.com/doi/10.1111/tpj.12801/abstract). 

Jörnvall, H. et al. 1995. “Short-Chain Dehydrogenases/reductases (SDR).” Biochemistry 

34(18):6003–13. (http://www.ncbi.nlm.nih.gov/pubmed/7742302). 

Kallberg, Yvonne, Udo Oppermann, Hans Jörnvall, and Bengt Persson. 2002. “Short-Chain 

Dehydrogenases/reductases (SDRs). Coenzyme-Based Functional Assignments in 

Completed Genomes.” European Journal of Biochemistry 269(18):4409–17.  

(http://onlinelibrary.wiley.com/doi/10.1046/j.1432-1033.2002.03130.x/abstract). 

Kavanagh, K. L., H. Jörnvall, B. Persson, and U. Oppermann. 2008. “Medium- and Short-Chain 

Dehydrogenase/reductase Gene and Protein Families.” Cellular and Molecular Life 

Sciences 65(24):3895–3906. (https://link.springer.com/article/10.1007%2Fs00018-008-

8588-y). 

Kelley, Lawrence A., Stefans Mezulis, Christopher M. Yates, Mark N. Wass, and Michael J. E. 

Sternberg. 2015. “The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis.” 

Nat. Protocols 10(6):845–58. (http://dx.doi.org/10.1038/nprot.2015.053). 

Khan, Muhammad Sayyar et al. 2010. “Sulfite Reductase Defines a Newly Discovered 

Bottleneck for Assimilatory Sulfate Reduction and Is Essential for Growth and 

Development in Arabidopsis Thaliana.” The Plant cell 22(4):1216–31. 

(http://www.plantcell.org/content/22/4/1216.long#ref-47). 

Kim, Jun Pyo et al. 2010. “Repeated Production of Hydrogen by Sulfate Re-Addition in Sulfur 

Deprived Culture of Chlamydomonas Reinhardtii.” International Journal of Hydrogen 

Energy 35(24):13387–91. (http://dx.doi.org/10.1016/j.ijhydene.2009.11.113). 

Kim, Sang Gon et al. 2010. “Overexpression of Rice Isoflavone Reductase-like Gene (OsIRL) 

Confers Tolerance to Reactive Oxygen Species.” Physiologia plantarum 138(1):1–9. 

(http://www.ncbi.nlm.nih.gov/pubmed/19825006). 

Kim, Sun Tae, Kyu Seong Cho, Sang Gon Kim, Sun Young Kang, and Kyu Young Kang. 2003. 

“A Rice Isoflavone Reductase-like Gene, OsIRL, Is Induced by Rice Blast Fungal Elicitor.” 



References  107 
 

 

Molecules and cells 16(2):224–31. 

(http://www.molcells.org/journal/view.html?year=2003&volume=16&number=2&spage=2

24). 

Kindle, K. L. 1990. “High-Frequency Nuclear Transformation of Chlamydomonas Reinhardtii.” 

Proceedings of the National Academy of Sciences of the United States of America 

87(3):1228–32. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=53444&tool=pmcentrez&ren

dertype=abstract). 

Komenda, Josef, Roman Sobotka, and Peter J. Nixon. 2012. “Assembling and Maintaining the 

Photosystem II Complex in Chloroplasts and Cyanobacteria.” Current Opinion in Plant 

Biology 15(3):245–51. (http://dx.doi.org/10.1016/j.pbi.2012.01.017). 

Koprivova, A., M. Suter, R. O. den Camp, C. Brunold, and S. Kopriva. 2000. “Regulation of 

Sulfate Assimilation by Nitrogen in Arabidopsis.” Plant physiology 122(3):737–46. 

(http://www.plantphysiol.org/content/122/3/737). 

Kosourov, S., M. Seibert, and M. L. Ghirardi. 2003. “Effects of Extracellular pH on the Metabolic 

Pathways in Sulfur-Deprived, H2-Producing Chlamydomonas Reinhardtiicultures.” Plant 

Cell Physiol 44. (http://dx.doi.org/10.1093/pcp/pcg020). 

Kosourov, Sergey N. et al. 2012. “Maximizing the Hydrogen Photoproduction Yields in 

Chlamydomonas Reinhardtii Cultures: The Effect of the H2 Partial Pressure.” International 

Journal of Hydrogen Energy 37(10):8850–58. 

(http://linkinghub.elsevier.com/retrieve/pii/S0360319912001784). 

Kosourov, Sergey N., Maria L. Ghirardi, and Michael Seibert. 2011. “A Truncated Antenna 

Mutant of Chlamydomonas Reinhardtii Can Produce More Hydrogen than the Parental 

Strain.” International Journal of Hydrogen Energy 36(3):2044–48. 

(http://dx.doi.org/10.1016/j.ijhydene.2010.10.041). 

Kosourov, Sergey N. and Michael Seibert. 2008. “Hydrogen Photoproduction by Nutrient-

Deprived Chlamydomonas Reinhardtii Cells Immobilized within Thin Alginate Films under 

Aerobic and Anaerobic Conditions.” Biotechnology and Bioengineering 102(1):50–58. 

(http://onlinelibrary.wiley.com/doi/10.1002/bit.22050/abstract). 

Kothari, Richa, D. Buddhi, and R. L. Sawhney. 2008. “Comparison of Environmental and 

Economic Aspects of Various Hydrogen Production Methods.” Renewable and 

Sustainable Energy Reviews 12(2):553–63. 

(http://www.sciencedirect.com/science/article/pii/S1364032106001158). 

Kovtun, Y., W. L. Chiu, G. Tena, and J. Sheen. 2000. “Functional Analysis of Oxidative Stress-

Activated Mitogen-Activated Protein Kinase Cascade in Plants.” Proceedings of the 

National Academy of Sciences of the United States of America 97(6):2940–45. 

(http://www.pnas.org/content/97/6/2940.short). 



References  108 
 

 

Kremers, Gert Jan, Joachim Goedhart, Erik B. Van Munster, and Theodorus W. J. Gadella. 

2006. “Cyan and Yellow Super Fluorescent Proteins with Improved Brightness, Protein 

Folding, and FRET Forster Radius.” Biochemistry 45(21):6570–80. 

(http://pubs.acs.org/doi/abs/10.1021/bi0516273). 

Krieger-Liszkay, Anja, Péter B. Kós, and Éva Hideg. 2011. “Superoxide Anion Radicals 

Generated by Methylviologen in Photosystem I Damage Photosystem II.” Physiologia 

Plantarum 142(1):17–25. 

Kropat, Janette et al. 2011. “A Revised Mineral Nutrient Supplement Increases Biomass and 

Growth Rate in Chlamydomonas Reinhardtii.” Plant Journal 66(5):770–80. 

(http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2011.04537.x/abstract). 

Kruse, Olaf et al. 2005. “Improved Photobiological H2 Production in Engineered Green Algal 

Cells.” The Journal of biological chemistry 280(40):34170–77. 

(http://www.ncbi.nlm.nih.gov/pubmed/16100118). 

Kumar, Sasidharanpillai Vinod, Rachel William Misquitta, Vanga Siva Reddy, Basuthkar 

Jagadeeswar Rao, and Manchikatla Venkat Rajam. 2004. “Genetic Transformation of the 

Green alga—Chlamydomonas Reinhardtii by Agrobacterium Tumefaciens.” Plant 

Science 166(3):731–38. 

(http://www.sciencedirect.com/science/article/pii/S0168945203004874). 

Laemmli, U. K. and M. Favre. 1973. “Maturation of the Head of Bacteriophage T4. I. DNA 

Packaging Events.” J Mol Biol 80. (http://dx.doi.org/10.1016/0022-2836(73)90198-8). 

Lambert, G. R., A. Daday, and G. D. Smith. 1979. “Hydrogen Evolution from Immobilized 

Cultures of the Cyanobacterium Anabaena Cylindrica B629.” FEBS letters 101(1):125–

28. (http://www.sciencedirect.com/science/article/pii/0014579379813095). 

Lauersen, Kyle J. et al. 2016. “Peroxisomal Microbodies Are at the Crossroads of Acetate 

Assimilation in the Green Microalga Chlamydomonas Reinhardtii.” Algal Research 

16(April):266–74. (http://dx.doi.org/10.1016/j.algal.2016.03.026). 

Lauersen, Kyle J., Hanna Berger, Jan H. Mussgnug, and Olaf Kruse. 2013. “Efficient 

Recombinant Protein Production and Secretion from Nuclear Transgenes in 

Chlamydomonas Reinhardtii.” Journal of Biotechnology 167(2):101–10. 

(http://dx.doi.org/10.1016/j.jbiotec.2012.10.010). 

Lauersen, Kyle J., Olaf Kruse, and Jan H. Mussgnug. 2015. “Targeted Expression of Nuclear 

Transgenes in Chlamydomonas Reinhardtii with a Versatile, Modular Vector Toolkit.” 

Applied Microbiology and Biotechnology 99(8):3491–3503. 

(https://link.springer.com/article/10.1007%2Fs00253-014-6354-7). 

Laurinavichene, T., A. Fedorov, M. Ghirardi, M. Seibert, and A. Tsygankov. 2006. 

“Demonstration of Sustained Hydrogen Photoproduction by Immobilized, Sulfur-Deprived 

Chlamydomonas Reinhardtii Cells.” International Journal of Hydrogen Energy 31(5):659–



References  109 
 

 

67. (http://linkinghub.elsevier.com/retrieve/pii/S0360319905001813). 

Ledford, H. K., B. L. Chin, and K. K. Niyogi. 2007. “Acclimation to Singlet Oxygen Stress in 

Chlamydomonas Reinhardtii.” Eukaryotic Cell 6(6):919–30. 

(http://ec.asm.org/cgi/doi/10.1128/EC.00207-06). 

Lee, James W. and Elias Greenbaum. 2003. “A New Oxygen Sensitivity and Its Potential 

Application in Photosynthetic H2 Production.” Pp. 303–13 in Biotechnology for Fuels and 

Chemicals: The Twenty-Fourth Symposium, edited by Brian H Davison, James W Lee, 

Mark Finkelstein, and James D McMillan. Totowa, NJ: Humana Press.  

(http://dx.doi.org/10.1007/978-1-4612-0057-4_25). 

Lers, Amnon, Shaul Burd, Ella Lomaniec, Samir Droby, and Edo Chalutz. 1998. “The 

Expression of a Grapefruit Gene Encoding an Isoflavone Reductase-like Protein Is 

Induced in Response to UV Irradiation.” Plant Molecular Biology 36(6):847–56. 

(http://dx.doi.org/10.1023/A:1005996515602). 

Lewis, Nathan S. 2007. “Solar Energy Use.” Science 315(February):798–802. Retrieved 

(http://science.sciencemag.org/content/315/5813/798.abstract). 

Li, Hui et al. 2015. “Sustainable Photosynthetic H2-Production Mediated by Artificial miRNA 

Silencing of OEE2 Gene in Green Alga Chlamydomonas Reinhardtii.” International 

Journal of Hydrogen Energy 40(16):5609–16. 

(http://linkinghub.elsevier.com/retrieve/pii/S0360319915004280). 

Li, Xiaobo et al. 2016. “An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies 

of Biological Processes in Chlamydomonas Reinhardtii.” The Plant Cell 

28(February):367–87. 

(http://www.plantcell.org/content/early/2016/01/13/tpc.15.00465.abstract). 

Libessart, N. et al. 1995. “Storage, Photosynthesis, and Growth: The Conditional Nature of 

Mutations Affecting Starch Synthesis and Structure in Chlamydomonas.” The Plant Cell  

7(8):1117–27. (http://www.plantcell.org/content/7/8/1117.abstract). 

Lim, Lee P. et al. 2005. “Microarray Analysis Shows That Some microRNAs Downregulate 

Large Numbers of Target mRNAs.” Nature 433(7027):769–73. 

(http://dx.doi.org/10.1038/nature03315). 

Lin, Hsin-Di et al. 2013. “Knockdown of PsbO Leads to Induction of HydA and Production of 

Photobiological H2 in the Green Alga Chlorella Sp. DT.” Bioresource technology 143:154–

62. (http://www.sciencedirect.com/science/article/pii/S0960852413008699). 

Livak, K. J. and T. D. Schmittgen. 2001. “Analysis of Relative Gene Expression Data Using 

Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method.” Methods (San Diego, 

Calif.) 25(4):402–8. (http://www.ncbi.nlm.nih.gov/pubmed/11846609). 

Llave, Cesar, Zhixin Xie, Kristin D. Kasschau, and James C. Carrington. 2002. “Cleavage of 

&lt;em&gt;Scarecrow-Like&lt;/em&gt; mRNA Targets Directed by a Class of 



References  110 
 

 

&lt;em&gt;Arabidopsis&lt;/em&gt; miRNA.” Science 297(5589):2053 LP-2056. 

(http://science.sciencemag.org/content/297/5589/2053.abstract). 

Lohr, Martin, Chung-Soon Im, and Arthur R. Grossman. 2005. “Genome-Based Examination 

of Chlorophyll and Carotenoid Biosynthesis in Chlamydomonas Reinhardtii.” Plant 

Physiology 138(1):490–515. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1104202/). 

Louie, Gordon V. et al. 2007. “Structure and Reaction Mechanism of Basil Eugenol Synthase.” 

PLoS ONE 2(10):1–12. 

(http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000993). 

Lozinsky, V. I. and F. M. Plieva. 1998. “Poly(vinyl Alcohol) Cryogels Employed as Matrices for 

Cell Immobilization. 3. Overview of Recent Research and Developments.” Enzyme and 

Microbial Technology 23(3–4):227–42. 

(http://www.sciencedirect.com/science/article/pii/S0141022998000362). 

Lumbreras, Victoria, David R. Stevens, and Saul Purton. 1998. “Efficient Foreign Gene 

Expression in Chlamydomonas Reinhardtii Mediated by an Endogenous Intron.” The 

Plant Journal 14(4):441–47. (http://dx.doi.org/10.1046/j.1365-313X.1998.00145.x). 

Luo, Meng, Jia Liu, R.Dewey Lee, Brian T. Scully, and Baozhu Guo. 2010. “Monitoring the 

Expression of Maize Genes in Developing Kernels under Drought Stress Using Oligo-

Microarray.” Journal of Integrative Plant Biology 52(12):1059–74. 

(http://onlinelibrary.wiley.com/doi/10.1111/j.1744-7909.2010.01000.x/pdf). 

Mallick, Nirupama. 2002. “Biotechnological Potential of Immobilized Algae for Wastewater N, 

P and Metal Removal: A Review.” Biometals 15(4):377–90. 

(http://dx.doi.org/10.1023/A:1020238520948). 

Matsui, Kenji. 2006. “Green Leaf Volatiles: Hydroperoxide Lyase Pathway of Oxylipin 

Metabolism.” Current Opinion in Plant Biology 9(3):274–80. 

(http://www.sciencedirect.com/science/article/pii/S1369526606000410). 

Matthew, Timmins et al. 2009. “The Metabolome of Chlamydomonas Reinhardtii Following 

Induction of Anaerobic H2 Production by Sulfur Depletion.” The Journal of biological 

chemistry 284(35):23415–25. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2749115&tool=pmcentrez&r

endertype=abstract). 

Maul, Jude E. et al. 2002. “The Chlamydomonas Reinhardtii Plastid Chromosome: Islands of 

Genes in a Sea of Repeats.” The Plant cell 14(11):2659–79. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=153795&tool=pmcentrez&re

ndertype=abstract). 

Mayfield, S. P. and K. L. Kindle. 1990. “Stable Nuclear Transformation of Chlamydomonas 

Reinhardtii by Using a C. Reinhardtii Gene as the Selectable Marker.” Proceedings of the 

National Academy of Sciences of the United States of America 87(6):2087–91. 



References  111 
 

 

(http://www.pnas.org/content/87/6/2087.long). 

Melis, A., L. Zhang, M. Forestier, Maria L. Ghirardi, and M. Seibert. 2000. “Sustained 

Photobiological Hydrogen Gas Production upon Reversible Inactivation of Oxygen 

Evolution in the Green Alga Chlamydomonas Reinhardtii.” Plant physiology 122(1):127–

36. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=58851&tool=pmcentrez&ren

dertype=abstract). 

Melis, Anastasios. 2007. “Photosynthetic H2 Metabolism in Chlamydomonas Reinhardtii 

(Unicellular Green Algae).” Planta 226(5):1075–86. 

(http://www.ncbi.nlm.nih.gov/pubmed/17721788). 

Merchant, Sabeeha S. et al. 2007. “The Chlamydomonas Genome Reveals the Evolution of 

Key Animal and Plant Functions.” Science (New York, N.Y.) 318(5848):245–50. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2875087&tool=pmcentrez&r

endertype=abstract). 

Metz, J., H. B. Pakrasi, M. Seibert, and C. J. Arntzen. 1986. “Evidence for a Dual Function of 

the Herbicide-Binding D1 Protein in Photosystem II.” FEBS Letters 205(2):269–74. 

(http://www.sciencedirect.com/science/article/pii/0014579386809115). 

Meuser, Jonathan E. et al. 2009. “Phenotypic Diversity of Hydrogen Production in 

Chlorophycean Algae Reflects Distinct Anaerobic Metabolisms.” Journal of Biotechnology 

142(1):21–30. (http://www.sciencedirect.com/science/article/pii/S0168165609000352). 

Mi, Shijun et al. 2008. “Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is 

Directed by the 5’ Terminal Nucleotide.” Cell 133(1):116–27. 

(http://www.cell.com/abstract/S0092-8674(08)00285-7). 

Michel, Kathrin, Olaf Abderhalden, Remy Bruggmann, and Robert Dudler. 2006. 

“Transcriptional Changes in Powdery Mildew Infected Wheat and Arabidopsis Leaves 

Undergoing Syringolin-Triggered Hypersensitive Cell Death at Infection Sites.” Plant 

molecular biology 62(4–5):561–78. (https://link.springer.com/article/10.1007%2Fs11103-

006-9045-7). 

Miller, Rachel et al. 2010. “Changes in Transcript Abundance in Chlamydomonas Reinhardtii 

Following Nitrogen Deprivation Predict Diversion of Metabolism.” Plant Physiology 

154(4):1737–52. (http://www.plantphysiol.org/content/154/4/1737.full). 

Min, Tongpil et al. 2003. “Crystal Structures of Pinoresinol-Lariciresinol and Phenylcoumaran 

Benzylic Ether Reductases and Their Relationship to Isoflavone Reductases.” Journal of 

Biological Chemistry 278(50):50714–23. 

Miura, Y., K. Yagi, M. Shoga, and K. Miyamoto. 1982. “Hydrogen Production by a Green Alga, 

Chlamydomonas Reinhardtii, in an Alternating Light/dark Cycle.” Biotechnology and 

bioengineering 24(7):1555–63. (http://www.ncbi.nlm.nih.gov/pubmed/18546456). 



References  112 
 

 

Molnar, Attila et al. 2009. “Highly Specific Gene Silencing by Artificial microRNAs in the 

Unicellular Alga Chlamydomonas Reinhardtii.” The Plant journal : for cell and molecular 

biology 58(1):165–74. (http://www.ncbi.nlm.nih.gov/pubmed/19054357). 

Molnár, Attila, Frank Schwach, David J. Studholme, Eva C. Thuenemann, and David C. 

Baulcombe. 2007. “miRNAs Control Gene Expression in the Single-Cell Alga 

Chlamydomonas Reinhardtii.” Nature 447(7148):1126–29. 

(http://www.ncbi.nlm.nih.gov/pubmed/17538623). 

Mosblech, Alina, Ivo Feussner, and Ingo Heilmann. 2009. “Oxylipins: Structurally Diverse 

Metabolites from Fatty Acid Oxidation.” Plant Physiology and Biochemistry 47(6):511–17. 

(http://dx.doi.org/10.1016/j.plaphy.2008.12.011). 

Moummou, Hanane, Yvonne Kallberg, Libert Brice Tonfack, Bengt Persson, and Benoît van 

der Rest. 2012. “The Plant Short-Chain Dehydrogenase (SDR) Superfamily: Genome-

Wide Inventory and Diversification Patterns.” BMC plant biology 12:219. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3541173&tool=pmcentrez&r

endertype=abstract). 

Mus, Florence, Alexandra Dubini, Michael Seibert, Matthew C. Posewitz, and Arthur R. 

Grossman. 2007. “Anaerobic Acclimation in Chlamydomonas Reinhardtii: Anoxic Gene 

Expression, Hydrogenase Induction, and Metabolic Pathways.” The Journal of biological 

chemistry 282(35):25475–86. (http://www.ncbi.nlm.nih.gov/pubmed/17565990). 

Nagy, Lauren E. et al. 2007. “Application of Gene-Shuffling for the Rapid Generation of Novel 

[FeFe]-Hydrogenase Libraries.” Biotechnology Letters 29(3):421–30. 

(https://link.springer.com/article/10.1007/s10529-006-9254-9). 

Nakayama, M., T. Akashi, and T. Hase. 2000. “Plant Sulfite Reductase: Molecular Structure, 

Catalytic Function and Interaction with Ferredoxin.” Journal of inorganic biochemistry 

82(1–4):27–32. (http://www.sciencedirect.com/science/article/pii/S0162013400001380). 

Neale, Patrick J. and Anastasios Melis. 1990. “Activation of a Reserve Pool of Photosystem II 

in Chlamydomonas Reinhardtii Counteracts Photoinhibition .” Plant Physiology  

92(4):1196–1204. (http://www.plantphysiol.org/content/92/4/1196.abstract). 

Neupert, Juliane, Daniel Karcher, and Ralph Bock. 2009. “Generation of Chlamydomonas 

Strains That Efficiently Express Nuclear Transgenes.” Plant Journal 57(6):1140–50. 

(http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2008.03746.x/abstract). 

Nguyen, Anh Vu et al. 2008. “Transcriptome for Photobiological Hydrogen Production Induced 

by Sulfur Deprivation in the Green Alga Chlamydomonas Reinhardtii.” Eukaryotic cell 

7(11):1965–79. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2583537&tool=pmcentrez&r

endertype=abstract). 

Nguyen, Anh Vu et al. 2011. “Time-Course Global Expression Profiles of Chlamydomonas 



References  113 
 

 

Reinhardtii during Photo-Biological H₂ Production.” PloS one 6(12):e29364. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3248568&tool=pmcentrez&r

endertype=abstract). 

Nikiforova, Victoria et al. 2003. “Transcriptome Analysis of Sulfur Depletion in Arabidopsis 

Thaliana: Interlacing of Biosynthetic Pathways Provides Response Specificity.” Plant 

Journal 33(4):633–50.  

(http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313X.2003.01657.x/abstract). 

Nixon, Peter J., Franck Michoux, Jianfeng Yu, Marko Boehm, and Josef Komenda. 2010. 

“Recent Advances in Understanding the Assembly and Repair of Photosystem II.” Annals 

of Botany 106(1):1–16. (https://academic.oup.com/aob/article/106/1/1/94944/Recent-

advances-in-understanding-the-assembly-and). 

Norsker, Niels-Henrik, Maria J. Barbosa, Marian H. Vermuë, and René H. Wijffels. 2011. 

“Microalgal Production — A Close Look at the Economics.” Biotechnology Advances 

29(1):24–27. (http://www.sciencedirect.com/science/article/pii/S0734975010001072). 

Noth, Jens, Danuta Krawietz, Anja Hemschemeier, and Thomas Happe. 2013. 

“Pyruvate:ferredoxin Oxidoreductase Is Coupled to Light-Independent Hydrogen 

Production in Chlamydomonas Reinhardtii.” The Journal of biological chemistry 

288(6):4368–77. (http://www.ncbi.nlm.nih.gov/pubmed/23258532). 

Oberschall, A. et al. 2000. “A Novel Aldose/aldehyde Reductase Protects Transgenic Plants 

against Lipid Peroxidation under Chemical and Drought Stresses.” The Plant journal : for 

cell and molecular biology 24(4):437–46. 

(http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2000.00885.x/full). 

Oey, Melanie et al. 2013. “RNAi Knock-down of LHCBM1, 2 and 3 Increases Photosynthetic 

H2 Production Efficiency of the Green Alga Chlamydomonas Reinhardtii.” PloS one 

8(4):e61375. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3628864&tool=pmcentrez&r

endertype=abstract). 

Ohresser, M., René F. Matagne, and R. Loppes. 1997. “Expression of the Arylsulphatase 

Reporter Gene under the Control of the nit1 Promoter in Chlamydomonas Reinhardtii.” 

Current Genetics 31(3):264–71. (http://dx.doi.org/10.1007/s002940050204). 

Oncel, S. and F. Vardar-Sukan. 2009. “Photo-Bioproduction of Hydrogen by Chlamydomonas 

Reinhardtii Using a Semi-Continuous Process Regime.” International Journal of Hydrogen 

Energy 34(18):7592–7602. (http://dx.doi.org/10.1016/j.ijhydene.2009.07.027). 

Patel, Bhavish, Bojan Tamburic, Fessehaye W. Zemichael, Pongsathorn Dechatiwongse, and 

Klaus Hellgardt. 2012. “Algal Biofuels: A Credible Prospective?” ISRN Renewable Energy 

2012:1–14. (http://www.hindawi.com/isrn/re/2012/631574/). 

Peden, Erin a et al. 2013. “Identification of Global Ferredoxin Interaction Networks in 



References  114 
 

 

Chlamydomonas Reinhardtii.” The Journal of biological chemistry 0–36. 

(http://www.ncbi.nlm.nih.gov/pubmed/24100040). 

Persson, Bengt et al. 2009. “The SDR (Short-Chain Dehydrogenase/reductase and Related 

Enzymes) Nomenclature Initiative.” Chemico-Biological Interactions 178(1–3):94–98. 

(http://www.sciencedirect.com/science/article/pii/S0009279708006078). 

Peters, John W. 1999. “Structure and Mechanism of Iron-Only Hydrogenases.” Current 

Opinion in Structural Biology 9(6):670–76. 

(http://www.sciencedirect.com/science/article/pii/S0959440X99000287). 

Petrucco, S. et al. 1996. “A Maize Gene Encoding an NADPH Binding Enzyme Highly 

Homologous to Isoflavone Reductases Is Activated in Response to Sulfur Starvation.” The 

Plant cell 8(1):69–80. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=161082&tool=pmcentrez&re

ndertype=abstract). 

Philipps, Gabriele, Danuta Krawietz, Anja Hemschemeier, and Thomas Happe. 2011. “A 

Pyruvate Formate Lyase-Deficient Chlamydomonas Reinhardtii Strain Provides Evidence 

for a Link between Fermentation and Hydrogen Production in Green Algae.” The Plant 

journal : for cell and molecular biology 66(2):330–40. 

(http://www.ncbi.nlm.nih.gov/pubmed/21219510). 

Pinto, T. S. et al. 2013. “Rubisco Mutants of Chlamydomonas Reinhardtii Enhance 

Photosynthetic Hydrogen Production.” Applied Microbiology and Biotechnology 

97(12):5635–43. 

Posewitz, M. C. et al. 2004. “Hydrogen Photoproduction Is Attenuated by Disruption of an 

Isoamylase Gene in Chlamydomonas Reinhardtii.” Plant Cell 16. 

(http://dx.doi.org/10.1105/tpc.104.021972). 

Posewitz, M. C. et al. 2005. “Identification of Genes Required for Hydrogenase Activity in 

&lt;em&gt;Chlamydomonas Reinhardtii&lt;/em&gt;” Biochemical Society Transactions 

33(1):102 LP-104. (http://www.biochemsoctrans.org/content/33/1/102.abstract). 

Posewitz, Matthew C. et al. 2004. “Discovery of Two Novel Radical S-Adenosylmethionine 

Proteins Required for the Assembly of an Active [Fe] Hydrogenase.” Journal of Biological 

Chemistry 279(24):25711–20. (http://www.jbc.org/content/279/24/25711.abstract). 

Posewitz, Matthew C., Alexandra Dubini, Jonathan E. Meuser, Michael Seibert, and Maria L. 

Ghirardi. 2009. “Chapter 7 - Hydrogenases, Hydrogen Production, and Anoxia A2  - 

Harris, Elizabeth H.” Pp. 217–55 in, edited by David B Stern and George B B T - The 

Chlamydomonas Sourcebook (Second Edition) Witman. London: Academic Press. 

(http://www.sciencedirect.com/science/article/pii/B9780123708731000150). 

Posewitz, Matthew C., Alexandra Dubini, Jonathan E. Meuser, Michael Seibert, and Maria L. 

Ghirardi. 2009. “Hydrogenases, Hydrogen Production, and Anoxia.” Pp. 217–55 in The 



References  115 
 

 

Chlamydomonas Sourcebook 3-Vol set, vol. 2. 

Posten, Clemens and Walter Christian. 2012. “Microalgal Biotechnology: Integration and 

Economy.” 111–28. (file://www.degruyter.com/view/product/185619). 

Randolph-Anderson, B. L. et al. 1993. “Further Characterization of the Respiratory Deficient 

Dum-1 Mutation of Chlamydomonas Reinhardtii and Its Use as a Recipient for 

Mitochondrial Transformation.” Molecular & general genetics : MGG 236(2–3):235–44. 

(https://www.ncbi.nlm.nih.gov/pubmed/8437570). 

Ravina, Cristina G. et al. 2002. “The Sac Mutants of Chlamydomonas Reinhardtii Reveal 

Transcriptional and Posttranscriptional Control of Cysteine Biosynthesis.” Plant Physiol. 

130(4):2076–84. (http://www.plantphysiol.org/cgi/content/abstract/130/4/2076). 

Rocco, C. R., K. L. Dennison, Vadim. A. Klenchin, I. Rayment, and J. C. Escalante Semerena. 

2008. “Construction and Use of New Cloning Vectors for the Rapid Isolation of 

Recombinant Proteins from Escherichia Coli.” Plasmid 59(3):231–37. 

Rochaix, J. D. 1995. “Chlamydomonas Reinhardtii as the Photosynthetic Yeast.” Annual review 

of genetics 29:209–30. 

(http://www.annualreviews.org/doi/abs/10.1146/annurev.ge.29.120195.001233). 

Rumpel, Sigrun et al. 2014. “Enhancing Hydrogen Production of Microalgae by Redirecting 

Electrons from Photosystem I to Hydrogenase.” Energy & Environmental Science 3296–

3301. (http://pubs.rsc.org/en/Content/ArticleLanding/2014/EE/C4EE01444H). 

Rupprecht, Jens et al. 2006. “Perspectives and Advances of Biological H2 Production in 

Microorganisms.” Applied Microbiology and Biotechnology 72(3):442–49. 

(http://dx.doi.org/10.1007/s00253-006-0528-x). 

Scaife, Mark A. et al. 2015. “Establishing Chlamydomonas Reinhardtii as an Industrial 

Biotechnology Host.” Plant Journal 82(3):532–46. 

Schierenbeck, Lisa et al. 2015. “Fast Forward Genetics to Identify Mutations Causing a High 

Light Tolerant Phenotype in Chlamydomonas Reinhardtii by Whole-Genome-

Sequencing.” BMC genomics 16:57. 

Schmitt, Franz Josef et al. 2014. “Reactive Oxygen Species: Re-Evaluation of Generation, 

Monitoring and Role in Stress-Signaling in Phototrophic Organisms.” Biochimica et 

Biophysica Acta - Bioenergetics 1837(6):835–48.  

(http://dx.doi.org/10.1016/j.bbabio.2014.02.005). 

Schmutz, D. and C. Brunold. 1984. “Intercellular Localization of Assimilatory Sulfate Reduction 

in Leaves of Zea Mays and Triticum Aestivum.” Plant physiology 74(4):866–70. Retrieved 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1066783&tool=pmcentrez&r

endertype=abstract). 

Schönfeld, Christine et al. 2004. “The Nucleus-Encoded Protein MOC1 Is Essential for 

Mitochondrial Light Acclimation in Chlamydomonas Reinhardtii.” Journal of Biological 



References  116 
 

 

Chemistry 279(48):50366–74. Retrieved (http://www.jbc.org/content/279/48/50366.long). 

Schroda, Michael, Dagmar Blöcker, and Christoph F. Beck. 2000. “The HSP70A Promoter as 

a Tool for the Improved Expression of Transgenes in Chlamydomonas.” Plant Journal 

21(2):121–31. 

(http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313x.2000.00652.x/abstract). 

Scoma, Alberto et al. 2012. “Sustained H 2 Production in a Chlamydomonas Reinhardtii D1 

Protein Mutant.” Journal of Biotechnology 157(4):613–19. 

(http://dx.doi.org/10.1016/j.jbiotec.2011.06.019). 

Sekine, Kohsuke, Toshiharu Hase, and Naoki Sato. 2002. “Reversible DNA Compaction by 

Sulfite Reductase Regulates Transcriptional Activity of Chloroplast Nucleoids.” Journal of 

Biological Chemistry 277(27):24399–404. (http://www.jbc.org/content/277/27/24399.full). 

Shao, N., A. Krieger-Liszkay, M. Schroda, and C. F. Beck. 2007. “A Reporter System for the 

Individual Detection of Hydrogen Peroxide and Singlet Oxygen: Its Use for the Assay of 

Reactive Oxygen Species Produced in Vivo.” Plant Journal 50.  

(http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2007.03065.x/abstract). 

Shao, Ning and Ralph Bock. 2008. “A Codon-Optimized Luciferase from Gaussia Princeps 

Facilitates the in Vivo Monitoring of Gene Expression in the Model Alga Chlamydomonas 

Reinhardtii.” Current Genetics 53(6):381–88. 

(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2413079/). 

Shimogawara, K., S. Fujiwara, a Grossman, and H. Usuda. 1998. “High-Efficiency 

Transformation of Chlamydomonas Reinhardtii by Electroporation.” Genetics 

148(4):1821–28. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1460073&tool=pmcentrez&r

endertype=abstract). 

Shoji, Tsubasa et al. 2002. “Expression Patterns of Two Tobacco Isoflavone Reductase-like 

Genes and Their Possible Roles in Secondary Metabolism in Tobacco.” Plant Molecular 

Biology 50(3):427–40. (http://dx.doi.org/10.1023/A:1019867732278). 

Smidsrød, Olav and Gudmund Skja˚k-Br˦k. 1990. “Alginate as Immobilization Matrix for Cells.” 

Trends in Biotechnology 8:71–78. 

(http://www.sciencedirect.com/science/article/pii/016777999090139O). 

Stavis, Robert L. and Rona Hirschberg. 1973. “PHOTOTAXIS IN CHLAMYDOMONAS 

REINHARDTII.” The Journal of Cell Biology 59(2):367–77. 

(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2109087/). 

Steinbeck, Janina et al. 2015. “Deletion of Proton Gradient Regulation 5 (PGR5) and PGR5-

Like 1 (PGRL1) Proteins Promote Sustainable Light-Driven Hydrogen Production in 

Chlamydomonas Reinhardtii due to Increased PSII Activity under Sulfur Deprivation.” 

Frontiers in Plant Science 6(October):1–11. 



References  117 
 

 

(http://journal.frontiersin.org/article/10.3389/fpls.2015.00892). 

Stirnberg, M. and T. Happe. 2004. “Identification of a Cis-Acting Element Controlling Anaerobic 

Expression of the Hyda Gene from Chlamydomonas Reinhardtii A2  - Miyake, Jun.” Pp. 

117–27 in, edited by Yasuo Igarashi and Matthias B T - Biohydrogen I I I Rögner. 

Amsterdam: Elsevier Science. 

(http://www.sciencedirect.com/science/article/pii/B9780080443560500105). 

Stojkovic, Danijel, Giuseppe Torzillo, Cecilia Faraloni, and Matjaz Valant. 2015. “Hydrogen 

Production by Sulfur-Deprived TiO2-Encapsulated Chlamydomonas Reinhardtii Cells.” 

International Journal of Hydrogen Energy 40(8):3201–6. 

(http://linkinghub.elsevier.com/retrieve/pii/S0360319914035460). 

Stripp, Sven T. et al. 2009. “How Oxygen Attacks [FeFe] Hydrogenases from Photosynthetic 

Organisms.” Proceedings of the National Academy of Sciences of the United States of 

America 106(41):17331–36. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2765078&tool=pmcentrez&r

endertype=abstract). 

Stuart, T. S. and H. Gaffron. 1972. “The Mechanism of Hydrogen Photoproduction by Several 

Algae : II. The Contribution of Photosystem II.” Planta 106(2):101–12. 

(https://www.jstor.org/stable/23369822). 

Studier, F. W., A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff. 1990. “Use of T7 RNA 

Polymerase to Direct Expression of Cloned Genes.” Methods in enzymology 185:60–89. 

(https://www.ncbi.nlm.nih.gov/pubmed/2199796). 

Sueoka, Noboru. 1960. “Mitotic Replication of Deoxyribonucleic Acid in Chlamydomonas 

Reinhardi.” Proceedings of the National Academy of Sciences of the United States of 

America 46(1):83–91. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC285018/). 

Sun, Yongle et al. 2013. “Enhanced H2 Photoproduction by down-Regulation of Ferredoxin-

NADP+ Reductase (FNR) in the Green Alga Chlamydomonas Reinhardtii.” International 

Journal of Hydrogen Energy 38(36):16029–37. 

(http://linkinghub.elsevier.com/retrieve/pii/S0360319913024427). 

Takahashi, H., C. E. Braby, and a R. Grossman. 2001. “Sulfur Economy and Cell Wall 

Biosynthesis during Sulfur Limitation of Chlamydomonas Reinhardtii.” Plant physiology 

127(October):665–73. (http://www.plantphysiol.org/content/127/2/665.full). 

Taki, Nozomi et al. 2005. “12-Oxo-Phytodienoic Acid Triggers Expression of a Distinct Set of 

Genes and Plays a Role in Wound-Induced Gene Expression in Arabidopsis.” Plant 

Physiology  139(3):1268–83. (http://www.plantphysiol.org/content/139/3/1268.abstract). 

Tamburic, Bojan, Fessehaye W. Zemichael, Geoffrey C. Maitland, and Klaus Hellgardt. 2011. 

“Parameters Affecting the Growth and Hydrogen Production of the Green Alga 

Chlamydomonas Reinhardtii.” International Journal of Hydrogen Energy 36(13):7872–76. 



References  118 
 

 

(http://linkinghub.elsevier.com/retrieve/pii/S0360319910022895). 

Tamburic, Bojan, Fessehaye W. Zemichael, Geoffrey C. Maitland, and Klaus Hellgardt. 2012. 

“Effect of the Light Regime and Phototrophic Conditions on Growth of the H2-Producing 

Green Alga Chlamydomonas Reinhardtii.” Energy Procedia 29(0):710–19. 

(http://linkinghub.elsevier.com/retrieve/pii/S1876610212015032). 

Tardif, Marianne et al. 2012. “Predalgo: A New Subcellular Localization Prediction Tool 

Dedicated to Green Algae.” Molecular Biology and Evolution 29(12):3625–39. 

(https://www.ncbi.nlm.nih.gov/pubmed/22826458). 

Terashima, Mia, Michael Specht, Bianca Naumann, and Michael Hippler. 2010. 

“Characterizing the Anaerobic Response of Chlamydomonas Reinhardtii by Quantitative 

Proteomics.” Molecular & cellular proteomics : MCP 9(7):1514–32. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2938099&tool=pmcentrez&r

endertype=abstract). 

Terauchi, Aimee M. et al. 2009. “Pattern of Expression and Substrate Specificity of Chloroplast 

Ferredoxins from Chlamydomonas Reinhardtii *.” 284(38):25867–78. 

(http://www.jbc.org/content/early/2009/07/07/jbc.M109.023622). 

Timmins, Matthew et al. 2009. “Phylogenetic and Molecular Analysis of Hydrogen-Producing 

Green Algae.” Journal of Experimental Botany 60(6):1691–1702. 

(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671627/). 

Toepel, Jörg et al. 2013. “New Insights into Chlamydomonas Reinhardtii Hydrogen Production 

Processes by Combined microarray/RNA-Seq Transcriptomics.” Plant biotechnology 

journal 11(6):1–17. (http://www.ncbi.nlm.nih.gov/pubmed/23551401). 

Tolleter, Dimitri et al. 2011. “Control of Hydrogen Photoproduction by the Proton Gradient 

Generated by Cyclic Electron Flow in Chlamydomonas Reinhardtii.” The Plant cell 

23(7):2619–30. 

(http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3226202&tool=pmcentrez&r

endertype=abstract). 

Tsygankov, A., S. Kosourov, I. Tolstygina, M. Ghirardi, and M. Seibert. 2006. “Hydrogen 

Production by Sulfur-Deprived Chlamydomonas Reinhardtii under Photoautotrophic 

Conditions.” International Journal of Hydrogen Energy 31(11):1574–84. 

(http://linkinghub.elsevier.com/retrieve/pii/S036031990600231X). 

Tsygankov, Anatoly A., Yoshiki Hirata, Masato Miyake, Yasuo Asada, and Jun Miyake. 1994. 

“Photobioreactor with Photosynthetic Bacteria Immobilized on Porous Glass for Hydrogen 

Photoproduction.” Journal of Fermentation and Bioengineering 77(5):575–78. 

(http://www.sciencedirect.com/science/article/pii/0922338X94901341). 

Ueno, Yoshiyuki, Norihide Kurano, and Shigetoh Miyachi. 1999. “Purification and 

Characterization of Hydrogenase from the Marine Green Alga, Chlorococcum Littorale.” 



References  119 
 

 

FEBS Letters 443(2):144–48. 

(http://www.sciencedirect.com/science/article/pii/S0014579398016998). 

Untergasser, Andreas et al. 2007. “Primer3Plus, an Enhanced Web Interface to Primer3.” 

Nucleic Acids Research 35(SUPPL.2):71–74. 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1933133/). 

Vahrenholz, C., G. Riemen, E. Pratje, B. Dujon, and G. Michaelis. 1993. “Mitochondrial DNA 

of Chlamydomonas Reinhardtii: The Structure of the Ends of the Linear 15.8-Kb Genome 

Suggests Mechanisms for DNA Replication.” Current genetics 24(3):241–47. 

(https://link.springer.com/article/10.1007/BF00351798). 

Vigani, Mauro et al. 2015. “Food and Feed Products from Micro-Algae: Market Opportunities 

and Challenges for the EU.” Trends in Food Science and Technology 42(1):81–92. 

(http://www.sciencedirect.com/science/article/pii/S0924224414002787). 

Villand, P., M. Eriksson, and G. Samuelsson. 1997. “Carbon Dioxide and Light Regulation of 

Promoters Controlling the Expression of Mitochondrial Carbonic Anhydrase in 

Chlamydomonas Reinhardtii.” The Biochemical journal 327 ( Pt 1:51–57. 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1218762/pdf/9355734.pdf). 

Volgusheva, Alena, Olaf Kruse, Stenbjörn Styring, and Fikret Mamedov. 2016. “Changes in 

the Photosystem II Complex Associated with Hydrogen Formation in Sulfur Deprived 

Chlamydomonas Reinhardtii.” Algal Research 18:296–304. 

(http://linkinghub.elsevier.com/retrieve/pii/S2211926416302259). 

Volgusheva, Alena, Stenbjörn Styring, and Fikret Mamedov. 2013. “Increased Photosystem II 

Stability Promotes H2 Production in Sulfur-Deprived Chlamydomonas Reinhardtii.” 

Proceedings of the National Academy of Sciences of the United States of America 

110(18):7223–28. (http://www.ncbi.nlm.nih.gov/pubmed/23589846). 

Vollenweider, S., H. Weber, S. Stolz, A. Chetelat, and E. E. Farmer. 2000. “Fatty Acid 

Ketodienes and Fatty Acid Ketotrienes: Michael Addition Acceptors That Accumulate in 

Wounded and Diseased Arabidopsis Leaves.” The Plant journal : for cell and molecular 

biology 24(4):467–76.  

(http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2000.00897.x/abstract). 

Wang, J. and W. Wan. 2009. “Factors Influencing Fermentative Hydrogen Production: A 

Review.” International Journal of Hydrogen Energy 34(2):799–811. 

(http://linkinghub.elsevier.com/retrieve/pii/S0360319908015073). 

Wang, Meiping, Yunli Jia, Ziwei Xu, and Zongliang Xia. 2016. “Impairment of Sulfite Reductase 

Decreases Oxidative Stress Tolerance in Arabidopsis Thaliana.” Frontiers in Plant 

Science 7(December):1843. 

(http://journal.frontiersin.org/article/10.3389/fpls.2016.01843/full). 

Wang, Xiaoqiang et al. 2006. “Crystal Structure of Isoflavone Reductase from Alfalfa 



References  120 
 

 

(Medicago Sativa L.).” Journal of molecular biology 358(5):1341–52. 

(http://www.ncbi.nlm.nih.gov/pubmed/16600295). 

Weber, Jost et al. 2014. “Biotechnological Hydrogen Production by Photosynthesis.” 

Engineering in Life Sciences 592–606. 

(http://onlinelibrary.wiley.com/doi/10.1002/elsc.201400056/abstract). 

Wienkoop, Stefanie et al. 2010. “Targeted Proteomics for Chlamydomonas Reinhardtii 

Combined with Rapid Subcellular Protein Fractionation, Metabolomics and Metabolic Flux 

Analyses.” Molecular bioSystems 6(6):1018–31. 

(http://www.ncbi.nlm.nih.gov/pubmed/20358043). 

Wilde, Edward W. and John R. Benemann. 1993. “Bioremoval of Heavy Metals by the Use of 

Microalgae.” Biotechnology Advances 11(4):781–812. 

(http://www.sciencedirect.com/science/article/pii/0734975093900036). 

Woessner, Jeffrey P. and Ursula W. Goodenough. 1992. “Zygote and Vegetative Cell Wall 

Proteins in Chlamydomonas Reinhardtii Share a Common Epitope, (SerPro)X.” Plant 

Science 83(1):65–76. 

(http://www.sciencedirect.com/science/article/pii/016894529290063R). 

Work, Victoria H. et al. 2010. “Increased Lipid Accumulation in the Chlamydomonas Reinhardtii 

sta7-10 Starchless Isoamylase Mutant and Increased Carbohydrate Synthesis in 

Complemented Strains .” Eukaryotic Cell  9(8):1251–61. 

(http://ec.asm.org/content/9/8/1251.abstract). 

Wu, Shuangxiu, Lili Xu, Rui Huang, and Quanxi Wang. 2011. “Improved Biohydrogen 

Production with an Expression of Codon-Optimized hemH and Lba Genes in the 

Chloroplast of Chlamydomonas Reinhardtii.” Bioresource Technology 102(3):2610–16. 

(http://dx.doi.org/10.1016/j.biortech.2010.09.123). 

Wykoff, D. D., J. P. Davies, A. Melis, and A. R. Grossman. 1998. “The Regulation of 

Photosynthetic Electron Transport during Nutrient Deprivation in Chlamydomonas 

Reinhardtii.” Plant Physiol 117(1):129–39. 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citatio

n&list_uids=9576782). 

Yamano, Takashi, Hiro Iguchi, and Hideya Fukuzawa. 2013. “Rapid Transformation of 

Chlamydomonas Reinhardtii without Cell-Wall Removal.” Journal of bioscience and 

bioengineering 115(6):691–94. (http://www.ncbi.nlm.nih.gov/pubmed/23333644). 

Yamauchi, Yasuo, Ayaka Hasegawa, Ai Taninaka, Masaharu Mizutani, and Yukihiro Sugimoto. 

2011. “NADPH-Dependent Reductases Involved in the Detoxification of Reactive 

Carbonyls in Plants.” Journal of Biological Chemistry 286(9):6999–7009. 

(http://www.jbc.org/content/286/9/6999.long). 

Yarmolinsky, D., G. Brychkova, R. Fluhr, and M. Sagi. 2013. “Sulfite Reductase Protects Plants 



References  121 
 

 

against Sulfite Toxicity.” Plant Physiology 161(2):725–43. 

(http://www.plantphysiol.org/cgi/doi/10.1104/pp.112.207712). 

Yildiz, F. H., J. P. Davies, and a. R. Grossman. 1994. “Characterization of Sulfate Transport in 

Chlamydomonas Reinhardtii during Sulfur-Limited and Sulfur-Sufficient Growth.” Plant 

physiology 104(3):981–87. (http://www.plantphysiol.org/content/104/3/981.abstract). 

Yonekura-Sakakibara, K., T. Ashikari, Y. Tanaka, T. a Kusumi, and T. Hase. 1998. “Molecular 

Characterization of Tobacco Sulfite Reductase: Enzyme Purification, Gene Cloning, and 

Gene Expression Analysis.” Journal of biochemistry 124(3):615–21. 

(http://www.ncbi.nlm.nih.gov/pubmed/9722674). 

Zabawinski, Christophe et al. 2001. “Starchless Mutants of Chlamydomonas Reinhardtii Lack 

the Small Subunit of a Heterotetrameric ADP-Glucose Pyrophosphorylase Starchless 

Mutants of Chlamydomonas Reinhardtii Lack the Small Subunit of a Heterotetrameric 

ADP-Glucose Pyrophosphorylase.” Journal of Bacteriology 183(3):1069–77. 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC94975/). 

Zhang, L., T. Happe, and A. Melis. 2002. “Biochemical and Morphological Characterization of 

Sulfur-Deprived and H2-Producing Chlamydomonas Reinhardtii(green Alga).” Planta 214. 

(http://dx.doi.org/10.1007/s004250100660). 

Zhang, Liping, Thomas Happe, and Anastasios Melis. 2002. “Biochemical and Morphological 

Characterization of Sulfur-Deprived and H 2 -Producing Chlamydomonas Reinhardtii 

(Green Alga).” Planta 214(4):552–61. (http://link.springer.com/10.1007/s004250100660). 

Zhang, Ru et al. 2014. “High-Throughput Genotyping of Green Algal Mutants Reveals Random 

Distribution of Mutagenic Insertion Sites and Endonucleolytic Cleavage of Transforming 

DNA.” The Plant cell 26(4):1398–1409. 

(http://www.plantcell.org/content/early/2014/04/07/tpc.114.124099.abstract). 

Zhang, Zhaoduo et al. 2004. “Insights into the Survival of Chlamydomonas Reinhardtii during 

Sulfur Starvation Based on Microarray Analysis of Gene Expression Insights into the 

Survival of Chlamydomonas Reinhardtii during Sulfur Starvation Based on Microarray 

Analysis of Gene Expressi.” (https://www.ncbi.nlm.nih.gov/pubmed/15470261). 

Zhao, Tao, Wei Wang, Xue Bai, and Yijun Qi. 2009. “Gene Silencing by Artificial microRNAs 

in Chlamydomonas: TECHNICAL ADVANCE.” Plant Journal 58(1):157–64. 

(http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2008.03758.x/abstract). 

Zheng, Han-qin et al. 2014. “AlgaePath : Comprehensive Analysis of Metabolic Pathways 

Using Transcript Abundance Data from next-Generation Sequencing in Green Algae.” 

BMC genomics 15(196):1–12. 

(https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-196). 

Zorin, Boris, Peter Hegemann, and Irina Sizova. 2005. “Nuclear-Gene Targeting by Using 

Single-Stranded DNA Avoids Illegitimate DNA Integration in Chlamydomonas Reinhardtii 



References  122 
 

 

.” Eukaryotic Cell 4(7):1264–72. 

(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1168964/). 



Appendix  123 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Expression of IFR1 in the presence of DCMU. 0.1 µM of DCMU was added to 

TAP grown cultures of Chlamydomonas wild type CC124 and protein harvested at regular time 

intervals as shown. M and R represent protein ladder and recombinant IFR1, respectively. 

Colloidal coomassie staining (CCB) served as a loading control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: IFR1 expression in Chlamydomonas wild type (CC124) grown 

photoautotrophically under highlight (2000 µEm-2s-1). a, b and c denote 5 µg, 10 µg 

and 20 µg of total protein harvested at 0 h, 10 h and 24 h of highlight illumination. Colloidal 

coomassie staining (CCB) served as a loading control.  
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Figure S3: Screening of SIR1 knockdown mutants by qualitative plate level detection of 

extracellular luciferase activity. amiRNA constructs targeting SIR1 were fused to luciferase 

reporter to facilitate screening of knockdown mutants. (A) and (B) show transformants 

expressing luciferase on TAP agar plate where intensity of bioluminescence is represented by 

cps (count per second). (C) 17 positive transformants selected from (A) and (B). (D) Difference 

in the intensity of bioluminescence between the 17 selected transformants is shown.
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