48 research outputs found
Analysis of the effects of Brexit on the UK’s ability to achieve the climate change acts target 2030
Purpose: This paper evaluates the UK’s departure from the European Union (EU) and how this will influence the emissions output. Methodological approach: Relationships between emissions and empirical generalizations related to the UK’s departure from the EU were detected through an extensive literature review adopting an inductive approach. The delphi methodology was used to collect the opinion of experts via semi structured interviews from where themes were identified with the use of Nvivo. Finally, a triangulation was made by synthesizing the qualitative data with the literature to determine the impacts of the UK’s departure from the EU on emissions. Findings: The work provides evidence that the UK’s decisions to leave the EU will have multiple detrimental long-term consequences to the achievability of the fifth carbon budget. Research limitation: This study considers the opinion of a limited group of experts and consequently, more in depth research is required to better assess the wider range of variables and perspectives affecting the current decision making process and policy related with the UK’s environmental commitments Originality and value: Under the actual eclectic dynamic surrounding the Brexit, a plethora of distorted empirical studies addressing its consequences have emerged. This work provides a comprehensive overview of a largely understudied set of opinions and analysis of possible consequences Brexit poses. This paper opens a debate and invites new perspectives to be included to an increasingly neglected contemporary issue, and contributes as a reference for the future discussion of environmental policy in the UK. Key Words: Collaboration, Legislation, Emissions, Investment, Climate change target 2030, sustainability Research Pape
Reusable Multi-Stage Multi-Secret Sharing Schemes Based on CRT
Three secret sharing schemes that use the Mignotte’ssequence and two secret sharing schemes that use the Asmuth-Bloom sequence are proposed in this paper. All these five secret sharing schemes are based on Chinese Remainder Theorem (CRT) [8]. The first scheme that uses the Mignotte’s sequence is a single secret scheme; the second one is an extension of the first one to Multi-secret sharing scheme. The third scheme is again for the case of multi-secrets but it is an improvement over the second scheme in the sense that it reduces the number of publicvalues. The first scheme that uses the Asmuth-Bloom sequence is designed for the case of a single secret and the second one is an extension of the first scheme to the case of multi-secrets. Novelty of the proposed schemes is that the shares of the participants are reusable i.e. same shares are applicable even with a new secret. Also only one share needs to be kept by each participant even for the muslti-secret sharing scheme. Further, the schemes are capable of verifying the honesty of the participants including the dealer. Correctness of the proposed schemes is discussed and show that the proposed schemes are computationally secure
Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults
We investigate a scheme for noninvasive continuous monitoring of absolute cerebral blood flow (CBF) in adult human patients based on a combination of time-resolved dynamic contrast-enhanced near-infrared spectroscopy (DCE-NIRS) and diffuse correlation spectroscopy (DCS) with semi-infinite head model of photon propogation. Continuous CBF is obtained via calibration of the DCS blood flow index (BFI) with absolute CBF obtained by intermittent intravenous injections of the optical contrast agent indocyanine green. A calibration coefficient (gamma) for the CBF is thus determined, permitting conversion of DCS BFI to absolute blood flow units at all other times. A study of patients with acute brain injury (N = 7) is carried out to ascertain the stability of gamma. The patient-averaged DCS calibration coefficient across multiple monitoring days and multiple patients was determined, and good agreement between the two calibration coefficients measured at different times during single monitoring days was found. The patient-averaged calibration coefficient of 1.24 x 10(9) (mL/100 g/min)/(cm(2)/s) was applied to previously measured DCS BFI from similar brain-injured patients||in this case, absolute CBF was underestimated compared with XeCT, an effect we show is primarily due to use of semi-infinite homogeneous models of the head.54115Agências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig
Quantification of cerebral blood flow in adults by contrast-enhanced near-infrared spectroscopy: Validation against MRI
The purpose of this study was to assess the accuracy of absolute cerebral blood flow (CBF) measurements obtained by dynamic contrast-enhanced (DCE) near-infrared spectroscopy (NIRS) using indocyanine green as a perfusion contrast agent. For validation, CBF was measured independently using the MRI perfusion method arterial spin labeling (ASL). Data were acquired at two sites and under two flow conditions (normocapnia and hypercapnia). Depth sensitivity was enhanced using time-resolved detection, which was demonstrated in a separate set of experiments using a tourniquet to temporally impede scalp blood flow. A strong correlation between CBF measurements from ASL and DCE-NIRS was observed (slope = 0.99 ± 0.08, y-intercept = −1.7 ± 7.4 mL/100 g/min, and R2 = 0.88). Mean difference between the two techniques was 1.9 mL/100 g/min (95% confidence interval ranged from −15 to 19 mL/100g/min and the mean ASL CBF was 75.4 mL/100 g/min). Error analysis showed that structural information and baseline absorption coefficient were needed for optimal CBF reconstruction with DCE-NIRS. This study demonstrated that DCE-NIRS is sensitive to blood flow in the adult brain and can provide accurate CBF measurements with the appropriate modeling techniques
Impact of dietary patterns, individual and workplace characteristics on blood pressure status among civil servants in Bida and Wushishi communities of Niger State, Nigeria
The global burden estimate of hypertension is alarming and results in several million deaths annually. A high incidence of sudden deaths from cardiovascular diseases in the civil workforce in Nigeria is often reported. However, the associations between Dietary Patterns (DPs), individual, and workplace characteristics of hypertension among this workforce have not been fully explored. This study aimed to identify DP in the Bida and Wushishi Communities of Niger State and establish its relationship with hypertension along with other individual and workplace characteristics. Factor analysis was used to establish DP, Chi-square test to identify their relationships with hypertension, and logistic regression to determine the predictor risk factors. The prevalence of hypertension was 43.7%; mean weight, height, and body fat were: 72.8±15 kg, 166±8.9 mm and 30.4%, respectively. Three DPs: “Efficient Diet,” “Local diet,” and “Energy Boost Diet” were identified. The factor loading scores for these factors were divided into quintiles Q1–Q5; none of them had a significant effect on hypertension status. Conversely, increase in age, the Ministry, Department, and Agency (MDA) of employment, frequency of eating in restaurants, and obesity were identified as significant risk factors. After adjusting for confounders (age, body mass index, MDA, and eating habits), a high score (Q5) in “efficient diet pattern” was significantly related to a lower likelihood of hypertension than a low score (Q1). The prevalence of hypertension among the participants was relatively very high. An increase in age and working in educational sector were risk factors associated with hypertension. Therefore, it is recommended that civil servants engage in frequent exercise and undergo regular medical checkups, especially as they get older. These findings highlight the need for large-scale assessment of the impact of variables considered in this study on hypertension, among the civil workforce across Niger state and Nigeria
Myosin II Motor Proteins with Different Functions Determine the Fate of Lamellipodia Extension during Cell Spreading
Non-muscle cells express multiple myosin-II motor proteins myosin IIA, myosin IIB and myosin IIC transcribed from different loci in the human genome. Due to a significant homology in their sequences, these ubiquitously expressed myosin II motor proteins are believed to have overlapping cellular functions, but the mechanistic details are not elucidated. The present study uncovered a mechanism that coordinates the distinctly localized myosin IIA and myosin IIB with unexpected opposite mechanical roles in maneuvering lamellipodia extension, a critical step in the initiation of cell invasion, spreading, and migration. Myosin IIB motor protein by localizing at the front drives lamellipodia extension during cell spreading. On the other hand, myosin IIA localizes next to myosin IIB and attenuates or retracts lamellipodia extension. Myosin IIA and IIB increase cell adhesion by regulating focal contacts formation in the spreading margins and central part of the spreading cell, respectively. Spreading cells expressing both myosin IIA and myosin IIB motor proteins display an organized actin network consisting of retrograde filaments, arcs and central filaments attached to focal contacts. This organized actin network especially arcs and focal contacts formation in the spreading margins were lost in myosin IIÂ cells. Surprisingly, myosin IIB̂ cells displayed long parallel actin filaments connected to focal contacts in the spreading margins. Thus, with different roles in the regulation of the actin network and focal contacts formation, both myosin IIA and IIB determine the fate of lamellipodia extension during cell spreading