68 research outputs found
A novel treatment of cystic fibrosis acting on-target:cysteamine plus epigallocatechin gallate for the autophagy-dependent rescue of class II-mutated CFTR
We previously reported that the combination of two safe proteostasis regulators, cysteamine and epigallocatechin gallate (EGCG), can be used to improve deficient expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in patients homozygous for the CFTR Phe508del mutation. Here we provide the proof-of-concept that this combination treatment restored CFTR function and reduced lung inflammation (P<0.001) in Phe508del/Phe508del or Phe508del/null-Cftr (but not in Cftr-null mice), provided that such mice were autophagy-competent. Primary nasal cells from patients bearing different class II CFTR mutations, either in homozygous or compound heterozygous form, responded to the treatment in vitro. We assessed individual responses to cysteamine plus EGCG in a single-centre, open-label phase-2 trial. The combination treatment decreased sweat chloride from baseline, increased both CFTR protein and function in nasal cells, restored autophagy in such cells, decreased CXCL8 and TNF-α in the sputum, and tended to improve respiratory function. These positive effects were particularly strong in patients carrying Phe508del CFTR mutations in homozygosity or heterozygosity. However, a fraction of patients bearing other CFTR mutations failed to respond to therapy. Importantly, the same patients whose primary nasal brushed cells did not respond to cysteamine plus EGCG in vitro also exhibited deficient therapeutic responses in vivo. Altogether, these results suggest that the combination treatment of cysteamine plus EGCG acts ‘on-target' because it can only rescue CFTR function when autophagy is functional (in mice) and improves CFTR function when a rescuable protein is expressed (in mice and men). These results should spur the further clinical development of the combination treatment
Therapeutic targeting of CK2 in acute and chronic leukemias
Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Thus, proper regulation of phosphorylation events is critical to the homeostatic functions of cell signaling. Indeed, deregulation of signaling pathways underlies many human diseases, including cancer.[1] The importance of phosphorylation makes protein kinases and phosphatases promising therapeutic targets for a wide variety of disorders.[2] CK2, formerly known as casein kinase II, was discovered in 1954, [3] although only recently, and especially over the last two decades, it has become one of the most studied protein kinases, due to its ubiquity, pleiotropy and constitutive activity. In particular, appreciation of its pleiotropy has completely changed our vision of CK2 biology, from an ordinary cell homeostasis-maintaining enzyme to a master kinase potentially implicated in many human physiological and pathological events. CK2 is responsible for about 25% of the phosphoproteome,[4] as it catalyzes the phosphorylation of >300 substrates.[5] This partly explains the CK2 interconnected roles that underlie its involvement in many signaling pathways. However, CK2 prevalent roles are promotion of cell growth and suppression of apoptosis. Accordingly, several lines of evidence support the notion that CK2 is a key player in the pathogenesis of cancer. High levels of CK2 transcript and protein expression, as well as increased kinase activity are associated with the pathological functions of CK2 in a number of neoplasias.[6] It was only over the last decade, after extensive analyses in solid tumors, that basic and translational studies have provided evidence for a pivotal role of CK2 in driving the growth of different blood cancers as well, although the first report demonstrating increased CK2 expression in acute myelogenous leukemia (AML) dates back to 1985.[7] Since then, CK2 overexpression/activity has been demonstrated in other hematological malignancies, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelogenous leukemia (CML). [8] With the notable exceptions of CML and pediatric ALL, many patients with leukemias still have a poor outcome, despite the development of protocols with optimized chemotherapy combinations. Insufficient response to first-line therapy and unsalvageable relapses present major therapeutic challenges. Moreover, chemotherapy, even if successful, could have deleterious long-term biological and psychological effects, especially in children.[9] Furthermore, CML patients can develop resistance to tyrosine kinase inhibitors (TKIs), while both primary chemoresistant and relapsed pediatric ALL cases still remain an unresolved issue.[9
Occurrence of glycosylation and deglycosylation of exogenously administered ganglioside GM1 in mouse liver.
Ganglioside GM1, 3H-labelled at the level of terminal galactose or of sphingosine, was intravenously injected into Swiss albino mice and some steps in its metabolic fate in the liver were investigated. After administration of [3H]sphingosine-labelled GM1 all major liver gangliosides [GM3, GM2, GM1, GD1a-(NeuAc,NeuGl)] became radioactive, the radioactivity residing in all cases on the sphingosine moiety. The specific radioactivity was highest in GM1, which carried about 53% of the radioactivity incorporated into gangliosides, followed by GM2, with 34.5% of incorporated radioactivity, GM3 and GD1a-(NeuAc,NeuGl), both with about 5% of incorporated radioactivity. After administration of [3H]galactose-labelled GM1 the only radioactive gangliosides present in the liver were GM1 and GD1a-(NeuAc,NeuGl), the former carrying about 95% of the total ganglioside-incorporated radioactivity, the latter about 3%. Both gangliosides were radioactive exclusively in the terminal galactose residue. According to these results exogenously administered GM1, after being taken up by the liver, is mainly degraded to GM2 and GM3, a part being, however, sialylated to GD1a-(NeuAc,NeuGl). All this suggests that exogenous GM1 may be involved in the metabolic routes of endogenous liver gangliosides
Differences in liver ganglioside patterns in various inbred strains of mice.
The ganglioside patterns in the liver of different inbred and hybrid strains of mice were investigated. The inbred strains were Balb/cAnNCr1BR, C57BL/6NCr1BR, DBA/2NCr1BR. C3H/HeNCr1BR; the hybrid strain was the Swiss albino. The following major gangliosides were found to be present in mouse liver: GM3-NeuAc; GM3-NeuGl, GM2 [a mixture of one species carrying N-acetylneuraminic acid (NeuAc) and one carrying N-glycollylneuraminic acid (NeuGl)], GM1 and GD1a-(NeuAc,NeuGl). The qualitative and quantitative patterns of liver gangliosides were markedly different in the various inbred strains of mice; in Balb/cAnNCr1BR strain, ganglioside GM2 was preponderant (99.2% of total ganglioside content); in C57BL/6NCr1BR, the major ganglioside was GM2 (90.4%), followed by GM3-NeuAc (5.6%) and GM3-NeuGl (4.0%); in DBA/2NCr1BR, GM2 accounted for 77.1%, GD1a-(NeuAc,NeuGl) 18.9% and GM1 3.1% of gangliosides; in C3H/HeNCr1BR, GM2 constituted 50.6%, GM1 22.8% and GD1a-(NeuAc,NeuGl) 22.1%. In the hybrid Swiss albino mice, liver ganglioside composition markedly varied from one animal to another, GM3-NeuGl, GM2 and GD1a-(NeuAc,NeuGl) being the predominant gangliosides in the various cases
Uptake, cell penetration and metabolic processing of exogenously administered GM1 ganglioside in rat brain
GM1 ganglioside, after intravenous injection into rats, is absorbed and taken up by various organs and tissues, including brain. The capacity of brain to take up gangliosides, referred to weight unit, is comparable to that of kidney and muscle. After injection of [Gal-(3)H]GM1 a relevant portion of brain associated radioactivity resided in the soluble fraction and was of a volatile nature. After brain subcellular fractionation, the lysosomal, plasma membrane and Golgi apparatus fractions carried the highest specific radioactivity. In addition, an enriched fraction of brain capillaries was highly labelled, suggesting that GM1 ganglioside is also tightly bound to the vessel walls. The metabolic events encountered in brain by exogenous gangliosides were investigated, in detail, after intracisternal injection of [Sph-(3)H]GM1. The results obtained demonstrate that GM1 is extensively metabolized in brain. Besides the degradation products (GM2, GM3, lactosylceramide, glucosylceramide, ceramide), compounds of a biosynthetic origin were also found to be formed: these include GD1a, GD1b and sphingomyelin. All the above results could indicate that gangliosides, after intravenous administration to rats, are taken up by brain, bind to the capillary network, penetrate into neural cells, associate to both plasma membranes and intracellular structures and undergo metabolic processing with formation of a number of products of both catabolic and biosynthetic origin
Deciphering the role of protein kinase CK2 in the maturation/stability of F508del-CFTR
F508del-CFTR, the most common mutation in cystic fibrosis (CF) patients, impairs CFTR trafficking to plasma membrane leading to its premature proteasomal degradation. Several post-translational modifications have been identified on CFTR with multiple roles in stability, localization and channel function, and the possibility to control the enzymes responsible of these modifications has been long considered a potential therapeutic strategy. Protein kinase CK2 has been previously suggested as an important player in regulating CFTR functions and it has been proposed as a pharmacological target in a combinatory therapy to treat CF patients. However, the real implication of CK2 in F508del-CFTR proteostasis, and in particular the hypothesis that its inhibition could be important in CF therapies, is still elusive. Here, by using immortalized cell lines, primary human cells, and knockout cell lines deprived of CK2 subunits, we do not disclose any direct correlation between F508del-CFTR proteostasis and CK2 expression/activity. Rather, our data indicate that the CK2\u3b1' catalytic subunit should be preserved rather than inhibited for F508del rescue by the correctors of class-1, such as VX-809, disclosing new important features in CF therapeutic approaches
- …