151 research outputs found
Simulations of Solid-on-Solid Models of Spreading of Viscous Droplets
We have studied the dynamics of spreading of viscous non-volatile fluids on
surfaces by MC simulations of SOS models. We have concentrated on the complete
wetting regime, with surface diffusion barriers neglected for simplicity.
First, we have performed simulations for the standard SOS model. Formation of a
single precursor layer, and a density profile with a spherical cap shaped
center surrounded by Gaussian tails can be reproduced with this model.
Dynamical layering (DL), however, only occurs with a very strongly attractive
van der Waals type of substrate potential. To more realistically describe the
spreading of viscous liquid droplets, we introduce a modified SOS model. In the
new model, tendency for DL and the effect of the surface potential are in part
embedded into the dynamics of the model. This allows a relatively simple
description of the spreading under different conditions, with a temperature
like parameter which strongly influences the droplet morphologies. Both rounded
droplet shapes and DL can easily be reproduced with the model. Furthermore, the
precursor width increases proportional to the square root of time, in
accordance with experimental observations. PACS: 68.10.Gw, 05.70.Ln, 61.20.Ja.Comment: to appear in Physica A (1994), standard LaTex, 20 page
Scavenging of ultrafine particles by rainfall at a boreal site: observations and model estimations
International audienceValues of the scavenging coefficient were determined from observations of ultrafine particles (with diameters in the range 10?510 nm) during rain events at a boreal forest site in Southern Finland between 1996 and 2001. The estimated range of values of the scavenging coefficient was [7Ă10?6?4Ă10?5] s?1, which is generally higher than model calculations based only on below-cloud processes (Brownian diffusion, interception, and typical charge effects). A new model that includes below-cloud scavenging processes, mixing of ultrafine particles from the boundary layer (BL) into cloud, followed by cloud condensation nuclei activation and in-cloud removal by rainfall, is presented. The effective scavenging coefficients estimated from this new model have values comparable with those obtained from observations. Results show that ultrafine particle removal by rain depends on aerosol size, rainfall intensity, mixing processes between BL and cloud elements, in-cloud scavenged fraction, in-cloud collection efficiency, and in-cloud coagulation with cloud droplets. Implications for the treatment of scavenging of BL ultrafine particles in numerical models are discussed
Molecular ordering of precursor films during spreading of tiny liquid droplets
In this work we address a novel feature of spreading dynamics of tiny liquid
droplets on solid surfaces, namely the case where the ends of the molecules
feel different interactions to the surface. We consider a simple model of
dimers and short chain--like molecules which cannot form chemical bonds with
the surface. We study the spreading dynamics by Molecular Dynamics techniques.
In particular, we examine the microscopic structure of the time--dependent
precursor film and find that in some cases it can exhibit a high degree of
local order. This order persists even for flexible chains. Our results suggest
the possibility of extracting information about molecular interactions from the
structure of the precursor film.Comment: 4 pages, revtex, no figures, complete file available from
ftp://rock.helsinki.fi/pub/preprints/tft/ or at
http://www.physics.helsinki.fi/tft/tft_preprints.html (to appear in Phys.
Rev. E Rapid Comm.
Global warming will affect the maximum potential abundance of boreal plant species
Forecasting the impact of future global warming on biodiversity requires understanding how temperature limits the distribution of species. Here we rely on Liebig's Law of Minimum to estimate the effect of temperature on the maximum potential abundance that a species can attain at a certain location. We develop 95%âquantile regressions to model the influence of effective temperature sum on the maximum potential abundance of 25 common understory plant species of Finland, along 868 nationwide plots sampled in 1985. Fifteen of these species showed a significant response to temperature sum that was consistent in temperatureâonly models and in allâpredictors models, which also included cumulative precipitation, soil texture, soil fertility, tree species and stand maturity as predictors. For species with significant and consistent responses to temperature, we forecasted potential shifts in abundance for the period 2041â2070 under the IPCC A1B emission scenario using temperatureâonly models. We predict major potential changes in abundance and average northward distribution shifts of 6â8âkmâyrâ1. Our results emphasize interâspecific differences in the impact of global warming on the understory layer of boreal forests. Species in all functional groups from dwarf shrubs, herbs and grasses to bryophytes and lichens showed significant responses to temperature, while temperature did not limit the abundance of 10 species. We discuss the interest of modelling the âmaximum potential abundanceâ to deal with the uncertainty in the predictions of realized abundances associated to the effect of environmental factors not accounted for and to dispersal limitations of species, among others. We believe this concept has a promising and unexplored potential to forecast the impact of specific drivers of global change under future scenarios.202
Dynamics of Spreading of Chainlike Molecules with Asymmetric Surface Interactions
In this work we study the spreading dynamics of tiny liquid droplets on solid
surfaces in the case where the ends of the molecules feel different
interactions with respect to the surface. We consider a simple model of dimers
and short chainlike molecules that cannot form chemical bonds with the surface.
We use constant temperature Molecular Dynamics techniques to examine in detail
the microscopic structure of the time dependent precursor film. We find that in
some cases it can exhibit a high degree of local order that can persist even
for flexible chains. Our model also reproduces the experimentally observed
early and late-time spreading regimes where the radius of the film grows
proportional to the square root of time. The ratios of the associated transport
coefficients are in good overall agreement with experiments. Our density
profiles are also in good agreement with measurements on the spreading of
molecules on hydrophobic surfaces.Comment: 12 pages, LaTeX with APS macros, 21 figures available by contacting
[email protected], to appear in Phys. Rev.
Dynamics of Spreading of Small Droplets of Chainlike Molecules on Surfaces
Dynamics of spreading of small droplets on surfaces has been studied by the
molecular dynamics method. Simulations have been performed for mixtures of
solvent and dimer, and solvent and tetramer droplets. For solvent particles and
dimers, layering occurs leading to stepped droplet shapes. For tetramers such
shapes occur for relatively deep and strong surface potentials only. For wider
and more shallow potentials, more rapid spreading and rounded droplet shapes
occur. These results are in accordance with experimental data on small non -
volatile polymer droplets. PACS numbers: 68.10Gw, 05.70.Ln, 61.20.Ja, 68.45GdComment: to appear in Europhys. Letters (1994), Latex, 12 page
Communicating the amount of windstorm induced forest damage by the maximum wind gust speed in Finland
Windstorms are natural disturbance agents in forests playing a role in
natural forest regeneration. In Finland, the most severe individual
windstorms have commonly damaged 2â4Â million m3 of timber. In addition
to financial losses caused to forest owners, windthrown trees have in many
cases seriously disrupted the functionality of the national power grid.
Communicating windstorm risks in duty forecasting is difficult. In this
study, we aimed at developing windstorm impact estimates for forest damage in
Finland to help the forecaster to improve communication of the risks of
windstorms. We have compared the volume of forest damage caused by the most
intense windstorms in Finland during the recent decade to the observed
maximum inland wind gust speeds associated with the same windstorms. It was
found out that the volume of forest damage follows approximately a power
relation as a function of wind gust speed with a power of âŒ10. This is
a tentative estimate because of a short time series and small number of
inspected windstorms. Moreover, also wind direction, location of the affected
area and soil properties among other factors have an impact to the amount of
damage as illustrated in our inspection. Despite the shortness of the time
series, we believe that our results demonstrating the steep increase in the
impacts of windstorms with an increasing windstorm intensity are valuable.
However, more detailed investigations with longer time series are needed in
order to more specifically communicate the windstorm risks and their impacts
in boreal forests.</p
Easy-to-use tool for evaluating the elevated acute kidney injury risk against reduced cardiovascular disease risk during intensive blood pressure control
Objective: The Systolic Blood Pressure Intervention Trial (SPRINT) reported that lowering SBP to below 120 mmHg (intensive treatment) reduced cardiovascular morbidity and mortality among adults with hypertension but increased the incidence of adverse events, particularly acute kidney injury (AKI). The goal of this study was to develop an accurate risk estimation tool for comparing the risk of cardiovascular events and adverse kidney-related outcomes between standard and intensive antihypertensive treatment strategies.Methods: By applying Lasso regression on the baseline characteristics and health outcomes of 8760 participants with complete baseline information in the SPRINT trial, we developed predictive models for primary cardiovascular disease (CVD) outcome and incidence of AKI. Both models were validated against an independent test set of the SPRINT trial (one third of data not used for model building) and externally against the cardiovascular and renal outcomes available in Action to Control Cardiovascular Risk in Diabetes Blood Pressure trial, consisting of 4733 participants with type 2 diabetes mellitus.Results: Lasso regression identified a subset of variables that accurately predicted the primary CVD outcome and the incidence of AKI (areas under receiver-operating characteristic curves 0.70 and 0.77, respectively). Based on the validated risk models, an easy-to-use risk assessment tool was developed and made available as an easy-to-use online tool.Conclusion: By predicting the risks of CVD and AKI at baseline, the developed tool can be used to weigh the benefits of intensive versus standard blood pressure control and to identify those who are likely to benefit most from intensive treatment.</p
Pinning of a solid--liquid--vapour interface by stripes of obstacles
We use a macroscopic Hamiltonian approach to study the pinning of a
solid--liquid--vapour contact line on an array of equidistant stripes of
obstacles perpendicular to the liquid. We propose an estimate of the density of
pinning stripes for which collective pinning of the contact line happens. This
estimate is shown to be in good agreement with Langevin equation simulation of
the macroscopic Hamiltonian. Finally we introduce a 2--dimensional mean field
theory which for small strength of the pinning stripes and for small capillary
length gives an excellent description of the averaged height of the contact
line.Comment: Plain tex, 12 pages, 3 figures available upon reques
- âŠ