8 research outputs found

    Revisiting the Stellar Velocity Ellipsoid - Hubble type relation: observations versus simulations

    Get PDF
    The stellar velocity ellipsoid (SVE) in galaxies can provide important information on the processes that participate in the dynamical heating of their disc components (e.g. giant molecular clouds, mergers, spiral density waves, bars). Earlier findings suggested a strong relation between the shape of the disc SVE and Hubble type, with later-type galaxies displaying more anisotropic ellipsoids and early-types being more isotropic. In this paper, we revisit the strength of this relation using an exhaustive compilation of observational results from the literature on this issue. We find no clear correlation between the shape of the disc SVE and morphological type, and show that galaxies with the same Hubble type display a wide range of vertical-to-radial velocity dispersion ratios. The points are distributed around a mean value and scatter of σz/σR=0.7±0.2\sigma_z/\sigma_R=0.7\pm 0.2. With the aid of numerical simulations, we argue that different mechanisms might influence the shape of the SVE in the same manner and that the same process (e.g. mergers) does not have the same impact in all the galaxies. The complexity of the observational picture is confirmed by these simulations, which suggest that the vertical-to-radial axis ratio of the SVE is not a good indicator of the main source of disc heating. Our analysis of those simulations also indicates that the observed shape of the disc SVE may be affected by several processes simultaneously and that the signatures of some of them (e.g. mergers) fade over time

    The peculiar kinematics of the multiple populations in the globular cluster Messier 80 (NGC 6093)

    Get PDF
    We combine MUSE spectroscopy and Hubble Space Telescope ultraviolet (UV) photometry to perform a study of the chemistry and dynamics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Previous studies have revealed three stellar populations that not only vary in their light-element abundances, but also in their radial distributions, with concentration decreasing with increasing nitrogen enrichment. This remarkable trend, which sets M80 apart from the other Galactic globular clusters, points towards a complex formation and evolutionary history. To better understand how M80 formed and evolved, revealing its internal kinematics is key. We find that the most N-enriched population rotates faster than the other two populations at a 2 sigma confidence level. While our data further suggest that the intermediate population shows the least amount of rotation, this trend is rather marginal (1 - 2 sigma). Using axisymmetric Jeans models, we show that these findings can be explained from the radial distributions of the populations if they possess different angular momenta. Our findings suggest that the populations formed with primordial kinematical differences

    ω Centauri: A MUSE discovery of a counter-rotating core

    Get PDF
    ω Centauri is considered the most massive globular cluster of the Milky Way and likely the former nuclear star cluster of a galaxy accreted by the Milky Way. It is speculated to contain an intermediate-mass black hole (IMBH) from several dynamical models. However, uncertainties regarding the location of the cluster center or the retention of stellar remnants limit the robustness of the IMBH detections reported so far. In this paper, we derive and study the stellar kinematics from the highest-resolution spectroscopic data yet, using the Multi Unit Spectroscopic Explorer (MUSE) in the narrow field mode (NFM) and wide field mode (WFM). Our exceptional data near the center reveal for the first time that stars within the inner 20" (∼0.5 pc) counter-rotate relative to the bulk rotation of the cluster. Using this dataset, we measure the rotation and line-of-sight velocity dispersion (LOSVD) profile out to 120′′ with different centers proposed in the literature. We find that the velocity dispersion profiles using different centers match well with those previously published. Based on the counter--rotation, we determine a kinematic center and look for any signs of an IMBH using the high-velocity stars close to the center. We do not find any significant outliers >60 km/s within the central 20′′, consistent with no IMBH being present at the center of ω Centauri. A detailed analysis of Jeans' modeling of the putative IMBH will be presented in the next paper of the series

    Composite Bulges - IV. Detecting Signatures of Gas Inflows in the IFU data: The MUSE View of Ionized Gas Kinematics in NGC 1097

    Get PDF
    Using VLT/MUSE integral-field spectroscopic data for the barred spiral galaxy NGC 1097, we explore techniques that can be used to search for extended coherent shocks that can drive gas inflows in centres of galaxies. Such shocks should appear as coherent velocity jumps in gas kinematic maps, but this appearance can be distorted by inaccurate extraction of the velocity values and dominated by the global rotational flow and local perturbations like stellar outflows. We include multiple components in the emission-line fits, which corrects the extracted velocity values and reveals emission associated with AGN outflows. We show that removal of the global rotational flow by subtracting the circular velocity of a fitted flat disk can produce artefacts that obscure signatures of the shocks in the residual velocities if the inner part of the disk is warped or if gas is moving around the centre on elongated (non-circular) trajectories. As an alternative, we propose a model-independent method which examines differences in the LOSVD moments of Hα\alpha and [NII]λ\lambda6583. This new method successfully reveals the presence of continuous shocks in the regions inward from the nuclear ring of NGC 1097, in agreement with nuclear spiral models

    What to expect when using globular clusters as tracers of the total mass distribution in Milky Way-mass galaxies

    Get PDF
    Dynamical models allow us to connect the motion of a set of tracers to the underlying gravitational potential, and thus to the total (luminous and dark) matter distribution. They are particularly useful for understanding the mass and spatial distribution of dark matter (DM) in a galaxy. Globular clusters (GCs) are an ideal tracer population in dynamical models, since they are bright and can be found far out into the halo of galaxies. We aim to test how well Jeans-Anisotropic-MGE (JAM) models using GCs (positions and line-of-sight velocities) as tracers can constrain the mass and radial distribution of DM halos. For this, we use the E-MOSAICS suite of 25 zoom-in simulations of L* galaxies. We find that the DM halo properties are reasonably well recovered by the JAM models. There is, however, a strong correlation between how well we recover the mass and the radial distribution of the DM and the number of GCs in the galaxy: the constraints get exponentially worse with fewer GCs, and at least 150 GCs are needed in order to guarantee that the JAM model will perform well. We find that while the data quality (uncertainty on the radial velocities) can be important, the number of GCs is the dominant factor in terms of the accuracy and precision of the measurements. This work shows promising results for these models to be used in extragalactic systems with a sample of more than 150 GCs

    oMEGACat I: MUSE spectroscopy of 300,000 stars within the half-light radius of ω Centauri

    Get PDF
    Omega Centauri (ω Cen) is the most massive globular cluster of the Milky Way and has been the focus of many studies that reveal the complexity of its stellar populations and kinematics. However, most previous studies have used photometric and spectroscopic datasets with limited spatial or magnitude coverage, while we aim to investigate it having full spatial coverage out to its half-light radius and stars ranging from the main sequence to the tip of the red giant branch. This is the first paper in a new survey of ω Cen that combines uniform imaging and spectroscopic data out to its half-light radius to study its stellar populations, kinematics, and formation history. In this paper, we present an unprecedented MUSE spectroscopic dataset combining 87 new MUSE pointings with previous observations collected from guaranteed time observations. We extract spectra of more than 300,000 stars reaching more than two magnitudes below the main sequence turn-off. We use these spectra to derive metallicity and line-of-sight velocity measurements and determine robust uncertainties on these quantities using repeat measurements. Applying quality cuts we achieve signal-to-noise ratios of 16.47/73.51 and mean metallicity errors of 0.174/0.031 dex for the main sequence stars (18 mag < magF625W < 22 mag) and red giant branch stars (16 mag < magF625W <10 mag), respectively. We correct the metallicities for atomic diffusion and identify foreground stars. This massive spectroscopic dataset will enable future studies that will transform our understanding of ω Cen, allowing us to investigate the stellar populations, ages, and kinematics in great detail

    Spiral Galaxies in the SAURON Survey

    Get PDF
    We discuss some recent integral field spectroscopy using the SAURON instrument of a sample consisting of 24 early-type spirals, part of the SAURON Survey, and 18 late-type spirals. Using 2-dimensional maps of their stellar radial velocity, velocity dispersion, and absorption line strength, it is now much easier to understand the nature of nearby galactic bulges. We discuss a few highlights of this work, and point out some new ideas about the formation of galactic bulges

    Revisiting the (V/sigma)-epsilon anisotropy diagram of early-type galaxies using integral-field kinematics

    No full text
    We use integral-field observation of the stellar kinematics obtained with SAURON in combination with Schwarzschild dynamical models to revisit our understanding of the classic (V /σ) − ε anisotropy diagram of early-type galaxies
    corecore