541 research outputs found

    Point Process Algorithm: A New Bayesian Approach for Planet Signal Extraction with the Terrestrial Planet Finder

    Get PDF
    The capability of the Terrestrial Planet Finder Interferometer (TPF-I) for planetary signal extraction, including both detection and spectral characterization, can be optimized by taking proper account of instrumental characteristics and astrophysical prior information. We have developed the Point Process Algorithm (PPA), a Bayesian technique for extracting planetary signals using the sine-chopped outputs of a dual nulling interferometer. It is so-called because it represents the system being observed as a set of points in a suitably-defined state space, thus providing a natural way of incorporating our prior knowledge of the compact nature of the targets of interest. It can also incorporate the spatial covariance of the exozodi as prior information which could help mitigate against false detections. Data at multiple wavelengths are used simultaneously, taking into account possible spectral variations of the planetary signals. Input parameters include the RMS measurement noise and the a priori probability of the presence of a planet. The output can be represented as an image of the intensity distribution on the sky, optimized for the detection of point sources. Previous approaches by others to the problem of planet detection for TPF-I have relied on the potentially non-robust identification of peaks in a "dirty" image, usually a correlation map. Tests with synthetic data suggest that the PPA provides greater sensitivity to faint sources than does the standard approach (correlation map + CLEAN), and will be a useful tool for optimizing the design of TPF-I.Comment: 17 pages, 6 figures. AJ in press (scheduled for Nov 2006

    Ionized gas at the edge of the Central Molecular Zone

    Full text link
    To determine the properties of the ionized gas at the edge of the CMZ near Sgr E we observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C II] 158 micron and [N II] 205 micron fine structure lines at six positions with the GREAT instrument on SOFIA and in [C II] using Herschel HIFI on-the-fly strip maps. We use the [N II] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C II] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. We detect two [C II] and [N II] velocity components, one along the line of sight to a CO molecular cloud at -207 km/s associated with Sgr E and the other at -174 km/s outside the edge of another CO cloud. From the [N II] emission we find that the average electron density is in the range of about 5 to 25 cm{-3} for these features. This electron density is much higher than that of the warm ionized medium in the disk. The column density of the CO-dark H2_2 layer in the -207 km/s cloud is about 1-2X10{21} cm{-2} in agreement with theoretical models. The CMZ extends further out in Galactic radius by 7 to 14 pc in ionized gas than it does in molecular gas traced by CO. The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 1e6 to 1e7 photons cm{-2} s{-1}, and/or efficient proton charge exchange with nitrogen, at temperatures of order 1e4 K, and/or a large flux of X-rays. Sgr E is a region of massive star formation which are a potential sources of the EUV radiation that can ionize the gas. In addition X-ray sources and the diffuse X-ray emission in the CMZ are candidates for ionizing nitrogen.Comment: 12 pages, 9 figure

    ASCA observations of two SNRs and NEI analysis

    Full text link
    Based on the data from the \asca observation of SNRs Kes79 and W49B, we present here the analysis of their X-ray spectra and morphologies. The Kes79 spectrum can be well fitted by a single NEI component, and the narrow-band images of that source show an inhomogeneous distribution of heavy elements. The heavy elements are richest in the positions S, SE and SW of Kes79, where there may exist interaction between shocks and molecular clouds implied by radio observations. For W49B we present here the non-equilibrium ionization (NEI) analysis based on its emission line diagnostics, and the spectral fit using two NEI components. The reverse shock in W49B may be still hot and we don't find evidence for a hotter blast wave in \asca spectra.Comment: Contributed talk in 32nd COSPAR E1.1, 1998, Nagoya. To appear in Adv. Space Res., 1999, 6 pages, LaTe

    Spectroscopy and 3D imaging of the Crab nebula

    Full text link
    Spectroscopy of the Crab nebula along different slit directions reveals the 3 dimensional structure of the optical nebula. On the basis of the linear radial expansion result first discovered by Trimble (1968), we make a 3D model of the optical emission. Results from a limited number of slit directions suggest that optical lines originate from a complicated array of wisps that are located in a rather thin shell, pierced by a jet. The jet is certainly not prominent in optical emission lines, but the direction of the piercing is consistent with the direction of the X-ray and radio jet. The shell's effective radius is ~ 79 seconds of arc, its thickness about a third of the radius and it is moving out with an average velocity 1160 km/s.Comment: 21 pages, 14 figures, submitted to ApJ, 3D movie of the Crab nebula available at http://www.fiz.uni-lj.si/~vidrih

    Consensus of the 'Malasars' traditional aboriginal knowledge of medicinal plants in the Velliangiri holy hills, India

    Get PDF
    There are many vanishing cultures that possess a wealth of knowledge on the medicinal utility of plants. The Malasars of Dravidian Tamils are an indigenous society occupying the forests of the Western Ghats, South India. They are known to be exceptional healers and keepers of traditional aboriginal knowledge (TAK) of the flora in the Velliangiri holy hills. In fact, their expertise is well known throughout India as evidenced by the thousands of pilgrims that go to the Velliangiri holy hills for healing every year. Our research is the first detailed study of medicinal plants in India that considers variation in TAK among informants using a quantitative consensus analysis. A total of 95 species belonging to 50 families were identified for medicinal and general health purposes. For each species the botanical name, family, local name, parts used, summary of mode of preparation, administration and curing are provided. The consensus analysis revealed a high level of agreement among the informants usage of a particular plant at a local scale. The average consensus index value of an informant was FIC > 0.71, and over 0.80 for some ailments such as respiratory and jaundice. Some of the more common problems faced by the Malasars were gastrointestinal disorders, respiratory illness, dermatological problems and simple illness such as fever, cough, cold, wounds and bites from poisonous animals. We also discovered several new ethnotaxa that have considerable medicinal utility. This study supports claims that the Malasars possess a rich TAK of medicinal plants and that many aboriginals and mainstream people (pilgrims) utilize medicinal plants of the Velliangiri holy hills. Unfortunately, the younger generation of Malasars are not embracing TAK as they tend to migrate towards lucrative jobs in more developed urban areas. Our research sheds some light on a traditional culture that believes that a healthy lifestyle is founded on a healthy environment and we suggest that TAK such as that of the Malasars may serve toward a global lifestyle of health and environmental sustainability

    The Pulsar Wind Nebula Around PSR B1853+01 in the Supernova Remnant W44

    Get PDF
    We present radio observations of a region in the vicinity of the young pulsar PSR B1853+01 in the supernova remnant W44. The pulsar is located at the apex of an extended feature with cometary morphology. We argue on the basis of its morphology and its spectral index and polarization properties that this is a synchrotron nebula produced by the spin down energy of the pulsar. The geometry and physical parameters of this pulsar-powered nebula and W44 are used to derive three different measures of the pulsar's transverse velocity. A range of estimates between 315 and 470 km/s are derived, resulting in a typical value of 375 km/s. The observed synchrotron spectrum from radio to X-ray wavelengths is used to put constraints on the energetics of the nebula and to derive the parameters of the pulsar wind.Comment: ApJ Let (in press

    Massive Quiescent Cores in Orion. -- II. Core Mass Function

    Get PDF
    We have surveyed submillimeter continuum emission from relatively quiescent regions in the Orion molecular cloud to determine how the core mass function in a high mass star forming region compares to the stellar initial mass function. Such studies are important for understanding the evolution of cores to stars, and for comparison to formation processes in high and low mass star forming regions. We used the SHARC II camera on the Caltech Submillimeter Observatory telescope to obtain 350 \micron data having angular resolution of about 9 arcsec, which corresponds to 0.02 pc at the distance of Orion. Our analysis combining dust continuum and spectral line data defines a sample of 51 Orion molecular cores with masses ranging from 0.1 \Ms to 46 \Ms and a mean mass of 9.8 \Ms, which is one order of magnitude higher than the value found in typical low mass star forming regions, such as Taurus. The majority of these cores cannot be supported by thermal pressure or turbulence, and are probably supercritical.They are thus likely precursors of protostars. The core mass function for the Orion quiescent cores can be fitted by a power law with an index equal to -0.85±\pm0.21. This is significantly flatter than the Salpeter initial mass function and is also flatter than the core mass function found in low and intermediate star forming regions. Thus, it is likely that environmental processes play a role in shaping the stellar IMF later in the evolution of dense cores and the formation of stars in such regions.Comment: 30 pages, 10 figures, accepted by Ap

    Spitzer's mid-infrared view on an outer Galaxy Infrared Dark Cloud candidate toward NGC 7538

    Get PDF
    Infrared Dark Clouds (IRDCs) represent the earliest observed stages of clustered star formation, characterized by large column densities of cold and dense molecular material observed in silhouette against a bright background of mid-IR emission. Up to now, IRDCs were predominantly known toward the inner Galaxy where background infrared emission levels are high. We present Spitzer observations with the Infrared Camera Array toward object G111.80+0.58 (G111) in the outer Galactic Plane, located at a distance of ~3 kpc from us and ~10 kpc from the Galactic center. Earlier results show that G111 is a massive, cold molecular clump very similar to IRDCs. The mid-IR Spitzer observations unambiguously detect object G111 in absorption. We have identified for the first time an IRDC in the outer Galaxy, which confirms the suggestion that cluster-forming clumps are present throughout the Galactic Plane. However, against a low mid-IR back ground such as the outer Galaxy it takes some effort to find them.Comment: Accepted for publication in ApJL -- 11 pages, 2 figures (1 colour
    • …
    corecore