7 research outputs found

    Data Collection Protocols in Wireless Sensor Networks

    Get PDF
    In recent years, wireless sensor networks have became the effective solutions for a wide range of IoT applications. The major task of this network is data collection, which is the process of sensing the environment, collecting relevant data, and sending them to the server or BS. In this chapter, classification of data collection protocols are presented with the help of different parameters such as network lifetime, energy, fault tolerance, and latency. To achieve these parameters, different techniques such as multi-hop, clustering, duty cycling, network coding, aggregation, sink mobility, directional antennas, and cross-layer solutions have been analyzed. The drawbacks of these techniques are discussed. Finally, the future work for routing protocols in wireless sensor networks is discussed

    Copper(II) catalyzed selective oxidation of primary alcohols to aldehydes with atmospheric oxygen

    No full text
    Copper(II) complex 1 selectively catalyzes the oxidation of primary alcohols to aldehydes in high yields by atmospheric oxygen in the presence of TEMPO. This procedure does not require an additive and the catalyst 1 is recyclable without loss of activity

    Construction of Indium(III)–Organic Framework Based on a Flexible Cyclotriphosphazene-Derived Hexacarboxylate as a Reusable Green Catalyst for the Synthesis of Bioactive Aza-Heterocycles

    No full text
    The constant demand for eco-friendly methods of synthesizing complex organic compounds inspired researchers to design and develop modern, highly efficient heterogeneous catalytic systems. Herein, In-HCPCP metal–organic framework (SRMIST–1), a heterogeneous Lewis acid catalyst containing less toxic indium and eco-friendly robust cyclotriphosphazene and exhibiting notable chemical and thermal stability, durable catalytic activity, and exceptional reusability was produced through the reaction between indium(III) nitrate hydrate and hexakis(4-carboxylatophenoxy)-cyclotriphosphazene. In the SRMIST–1 structure, secondary building units {InO7} are assembled by a connection of η2- and η1-carboxylic oxo atoms from different HCPCP ligands, forming a three-dimensional network. The occurrence of regularly distributed In(III) sites in SRMIST–1 confers superior reactivity on the catalyst toward the synthesis of 2,3-dihydroquinazolin-4(1H)-ones and 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxides by the cyclization reaction of 2-aminobenzamides and 2-aminobenzenesulphonamides with aldehydes under optimized reaction conditions, respectively. The notable features of this method include broad functional group compatibility, low catalyst loading (1–5 mol %), mild reaction conditions, easy workup procedures, good to excellent reaction yields, ethanol as a green solvent, reusability of the catalyst (five cycles), and economic attractiveness, which is mainly due to sustainability of SRMIST–1 as a reusable green catalyst. Our findings demonstrate that the highly reactive and reusable green catalyst finds widespread applications in medicinal chemistry

    N,N-Ru(ii)-p-cymene-poly(N-vinylpyrrolidone) surface functionalized gold nanoparticles : from organoruthenium complex to nanomaterial for antiproliferative activity

    No full text
    Organometallic Ru-arene complexes are promising as anticancer agents, but the lack of tumor uptake and poor solubility in the physiological medium impede their development. In order to deal with these challenges, we developed gold nanoparticles coated with Ru(arene)-functionalized PNVP-Py, where PNVP-Py is pyridine end-functionalized poly(N-vinylpyrrolidone). It is demonstrated that these particles exhibit higher anti-proliferative activity than the individual organometallic ruthenium(ii) complex of the type [Ru(eta(6)-p-cymene)(NN)Cl]PF6, where NN is bis(4-methoxyphenylimino)acenaphthene, against colorectal adenocarcinoma cell lines. More specifically, a Ru-II(eta(6)-p-cymene) complex containing a NN bidentate ligand has been prepared and characterized by spectral studies and X-ray crystallography. To tether the isolated complex onto the surface of the AuNPs, PNVP-Py, which contains a pyridine group at one end to coordinate to the Ru-complex and a suitable functional group at the other end to bind on the surface of the AuNPs, has been prepared and utilized to obtain the macromolecular complex [Ru(eta(6)-p-cymene)(NN)(PNVP-Py)]Cl-2. Next, stable Ru(p-cym)(NN)(PNVP-Py)@AuNPs were obtained via a ligand exchange reaction of citrate-stabilized AuNPs with a macromolecular complex by a direct 'grafting to' approach and characterized well. Despite the lower DNA cleavage activity, the nanoconjugate exhibits better cytotoxicity than the individual complex against HT-29 colorectal adenocarcinoma cells on account of its enhanced permeability across the cell membrane. The AO/EB staining assay revealed that the nanoconjugate is able to induce an apoptotic mode of cell death, which was further quantitatively evaluated by Annexin V-FITC/PI double assay. An immunofluorescence assay indicated the higher potency of the nanoconjugate to inhibit cyclin D1 gene expression that is required for cancer cell growth. To the best of our knowledge, this is the first report of the modification of an organometallic Ru(arene) complex into a Ru(arene)metallopolymer-gold nanoconjugate for the development of ruthenium-based nanomedicine for cancer treatment

    Screening and Druggability Analysis of Marine Active Metabolites against SARS-CoV-2: An Integrative Computational Approach

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have triggered a recent pandemic of respiratory disease and affected almost every country all over the world. A large amount of natural bioactive compounds are under clinical investigation for various diseases. In particular, marine natural compounds are gaining more attention in the new drug development process. The present study aimed to identify potential marine-derived inhibitors against the target proteins of COVID-19 using a computational approach. Currently, 16 marine clinical-level compounds were selected for computational screening against the 4 SARS-CoV-2 main proteases. Computational screening resulted from the best drug candidates for each target based on the binding affinity scores and amino acid interactions. Among these, five marine-derived compounds, namely, chrysophaentin A (−6.6 kcal/mol), geodisterol sulfates (−6.6 kcal/mol), hymenidin (−6.4 kcal/mol), plinabulin (−6.4 kcal/mol), and tetrodotoxin (−6.3 kcal/mol) expressed minimized binding energy and molecular interactions, such as covalent and hydrophobic interactions, with the SARS CoV-2 main protease. Using molecular dynamic studies, the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (ROG), and hydrogen bond (H-Bond) values were calculated for the SARS-CoV-2 main protease with a hymenidin docked complex. Additionally, in silico drug-likeness and pharmacokinetic property assessments of the compounds demonstrated favorable druggability. These results suggest that marine natural compounds are capable of fighting SARS-CoV-2. Further in vitro and in vivo studies need to be carried out to confirm their inhibitory potential
    corecore